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Abstract

We held the first-ever MineRL Benchmark for Agents that Solve Almost-Lifelike Tasks
(MineRL BASALT) Competition at the Thirty-fifth Conference on Neural Information
Processing Systems (NeurIPS 2021). The goal of the competition was to promote research
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towards agents that use learning from human feedback (LfHF) techniques to solve open-
world tasks. Rather than mandating the use of LfHF techniques, we described four tasks in
natural language to be accomplished in the video game Minecraft, and allowed participants
to use any approach they wanted to build agents that could accomplish the tasks.

Teams developed a diverse range of LfHF algorithms across a variety of possible human
feedback types. The three winning teams implemented significantly different approaches
while achieving similar performance. Interestingly, their approaches performed well on
different tasks, validating our choice of tasks to include in the competition.

While the outcomes validated the design of our competition, we did not get as many
participants and submissions as our sister competition, MineRL Diamond. We speculate
about the causes of this problem and suggest improvements for future iterations of the
competition.

Keywords: Learning from humans, Reward modeling, Imitation Learning, Preference
Learning.

1. Introduction

Specifying reward functions for AI systems by hand can often lead to specification gaming,
in which the AI agent finds a way to achieve high reward without behaving how the designer
intended (Krakovna, 2018; Lehman et al., 2018; Kerr, 1975). In an infamous example, an
agent trained to play the boat racing game CoastRunners discovers it can loop forever
collecting power-ups that give it bonus points: significantly increasing the score, but never
finishing the race (Clark and Amodei, 2016).

Specification gaming occurs because the reward function is interpreted as defining the
optimal behavior of the agent in every situation that can arise in the environment, even
though in practice it should be treated as a potentially flawed source of evidence about what
the task designer wants (Hadfield-Menell et al., 2017). We thus aim to incorporate additional
channels for communicating information about what designers want to our agents. We call
the class of techniques for this problem “learning from human feedback” (LfHF). Jeon et al.
(2020) provide a survey of possible feedback modalities, including demonstrations (Ng and
Russell, 2000; Ziebart et al., 2010), comparisons (Christiano et al., 2017; Wirth et al., 2017),
the state of the world (Shah et al., 2019), and more. Note that LfHF includes imitation
learning as a special case where the human feedback is given through demonstrations.

To promote research towards agents that learn from human feedback rather than a
predefined reward function, we held the first-ever MineRL Benchmark for Agents that Solve
Almost-Lifelike Tasks (MineRL BASALT) Competition at the 35th Conference on Neural
Information Processing Systems (NeurIPS 2021). To our knowledge, MineRL BASALT is
the first competition to test LfHF techniques in a sequential decision-making setting. Teams
developed agents for four open-world tasks in Minecraft: finding a cave, building a scenic
waterfall, corralling animals without disrupting a village, and safely building a village house.
We provided a dataset of human demonstrations of each task, using the same infrastructure
as in MineRL Diamond (Guss et al., 2019). Our challenge attracted approximately 300
registered participants, of which 10 teams provided submissions to all of the required tasks.
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Figure 1: An illustration of the MineRL BASALT competition procedure.

2. Competition Overview

We provide a brief overview of the MineRL BASALT competition; for a full description
of the motivation, design, and implementation, we refer the reader to the competition
proposal (Shah et al., 2021a) and website (Shah et al., 2021b).

Figure 1 shows the overall competition structure. We provided tasks consisting of a
simple English language description alongside a Gym environment, without any associated
reward function (Section 2.1). Participants trained agents for these tasks using any methods
of their choice. The submitted agents were evaluated based on how well they completed the
tasks, as judged by humans given the same task descriptions (Section 2.2).

2.1. Tasks

Our goal was to promote work on LfHF algorithms that can eventually be applied to hard-
to-specify problems of interest in the real world. Since we wanted algorithms to transfer
to real-world settings, we wanted to incentivize general solutions rather than algorithms
that are specific to a given task. This drove our choice of Minecraft as our environment.
Minecraft is extremely open-ended: humans pursue a wide variety of goals within the game,
and the game mechanics provide a hierarchical and combinatorial space of possible tasks
that agents can be trained to perform. By designing tasks involving high-level concepts
that cannot be easily identified programmatically, we were able to recreate the situation we
often face in real-world settings: reward functions cannot be used simply because they are
too hard to write down.

We designed a suite of four tasks that participants were required to design performant
agents for: FindCave, MakeWaterfall, CreateVillageAnimalPen, BuildVillageHouse. Par-
ticipants submitted a separate trained agent along with the corresponding training code for
each task. Crucially, the training code could expose an English-language interface (either
via the command line, or some more complex GUI if desired) where humans with at most 30
minutes of training could provide feedback. We did not require participants to use identical
training code across all four tasks, but we hoped that having performance on all tasks count
towards the final competition score would encourage the use of general-purpose techniques
rather than task-specific hard-coding.
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2.2. Evaluation

For each task, we executed submitted agents on test environments to produce multiple
videos of agents attempting to complete that task. We then compare agents to each other
by putting them in “matches”. In each match, we choose two agents, one task, and one test
seed, and show the two corresponding videos to a human contractor. The contractor then
determines which agent better completed the task. Given a dataset of such comparisons,
we used the TrueSkill system (Herbrich et al., 2006) to compute scores for each agent. Since
we expected agent skills to vary significantly across tasks, we computed separate TrueSkill
scores for each task. We collected comparisons until the scores produced a reasonably stable
ranking of agents, ultimately requiring thousands of comparisons. The standard deviation
estimated by TrueSkill for an individual submission was typically around 0.7.

To determine winners, we need to aggregate TrueSkill scores across tasks. One intu-
itive way to do this is to normalize the TrueSkill scores across submissions to the task, by
transforming a score of x to x−µ

σ , where µ is the mean and σ is the standard deviation of
the scores. (Note that here µ and σ are not the means and standard deviations estimated
by TrueSkill, but are rather the mean and standard deviation calculated across participant
scores.) We can then take the average of the normalized scores to determine an overall
score. The normalization ensures that no one task unduly drives the final scores, while they
remain sensitive to the magnitude of the differences in scores between different agents on a
task. Unfortunately, this scheme has a major downside: if all submissions behave similarly
on a task, then σ will be very small, and tiny differences between agents can be amplified
into large differences in overall score. To mitigate this issue, we required the denominator
to be at least 1, such that a score of x was mapped to x−µ

max(σ,1) .
For the top submissions in contention for winning a prize, we looked over the submitted

training code to ensure that rules were not broken. We then retrained the agents with a
budget of up to four days of compute and ten hours of online human feedback. Participants
were allowed to choose how to split their compute and human feedback budget across
the four tasks. We checked that the retrained agents behaved similarly to the originally
submitted agents. If there were significant discrepancies, we would have disqualified the
submission, but luckily this did not prove to be necessary.

2.3. Resources

AIcrowd website. AIcrowd provided a unified interface for participants to sign up for
the competition, submit their trained agents, ask the organizers and other participants
questions, and monitor their progress on a public leaderboard.

Baselines. We provided a behavioral cloning (BC) baseline to participants to help them
get started on their solution.

Mentorship. Both MineRL BASALT and MineRL Diamond used an existing MineRL
Discord server to create an active community to work on the competition problems. This
was very helpful in increasing engagement and helping solve any issues that arose.

Computing and evaluation resources. We offered $500 compute grants to partici-
pants that self-identified as lacking access to the necessary resources to take part in the
competition. We provided these grants to 26 out of the 27 applications we received.
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Tutorial and Documentation. We provided a website that contains instructions, doc-
umentation, and updates to the competition. We also provided references to prior LfHF
approaches that participants could read for ideas on how to tackle the competition.

2.4. Related Competitions

To our knowledge, MineRL BASALT was the first competition to test LfHF techniques
in a sequential decision-making setting. Our sister competition, MineRL Diamond (Guss
et al., 2019), also leverages human demonstrations, but does so in order to improve sample
efficiency on tasks with a fixed reward function, whereas we focus on using human demon-
strations (and other human feedback) to replace the reward function. There are also several
other competitions set in Minecraft (Perez-Liebana et al., 2019; Gray et al., 2019; Johnson
et al., 2016; Salge et al., 2018), though their focuses are quite different from ours.

3. Winning Submissions

Having described the competition, we now turn to the winners and their approaches.

Table 1: Leaderboard. We show the scores that teams achieved on each task, as well as
the average (used to determine winners). The scores are TrueSkill scores that have
been normalized according to the method described in Section 2.2. ‘Baseline” is the
behavioral cloning (BC) method that we provided at the start of the competition.

Team FindCave Waterfall AnimalPen House Average

KAIROS −0.23 2.81 0.15 −0.06 0.67
obsidian 1.07 0.21 1.00 0.15 0.61
NotYourRL 0.44 0.13 1.59 0.03 0.55
mina 0.80 −0.71 −0.08 0.18 0.05
yamato.kataoka −0.17 0.00 −0.24 0.00 -0.10
Reforcos de Minecraft −0.60 0.18 −0.25 −0.03 -0.17
UEF −0.19 −0.49 −0.03 −0.05 -0.19
Baseline −0.26 −0.43 −0.04 −0.12 -0.21
chrischongtt −0.60 −0.32 −0.20 −0.06 -0.30
Granite 0.10 −0.61 −1.12 0.00 -0.41
PA-P −0.36 −0.76 −0.79 −0.05 -0.49

3.1. Prize Winners

We show the leaderboard in Table 1. The first, second, and third place prizes went to Teams
KAIROS, obsidian, and NotYourRL, respectively. Besides the main prizes for the top three
teams on the leaderboard, we had two other prizes for submissions and two smaller prizes
to encourage activity in community:
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Most human-like prize. This prize went to the submission with the most human-like
behavior. This was judged in exactly the same way as the overall leaderboard, except that
instead of having human raters compare agents based on how well they completed the task,
we had them compare agents based on how human-like their behavior was. Team KAIROS,
the overall first-place winner, also won this prize.

Creativity of research prize. This prize went to the submission whose approach was
the most creative, as judged by the organizing committee. Team NotYourRL, the overall
third-place winner, also won this prize.

Community support prize. We awarded three Discord users with a prize for answering
participant questions and discussing the competition, rules, and potential solutions.

Evaluation lottery prize. We gave out five lottery awards for those who submitted hu-
man evaluations for the online leaderboard to encourage people to do the online evaluations.

Figure 2: Diagram illustrating the KAIROS team approach (Goecks et al., 2021).

3.2. First Place: KAIROS

The KAIROS team opted for a hybrid intelligence approach where subtasks, either engi-
neered by human designers or learned from human feedback data, are hierarchically orches-
trated by a state-machine (Goecks et al., 2021).

As seen in their main approach diagram, shown in Figure 2, the transitions between the
states of the state-machine are controlled by two main modules: a state classifier and an
estimated odometry module. The state classifier consists of a convolutional neural network
that takes the agent’s camera view of the environment as input and classifies it in one of
twelve possible classes such as if the image contain caves, mountains, animals, water, and
others. This classifier was trained using approximately 82, 000 human-labeled images. The
estimated odometry module assumes the agent follows point-mass kinematics and estimates
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its motion based on the actions taken by the agent and mechanics of the Minecraft simulator,
such as that the time interval between each frame is 0.05 seconds and that the terminal
walking speed on Minecraft1 is approximately 4.317 m/s.

The multiple subtasks controlled by the state-machine are either learned from human
data or engineered by human designers. The main subtask is a navigation policy that drives
the agent to key locations in the environment such as the ideal spot to place a waterfall, or
start the construction of the pen or house. This policy is a convolutional neural network
trained via imitation learning using the human demonstration dataset provided by the
competition after it was preprocessed to mask out all non-movement-related actions. The
remaining subtasks were designed by a human expert to use the output of the learned
state classifier and estimated odometry model to perform behaviors that were not able to
be learned directly from data. The main example is the “end episode” subtask for the
FindCave task, where the agent is scripted to equip and throw the snowball whenever the
state classifier is confident that the agent is inside a cave.

3.3. Second Place: Obsidian

Figure 3: IQ-Learn method.

The Obsidian team’s approach used a
novel state-of-art algorithm for imitation
learning: Inverse Q-Learning (IQ-
Learn)2 (Garg et al., 2021) to train an
agent on each of the tasks. Their ap-
proach did not use any human-provided in-
teractions, auxiliary data, or labels and re-
lied on pure imitation of the given offline
demonstrations. A crucial part of their ap-
proach was using a Recurrent Neural Net-
work (RNN) as part of the agent’s policy.

IQ-Learn is the first non-adversarial
method for Inverse Reinforcement Learning
(IRL), developed using new theoretical in-
sights. It works with sparse expert data and
scales to complex environments, improving
on prior works like GAIL (Ho and Ermon,
2016) and SQIL (Reddy et al., 2019) by or-
ders of magnitude. IQ-Learn learns a Q-
function using human demonstrations, which implicitly represents both a reward function
and a policy. It optimizes a policy using a single training loop, in contrast to existing inverse
reinforcement learning and adversarial imitation learning, which use nested training loops
and alternative updates and are more complex to implement. At the same time, in contrast
to simpler methods like behavioral cloning, the policy learned using IQ-Learn can represent
the environment’s dynamics and enables online imitation learning. In this competition,
team Obsidian used the online version of IQ-Learn, which trains agents using experiences

1. Minecraft Wiki - Walking: https://minecraft.fandom.com/wiki/Walking.
2. IQ-Learn link: https://div99.github.io/IQ-Learn.
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sampled from both human demonstrations and a replay buffer generated by environment
interaction.

The agent’s policy contained an LSTM (Hochreiter and Schmidhuber, 1997), which
allowed it to learn more complex behaviors than similarly trained non-recurrent policies.
Examples of such behavior include swimming, which requires performing the same action
repeatedly over many timesteps. Additionally, in the MakeWaterfall task, the LSTM en-
abled the agent to learn to stay nearby and end the task after placing the waterfall rather
than moving away. This behavior was a significant differentiator of success and failure on
the task.

The same approach was used for each of the competition’s tasks, demonstrating the
generality of this approach. Between each task, only the following varied:

• The discretization of the action space to allow the use of environment-specific items.

• The vectorization of the inventory and equipped item components of the observations.

• A few hyperparameters, most significantly the model size and experience sequence
length used to train the LSTM. The MakeWaterfall task particularly benefited from
a longer sequence length.

• Training duration, based on perceived task difficulty.

This approach used relatively little domain knowledge: the action space was discretized
roughly following one of the provided baselines; all no-op actions were removed from the
expert demonstration dataset; the demonstrations were augmented using random horizon-
tal shifts of the image component of the observation; and the agent was only allowed to
terminate an episode if its likelihood of doing so exceeded a confidence threshold, to reduce
its tendency to end the episode early.

3.4. Third Place: NotYourRL

Team NotYourRL’s approach was mostly based on the approach in Ibarz et al. (2018).
At a high level, this constitutes two main parts: learning Q-values using Deep Q-learning
from Demonstrations (Hester et al., 2018) and learning the reward model from human
preferences (Christiano et al., 2017).

DQfD uses double Q-learning with prioritized experience replay (Schaul et al., 2015)
that allows for prioritizing human demonstrations over agent trajectories, while learning
from both. As deep Q-learning needs a reward signal for its training, the reward model is
trained using sample clips from demonstrations and agent trajectories. This reward model,
a convolutional neural network (CNN), then estimates the corresponding reward function
from elicited trajectory preferences and expert demonstrations.

Due to time constraints, the team used an auto-labeling approach to generate preferences
over clips instead of using human judgment. Clips are randomly sampled from the trajectory
buffer and are labeled as follows: Clips from human demonstrations are always preferred to
agent-generated clips. Agent-generated clips are always preferred to random-policy clips.
Finally, clips from later in the episode are preferred to ones earlier in the episode on the
assumption that the reward is mostly accrued towards the end of an episode.
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The reward model is set up to predict a reward for each clip, so that the probability of
a clip being preferred is higher when the reward is higher. It is trained using cross-entropy
loss to minimize the disparity between the predicted and the actual preference between clip
pairs. As training progresses, the number of annotated pairs that are collected decreases.
At the beginning of training, no annotator is needed as clips of the initial trajectories are
paired with expert demonstration clips (where the latter is always preferred).

Figure 4: Diagram describing
Team NotYourRL’s
approach.

A simplified structure of the algorithm can be seen
in fig. 4. First, a Q-net is trained via imitation learning
using expert classification loss. Then, for M iterations of
the training loop,

• Preferences are collected over sample clips.

• The reward model is trained using these preferences.

• The Q-network is trained using the reward model.

• New trajectories are collected using the Q-network.

A surprising finding was that while the reward model
was able to predict the preferred clip with an accuracy
over 80% in all four tasks, the reward signal did not im-
prove the observed agent behavior visibly. Possibly, while
the negative and positive examples were distinct enough,
they did not confer enough information about the under-
lying task. Therefore, the model trained on the reward
model was not included in the final submission, only the
model using the Q-network trained via imitation learning. Using real human feedback would
most likely improve the impact of the reward model on the agent’s behavior, which suggests
clear paths to improvement for future research.

Action shaping. In order to reduce the size of the action space, team NotYourRL dis-
cretized camera actions (and applied thresholds on human camera actions), discarded non-
sensical combinations (e.g., forward + backward), discarded sneak and sprint, and allowed
only one choice per action “group” (e.g., items, camera actions, etc).

4. Reflections

The results of the competition have shown both that many aspects of the competition
worked well, and that there are many areas on which to improve.

4.1. Task Design

We designed the four tasks to cover a wide variety of possible scenarios, and to provide
different levels of difficulty. FindCave was meant to be the easiest task, while BuildVil-
lageHouse was meant to be the hardest. In line with this, not much progress was made
on BuildVillageHouse, with all submissions receiving roughly similar scores. However, even
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FindCave was hard to solve: while the top submissions clearly outperformed the baseline,
they were far from completing the task successfully as often as humans do.

We were also pleased to see that each of the top three teams did well on a different task
(Table 1). This suggests that our tasks are capturing a variety of different requirements
that are traded off between approaches. In addition, these teams used significantly different
techniques, which serves the research goals of this competition.

4.2. Evaluation Methodology

One notable feature of this competition was the use of human comparisons to evaluate
trained agents. This allowed us to stick closely to the real-world setting, in which there is
no programmatic specification of what an AI system has to do. One benefit we noticed was
that this let us have a very relaxed set of rules, since any method of solving the task would
count as progress, and indeed we had barely any questions about rule clarifications from
participants, unlike other competitions. In addition, using human comparisons can allow
for more granular feedback, such as descriptions of how agents tend to fail.

However, this methodology does come with downsides. When agents behave relatively
similarly, there can be a lot of noise in the results. In this particular competition, while
there was a large difference between the top three teams and all other teams, there was only
a small difference between the top three teams. It is plausible that running the evaluation
again would lead to a different ranking of the top three teams. In addition, since the scores
and rankings were computed from comparisons, they do not have meaning independent of
the group of agents that were being compared. This means that one cannot easily compare
scores across different iterations of the competition.

4.3. Organizational Details

Despite some technical hiccups from building new evaluation systems, the competition was
executed relatively smoothly. Our community engagement with the MineRL Discord server
was particularly well-received, and we received positive comments regarding how active the
community and organizers were in discussing and answering questions. We also received
messages thanking us for organizing the competition as it encouraged some of the partici-
pants to learn about programming and machine learning.

The main organizational issue was that our timeline for evaluation was too short. Despite
having fewer submissions than we expected, and none of the top teams using online human
feedback (making retraining much simpler), we were only able to complete evaluation and
announce winners about a week before the competition workshop. While future iterations
of the contest would have better-tested systems, we would still recommend leaving three
months between the submission deadline and the competition workshop.

4.4. Participation

Despite active advertising across a variety of forums, including the BAIR blog3, Twitter,
and Hacker News, as well as signal boosts from VentureBeat4 and Yannic Kilcher5, this com-

3. https://bair.berkeley.edu/blog/2021/07/08/basalt/
4. https://venturebeat.com/2021/07/09/basalt-minecraft-competition
5. https://www.youtube.com/watch?v=-cT-2xvaeks&t=715s
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petition had fewer participants than related competitions. MineRL Diamond had around
450 registered participants and 1190 submissions, while BASALT had around 300 registered
participants and 271 submissions. Only about five teams used unique methods instead of
modifying or extending the baseline behavioral cloning code. While it is hard to know the
exact causes, we suspect at least the following contributors:

1. The submissions system was difficult to use, particularly because we had four subtasks.
We also received comments that the landing page for the competition was confusing.

2. The unique challenge of this competition, learning from human feedback, is hard to
approach. In particular, it is challenging to evaluate agents due to the lack of a reward
function, making it hard to judge whether a particular change was good.

3. The online public leaderboard did not have enough evaluations for a reliable ranking,
meaning that participants did not receive good intermediate feedback. The final
leaderboard (Table 1) had a completely different ranking to the online leaderboard.

4. Even the “easy” task (FindCave) was challenging, making it hard to iterate quickly.

4.5. Recommendations for Future Iterations

We would recommend that future iterations of the competition make the following changes:

1. If using the same competition structure, allow at least 3 months for evaluation.

2. Make the public leaderboard accurately track participant rankings, or remove it.

3. Lower the barrier to entry to participate. Create additional baselines and provide bet-
ter tutorials and easier installation. This would also increase the diversity of solutions
from teams that decide to modify a baseline.

5. Conclusion

We ran the MineRL BASALT Competition at NeurIPS 2021 to promote the development
of agents that learn from human feedback. We believe that the competition succeeded
in its main goals, with participants creating multiple different solutions that significantly
improved upon the baseline. However, there are many avenues for improvement in order to
run an even more successful competition in the future.
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