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Abstract

Reconnaissance Blind Chess is an imperfect-information variant of chess with significant
private information that challenges state-of-the-art algorithms. The Johns Hopkins Univer-
sity Applied Physics Laboratory and several organizing partners held the second NeurIPS
machine Reconnaissance Blind Chess competition in 2021. 18 bots competed in 9,180
games, revealing a dominant champion with 91% wins. The top four bots in the tourna-
ment matched or exceeded the performance of the inaugural tournament’s winner. However,
none of the algorithms converge to an optimal, unexploitable strategy or appear to have
addressed the core research challenges associated with Reconnaissance Blind Chess.
Keywords: reconnaissance blind chess, imperfect information, reinforcement learning,
common knowledge

1. Introduction

A multitude of games have historically provided clearly defined, strategically complex en-
vironments that are useful for studying and comparing automated decision-making algo-
rithms. Advancements in such algorithms have been marked by the achievement of super-
human play in various games, famously including backgammon (TD-Gammon) (Tesauro,
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1995), chess (Deep Blue, AlphaZero) (Campbell et al., 2002; Silver et al., 2018), Go (Al-
phaGo, AlphaZero) (Silver et al., 2017b), shogi (AlphaZero), and Texas hold-em poker
(Libratus, DeepStack) (Brown and Sandholm, 2017; Moravéik et al., 2017).

Games with significant private information remain a challenge for existing algorithms.
However, games of this nature are scarce because such games usually require a referee to
pass information and validate actions. To support continuing developments in automated
decision making under uncertainty, researchers at the Johns Hopkins University Applied
Physics Laboratory (JHU/APL) created the game Reconnaissance Blind Chess (RBC) as
a proposed common benchmark. RBC is a blind chess variant in which observations are
primarily private, designed to reflect the challenges of automated decision making in non-
game (or “real world”) strategic scenarios. JHU/APL hosted an inaugural competition of
RBC algorithms as part of the Neural Information Processing Systems (NeurIPS) conference
in 2019, and hosted a second NeurIPS tournament in 2021.

This paper describes the rules and research purpose of the game RBC and of the NeurIPS
2021 tournament. Participants in the tournament provide summaries of their algorithms,
and tournament organizers review post-competition analysis and lessons learned. Although
four participating agents appear stronger than 2019’s winning algorithm, none converge to
an optimal strategy or provide a comprehensive, practical solution to the game’s research
challenges. RBC remains an open and promising research problem.

2. Reconnaissance Blind Chess

RBC is an imperfect information variant of chess (Newman et al., 2016). Like other blind
chess variants, RBC requires that players be separated and communicate through a referee.
It is best played on a computer. An RBC player cannot in general see her opponent’s pieces.
Instead, their possible positions are deduced from:

1. The known starting arrangement, which is the same as in chess.

2. A sensing action taken on each turn before moving. The referee informs the sensing
player of the contents of a requested 3 x 3 square area on the chess board. A player
is never informed where her opponent sensed.

3. The location of captures, provided by the referee. The type of the opponent’s piece
which was captured or did the capturing is not reported.

4. Corrections to a player’s own illegal moves are also provided by the referee. (Cor-
rections to her opponent’s moves remain hidden.) Moving a sliding piece through
an unseen opposing piece results in the moved piece stopping and making a capture.
Illegal castling or pawn moves result in no move at all, except when advancing a pawn
two squares, which can result in a single step if only the second square is occupied.

This dedicated, private sensing action is unique to RBC, and gives it the characteristics
that make RBC an interesting platform for research. The privacy of this observation makes
it difficult to reason about an opponent’s knowledge, while the power of the observation
makes it essential to do so. Depending on the senses made, an opponent may have perfect
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information about the state of the chess board or nearly total uncertainty; a player’s optimal
actions could be quite different between these circumstances.

The chess rules regarding check are removed from RBC. Instead, a player wins by
capturing the opponent’s king. For this competition, a chess clock was also used. Either
player loses the game after exhausting 15 minutes of cumulative time. An interested reader
can learn more and play the game at https://rbc. jhuapl.edu.

3. Research Challenges and Related Work

Algorithms for playing perfect-information games take advantage of natural properties of
such games: 1, the game state is always known exactly, so computing a strategy mid-game
only requires searching in a subgame beginning from the current state, and 2, an optimal
strategy can be deterministic, as there is no incentive (or ability) to play unpredictably.
Algorithms such as minimax and Monte Carlo tree search (MCTS) (Kocsis and Szepesvéri,
2006; Browne et al., 2012) can efficiently identify a sequence of actions that result in the best
reachable state from the acting player’s perspective at each decision point. In complex games
with larger state spaces, like chess and Go, an optimal strategy can only be approximated,
and research efforts focus on limiting the search computation, often by creating functions
that can accurately estimate the value of a game state without needing to play to a terminal
state (Silver et al., 2017b, 2018).

In general, however, computing optimal actions in a game of imperfect information is
far more difficult. Because the exact state of the game is not known, optimal actions are
probabilistic, with probabilities that depend on the likelihood of the currently-possible game
states and the opponent’s following actions. This is true of both players, so estimation of
an opponent’s policy reflects the probabilities of currently-possible game states from the
opponent’s perspective and the opponent’s estimation of the original player’s policy.! All
possible states in a game of imperfect information can affect the optimal actions at any
given state. This dramatically increases the computational cost of finding optimal actions
compared to games of perfect information, even for games with similar numbers of states.

Despite this, there have been breakthroughs in games of imperfect information including
superhuman play in no-limit Texas hold-em poker (Brown and Sandholm, 2017; Moravcik
et al., 2017). Algorithms like counterfactual regret minimization (CFR) (Zinkevich et al.,
2008) model all players and provably converge to an optimal (Nash-equilibrium) strat-
egy. This requires repeatedly simulating games from the beginning, which can create an
intractably-large search space in many games. Several approaches have been developed to
focus this search within subgames. Some approaches limit the search breadth by dividing
the game into public belief states—sets of game states grouped by information available to
all players. Online search is restricted to the current public subgame, using saved informa-
tion to represent the essential portions of the rest of the game (Burch et al., 2014; Moravéik
et al., 2017; Sustr et al., 2018; Brown et al., 2020). Other approaches limit search depth by
learning and storing public state values in a neural network (Moravéik et al., 2017; Brown
et al., 2020). These techniques can yield strong play for Texas hold-em poker, in which the
only non-public information is each player’s private hand. In RBC, however, there is much

1. Furthermore, this applies recursively. The current optimal actions depend on a player’s estimate of the
opponent’s estimate of the player’s estimate... and so on.
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more private information, and thus public subgames often include a tremendous number of
states. A different approach restricts search depth by choosing actions beyond the depth
limit using fixed strategies for all players, but permitting a choice from among several fixed
strategies for opponents (Brown et al., 2018). A method for practically computing these
strategies is not known for a game as large and complex as RBC.

Alternately, search can be foregone in favor of approximating equilibrium policies for the
whole game through deep-CFR (Brown et al., 2019) or neural fictitious self-play (NFSP) (Hein-
rich and Silver, 2016). In large, complex games, training the necessary neural networks could
be infeasible. Additionally, online strategy search has been shown to be invaluable to strong
game play (Silver et al., 2017a).

Another adaptation to CFR, online outcome sampling (OOS) (Lisy et al., 2015), impor-
tance samples game playouts that are consistent with a player’s current information. This
is not sufficient for practical computation of an RBC strategy for several reasons, including
that every possible sequence of opponent sense actions is always consistent with information
available to a player, leaving an exponentially-increasing number of states to be importance
sampled.

Zhang and Sandholm (2021) developed knowledge-limited subgame solving (KLSS)
specifically to address games with little common knowledge. Their algorithm restricts a
subgame to states that are possible within a certain knowledge distance, where the games
states consistent with the acting player’s information have a distance of 0, the states consis-
tent with any opponent information which itself is consistent with the player’s information
have a distance of 1, and so on. KLSS limited to a knowledge distance of 0 (called 1-KLSS)
was used to play dark chess, although not at superhuman level. As with OOS, RBC’s
exponential growth in number of states (even at distance 0) may challenge KLSS.?

Literature on imperfect-information games includes other blind chess variants, Kriegspiel
(Ciancarini and Favini, 2010; Russell and Wolfe, 2005) and dark chess (Zhang and Sand-
holm, 2021). In Kriegspiel, pieces are never directly observed. A player learns about their
opponent’s pieces by attempting moves, which are rejected if illegal (the player then tries
again). Players are also informed of checks and captures. In dark chess, squares are visible
to a player if they have a legal move which ends on that square. The concept of check is re-
moved and a game is won by capturing the opponent’s king. Both Kriegspiel and dark chess
couple observations to piece placement, which reduces the amount of private information
compared to RBC, although each presents similar practical challenges to search algorithms.

4. Competition Structure

The NeurIPS 2021 RBC competition followed the format used in the inaugural 2019 compe-
tition (Gardner et al., 2020). The event was open to any participants interested in writing
an RBC bot. During the tournament, bot authors ran their own code, which communicated
online with the RBC server. The server scheduled, refereed, and recorded the games. The
competition was a multi-round-robin tournament; every participant played against each op-

2. Zhang and Sandholm (2021) partially addressed this by considering game states which are from that
moment on indistinguishable to an outside observer to be transpositions—effectively the same state. In
dark chess, this disregards only move order, which may mean that transpositions are practically similar.
In RBC, however, this also disregards the history of sense actions.
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ponent an equal number of times. This tournament held 30 rounds, and in every round all
bots faced each opponent twice, once on each side of the chess board.

The rank for each bot was decided using Bayesian Elo rating® (Coulom, 2006). This
estimate of relative player strength is particularly well suited for round robin tournaments;
the results are invariant to game order, but sensitive to the number of matches between
each pair of participants, which here was constant.

The primary organizer, the Johns Hopkins University Applied Physics Laboratory, of-
fered a $1,000 prize to the winner and $500 to the runner-up, excluding bots written by
affiliates of Johns Hopkins University. Bots were limited to 15 minutes of cumulative time
per bot per game, and were required to support four simultaneous games. The tournament
took 72 hours to complete, starting on October 20, 2021.

5. Overview of Approaches

This section provides a brief summary of most of the participating bots in the NeurIPS
2021 tournament of RBC. Table 1 contains algorithm descriptions ordered by descending
tournament rank. Table 2 compares submitted agents by high-level features included in or
excluded from their algorithms. Most bots perform exhaustive tracking of possible states
of the chess board, but only four track those possibilities from the opponent’s point of
view, and none track the recursive belief states that form the full RBC game state. Top
performing bots tend to predict their opponent’s moves, which may be made more reliable
by the prevalence of chess engines for move evaluation. Several bots choose sense actions to
minimize the expected number of remaining states, but most of the top performers instead
choose sense actions with a more general game objective in mind.

Table 1: Brief description of select bots’ algorithms.

Bot Name Brief Description

Fianchetto Built using the source code of StrangeFish (Perrotta and Perrotta, 2019), in which it
introduces several major changes. For board evaluations, Fianchetto uses Lc0 (Pascutto
and Linscott, 2018), rather than Stockfish (Romstad et al., 2018). LcO speeds up the
evaluation step by giving scores to all possible actions through a single forward pass of a
neural network, with the additional option of evaluating multiple boards in parallel on a
GPU. The gain in speed enables the expansion of the search tree to include a probabilistic
model of opponent behavior, itself also taken from Lc0. Fianchetto maintains a belief
over all possible board states, which is recomputed on each turn using the POMDP belief
update equation.

StrangeFish2 Extends the exhaustive board state tracking and average outcome move selection of its
predecessor, StrangeFish. The sense actions are selected by estimating probabilities for all
possible observations, choosing a move following each of those hypothetical observations,
and estimating probabilities for all possible outcomes of that move. These probabilities
are based on the estimated distribution over board states, which is a function of the
opponent’s strength in each position. The choice of sense is then that which leads to, on
average, the best outcome after this turn’s move. Move and state values are computed
using Stockfish plus uncertainty related heuristics.

3. In this competition, the Elo estimate was computed with zero advantage assigned to the first-to-move
player, and zero likelihood of a draw (drawing a game was not possible in RBC as implemented at the
time). Bayesian Elo produces an Elo estimate with confidence intervals for each player. The central
estimate was used as each player’s score, without adjusting towards to lower confidence bound.
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Brief Description

penumbra

Based on deep synoptic Monte Carlo planning (Clark, 2021). It tracks all possible oppo-
nent board states, maintains a belief state with an unweighted particle filter, and plans
with upper confidence bound tree search. It approximates information states with a
stochastic abstraction, encoding sets of boards with compact fixed-size synopses. Those
synopses are provided as input to a deep neural network to guide the search algorithm.
The 12-block residual network was trained to model twenty opponents based on historical
game data.

Kevin

Explicitly keeps track of all possible board states and a probability distribution over
them. It chooses sense actions to minimize the expected difference in value between
its next move and its theoretical best move for the true state. Each opponent turn, it
calculates the probability distribution over board states by performing depth-limited CFR
to approximate an opponent’s Nash equilibrium strategy. The CFR uses unsafe subgame
solving (Ganzfried and Sandholm, 2015) over a sampled subset of possible board states,
and it uses Stockfish to evaluate leaf nodes. For its own move, the bot maximizes its
expected win probability.

Oracle

Exhaustively tracks board states. Chooses sense action to identify possible checks, or
otherwise minimizes the expected number of possible board states. Chooses the move
that is recommended by Stockfish most across all possible board states.

Gnash

Tracks all possible board states as well as all boards the opponent might believe are pos-
sible and probability estimates over each. These probabilities are calculated by assuming
both players choose moves the same way. Gnash senses to minimize expected number of
remaining states, and moves to maximize the Stockfish score of the state reached after a
short playout. Tractable evaluation of scores is done by time-limited prioritized search,
scoring likely-good moves on likely-true boards first.

Marmot

Tracks all possible opponent board states for the current time and past timesteps based
on current observations. Uses a modified Monte Carlo counterfactual regret minimization
(MC-CFR) algorithm for sensing and moving with a heuristic evaluation function (which
includes Stockfish’s board-evaluation function) based on determinized board position
and a tracked uncertainty measurement to evaluate the intermediate states reached from
action sequences sampled using MC-CFR. Employs a novel algorithm to take samples
starting from a finite time horizon on the past, assuming the opponent knows the board
state at that point, because the game tree is too large for complete MC-CFR starting
from the beginning of the game.

DynamicEntropy
and Frampt

Chooses sense and move actions by information set Monte Carlo tree search. The branch-
ing factor is reduced by screening dominated actions (e.g. sense options that provide
strictly less information than others). Sampling of non-choice nodes is biased toward
uniform to reflect opponent uncertainty. In DynamicEntropy, leaf nodes are evaluated
by Stockfish. In Frampt, leaf nodes are evaluated by counting material and checks.

GarrisonNRL

Maintains a sample of up to 200 possible boards. Selects sensing action as the location
that maximizes a sensing weight: the product of the number of potential opponent moves
to a location and the value of pieces moving to those locations. For each board in the
board sample, chooses a best move by attacking the opponent king if possible, otherwise
by using the Leela chess engine with the Maia 1700 network (Mcllroy-Young et al., 2020).
Selects a movement action by using the most common best move.

trout (baseline)

Maintains a single board-state estimate that is formed directly from the latest observation
of each square. Chooses the move recommended by Stockfish for its board estimate. If
a piece was just captured or it thinks it will capture a piece next turn, it senses over the
capture square. Otherwise it chooses a random location to sense that does not contain
any of its own pieces.

attacker
(baseline)

Randomly chooses and executes one of four scripted attack sequences. If that fails, no
more moves are made.
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Bot Name Brief Description

URChlIn Employs a language model to obtain a “plausible state” distribution, which is sampled
(Unsupervised when deciding move actions. The language model is Word2Vec with hierarchical soft-
Representations | max (Mikolov et al., 2013), originally trained on ChessDB (Kirby, 2007) and updated
for Chess after every RBC game. Move actions are selected by sampling the 20 highest-likelihood
Inference) states according to the language model and determining the best worst-case move across

these sampled states, according to StockFish. Senses to maximize the number distinct
piece types across states. URChIn underperformed due to bugs, and has been improved
following the tournament.

random Chooses moves uniformly at random.
(baseline)

Table 2: High-level comparison of features included in competing algorithms.
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DynamicEntropy 1299 8 ° °
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trout 1127 | 12
callumcanavan 1066 | 13
attacker 1049 | 14
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random 753 | 17

6. Results and Observations

After 30 rounds and 9,180 games, the bot Fianchetto won convincingly, with a 91% overall
win rate and at least a 66% win rate against every opponent. The overall and per-pairing
wins are displayed in Figure 1. Compared to the 2019 tournament, a greater fraction of
this year’s agents exceeded the baseline performance of the bot trout. Despite being a
naive application of a chess engine, trout managed at least one win against every opponent.
By comparison to repeat participants, it can be estimated that the top four bots in this
tournament matched or exceeded the performance of the inaugural tournament’s winner.
Bayesian Elo ratings for all bots fluctuated in the early rounds, but the winning agent’s
dominance was apparent by the round 15 midpoint of the tournament. Figure 2 shows the
estimated Elo and 95% confidence limits for each bot after each of the tournament’s 30
rounds. The left axis shows ratings computed from all games, while the right axis shows
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Fianchetto
StrangeFish2
DynamicEntropy
GarrisonNRL
callumcanavan
ai_games_cvi

Fianchetto
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penumbra
Kevin
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Gnash
Marmot 595
DynamicEntropy 580
wbernar5 505
Frampt 495
GarrisonNRL 432
trout' 420
callumcanavan| 36
attacker
URChin
armandli
random
ai_games_cvi

Figure 1: Crosstable of wins each bot had against each other bot in the competition (1020
total games for each bot, 60 per opponent).
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Figure 2: Convergence of Bayesian Elo ratings over the 30 round tournament. Elo estimates

are shown with 95% confidence interval shaded. Left: total tournament rating.
Right: algorithm strength rating, excluding forfeit games.

ratings calculated without forfeit results, which may be more useful in comparing algorithm
strength. For example, the race for second place was extremely close between StrangeFish2,

penumbra, and Kevin, although the latter two missed several games resulting in lower overall
Elo.

Uncertainty Management: Most bots in this competition were based on exhaustive
tracking of possible board states. It is evident from retracing tournament games that
minimizing the number of possible board states was critical to overall performance. The
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“Median # States” column in Table 3 shows the median number of possible board states
from each agent’s point of view after sensing on each turn of each game. The top 11
performers kept this median below 100, typically at or below 20. The lower performers had
median numbers orders of magnitude larger. For this computation, any game replay which
reached a number of states greater than one million was terminated, and the number was
assumed to remain above one million for the rest of the game.

The minimization of possible board states does not determine algorithm strength, how-
ever. There is little difference in this quantity among top performers. The “States A Rank”
column in Table 3 compares the ranked ordering of median states to overall tournament
placement. Agents penumbra and StrangeFish2 used sense strategies with objectives other
than minimization of possible board states, and exhibited overall tournament performance
which exceeded their relative rank in median states, indicating they may have identified
improvements in sensing strategies.

It is important to note that the median number of board states computed here is not
the median number of RBC game states. The full game state also includes the history of
sense and move choices, which together reflect all of what each player knows. The number of
possible game states computed using the observation history is much larger than the possible
arrangements of pieces on the board. No bot has made much progress in representing
or using it. Improvement in this regard may require a non-exhaustive alternative to the
hypothesis tracking which was common in this tournament.

Comparison to Chess Engine: Evaluation of moves and board states was frequently
delegated to chess engines such as Stockfish (Romstad et al., 2018). Position strength
remains important in RBC as it is in chess, and some agents augment chess engine values
with RBC-specific heuristics, but in theory the use of chess evaluation in RBC limits solution
strength. As discussed with regards to game state computation, the full RBC game state
includes all the information available to each player, not just the arrangement of pieces on
the board. A comprehensive evaluation of a game state then must also incorporate this
information.

In general, though, move strength as assessed by a chess engine correlates well with
performance in this tournament. This was computed by getting the top three moves from
Stockfish given the true board state on each turn of each game. RBC-only conditions were
handled by picking any move that captures the opponent’s king if able, otherwise any move
that gets out of check if necessary. The “Engine Move Agreement” column of Table 3
shows the percent of an agent’s moves that were in the top three chess moves. Largely,
better agreement with the engine corresponds with higher tournament placement. Two
agents placed notably higher in the tournament compared to their move agreement rank:
penumbra, which learned state values from reinforcement learning on RBC games rather
than relying on an engine, and Marmot, which did use Stockfish evaluation, but in an
uncertainty-aware framework adapted from MC-CFR.

Inspection of opening moves reveals some of the bias caused by chess engine evaluation
in RBC. In this tournament, the most common opening moves mirrored those of chess—
advance a pawn to e4 or d4, or a knight to f3—and did not reflect RBC-specific move
strength. Games opened with e4 37% of the time, and of those games, white won 71%.
However, the second most common opening, d4, was played 17% of the time and resulted
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in 66% losses for white. (The next most common opening move with worse performance
was to pass without moving.) Players opened by advancing a pawn to ¢4 in only 5% of
games, but were rewarded with 83% wins. As algorithms advance state evaluation functions
specific to RBC rather than chess, it is likely that fewer games will open with d4, and more
with c4.

Table 3: A comparison of each bot’s tournament rank to their relative uncertainty manage-
ment and use of traditional chess moves.
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Fianchetto 1759 1 9 2| 41 72% 2| +1
StrangeFish2 1662 2 15 51 43 || 59% 4| 42
penumbra 1584 3 24 | 10 | +7 || 43% 7| +4
Kevin 1544 4 13 3 -1 67% 3 -1
Oracle 1503 5 13 4| -11 713% 1] 4
Gnash 1454 6 18 7 +1 58% 5 -1
Marmot 1315 7 20 9| 42 28% | 11 | +4
DynamicEntropy 1299 | 8 6 6| -2139% | 9| +1
wbernarb 1219 9 5 1 -8 || 28% | 12 | +3
Frampt 1208 | 10 19 8 -2 25% | 13 | +3
GarrisonNRL 1140 | 11 61 | 11 0 || 44% 6| -5
trout 1127 | 12 3243 | 14 | +2 36% | 10 -2
callumcanavan 1066 | 13 7158 | 15 | 42 8% | 16 | +3
attacker 1049 | 14 >1IM | 17 | +3 4% | 17 | +3
URChIn 854 | 15 124 | 12 -3 39% 8 -7
armandli 7T | 16 204 | 13 -3 15% | 14 -2
random 753 | 17 || 68263 | 16 | -1 8% | 15 | -2
ai_games_cvi 288 | 18 - - - - - -

7. Conclusions

The NeurIPS 2021 tournament of RBC provided an accessible platform for the development
and comparison of algorithms for automated decision making under uncertainty. Algorith-
mic advancements were made compared to the 2019 tournament; the top four bots in
this competition appear to match or exceed the previous winner’s performance. However,
significant research challenges remain between the current top performers and a practically-
optimal solution to RBC. The tournament organizers hope to continue to hold an annual
RBC competition as part of NeurIPS until the core research challenges are addressed.
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