
Proceedings of Machine Learning Research 176:177–189, 2022 NeurIPS 2021 Competition and Demonstration Track

Results of the NeurIPS’21 Challenge on Billion-Scale
Approximate Nearest Neighbor Search

Harsha Vardhan Simhadri1 harshasi@microsoft.com

George Williams2 gwilliams@ieee.org

Martin Aumüller3 maau@itu.dk

Matthijs Douze4 matthijs@fb.com

Artem Babenko5 artem.babenko@phystech.edu

Dmitry Baranchuk5 dbaranchuk@yandex-team.ru

Qi Chen1 cheqi@microsoft.com

Lucas Hosseini4 lucas.hosseini@gmail.com

Ravishankar Krishnaswamy1 rakri@microsoft.com

Gopal Srinivasa1 gopalsr@microsoft.com

Suhas Jayaram Subramanya6 suhasj@cs.cmu.edu

Jingdong Wang7 wangjingdong@baidu.com

1 Microsoft Research 2 GSI Technology 3 IT University of Copenhagen
4 Meta AI Research 5 Yandex 6 Carnegie Mellon University 7 Baidu

Editors: Douwe Kiela, Marco Ciccone, Barbara Caputo

Abstract

Despite the broad range of algorithms for Approximate Nearest Neighbor Search, most
empirical evaluations of algorithms have focused on smaller datasets, typically of 1 million
points (Aumüller et al., 2020). However, deploying recent advances in embedding based
techniques for search, recommendation and ranking at scale require ANNS indices at billion,
trillion or larger scale. Barring a few recent papers, there is limited consensus on which
algorithms are effective at this scale vis-à-vis their hardware cost.

This competition1 compares ANNS algorithms at billion-scale by hardware cost, accu-
racy and performance. We set up an open source evaluation framework2and leaderboards
for both standardized and specialized hardware. The competition involves three tracks. The
standard hardware track T1 evaluates algorithms on an Azure VM with limited DRAM,
often the bottleneck in serving billion-scale indices, where the embedding data can be hun-
dreds of GigaBytes in size. It uses FAISS (Johnson et al., 2017) as the baseline. The
standard hardware track T2 additional allows inexpensive SSDs in addition to the lim-
ited DRAM and uses DiskANN (Subramanya et al., 2019) as the baseline. The specialized
hardware track T3 allows any hardware configuration, and again uses FAISS as the baseline.

We compiled six diverse billion-scale datasets, four newly released for this competition,
that span a variety of modalities, data types, dimensions, deep learning models, distance
functions and sources. The outcome of the competition was ranked leaderboards of algo-
rithms in each track based on recall at a query throughput threshold. Additionally, for
track T3, separate leaderboards were created based on recall as well as cost-normalized
and power-normalized query throughput.

Keywords: Approximate nearest neighbor search, large-scale search

1. https://big-ann-benchmarks.com
2. https://github.com/harsha-simhadri/big-ann-benchmarks/

© 2022 H.V. Simhadri et al.

https://big-ann-benchmarks.com
https://github.com/harsha-simhadri/big-ann-benchmarks/

Simhadri et al.

1. Introduction

Approximate Nearest Neighbor Search or ANNS is a problem of fundamental importance to
search, retrieval and recommendation. In this problem, we are given a dataset P of points
along with a pairwise distance function, typically the d-dimensional Euclidean metric or
inner product with d ranging from 50 to 1000. The goal is to design a data structure that,
given a query q and a target k (or radius r), efficiently retrieves the k nearest neighbors of
q (or all points within a distance r of q) in the dataset P according to the given distance
function. In many modern-day applications of this problem, the dataset to be indexed and
the queries are the output of a deep learning model (Babenko and Lempitsky, 2016; Devlin
et al., 2018). The ANNS problem is widely studied in the algorithms, computer systems,
databases, data mining, information theory and machine learning research communities,
and numerous classes of algorithms have been developed. See, e.g., (Beygelzimer et al.,
2006; Babenko and Lempitsky, 2014; Johnson et al., 2017; Weber et al., 1998; Baranchuk
et al., 2018; Malkov and Yashunin, 2016; Jégou et al., 2011; Arya and Mount, 1993; Indyk
and Motwani, 1998; Iwasaki and Miyazaki, 2018; Guo et al., 2020; Aumüller et al., 2019)
for some recent works, and also the survey articles (Samet, 2006; Andoni and Indyk, 2008;
Wang et al., 2018, 2021) comparing these techniques.

However, most of the research has focused on small to medium scale datasets of millions
of vectors. For instance, the active gold-standard benchmark site (Aumüller et al., 2020)
that compares almost all of the current-best ANNS algorithms uses datasets no more than
a million points each, and design choices in the benchmarking system make it difficult to
go beyond this scale. Implementing most existing state-of-art solutions for ANNS at this
scale ends up being too expensive as the indices are very RAM intensive. Alternately, there
are solutions such as SRS (Sun et al., 2014) and HD-Index (Arora et al., 2018) that can
serve a billion-point index in a commodity machine, but these have high search latencies
for achieving high search accuracy. Given the increasing relevance of search at billion+
scale, this competition aims to rigorously benchmark the performance of billion-scale ANNS
algorithms vis-à-vis their hardware cost.

2. Tasks, Hardware Tracks, and Datasets

The main task of this challenge is to design a fast and accurate algorithm and/or system
which can build and serve a billion-point index with minimal hardware cost. This scale is
a good fit for comparing algorithmic ideas on a single machine. Due to the proliferation
of deep-learning-based embeddings, such a system would immediately fit into a variety
of application domains, including but not limited to web search, email search, document
search, image search; ranking and recommendation services for images, music, video, news,
etc. To test the applicability of the submitted solutions in these diverse use-cases, the
competition ran evaluations on datasets representing these applications.

Query types. We distinguish the following two query types on a dataset S ⊆ Rd:

• k-NN query: Given a query q ∈ Rd and an integer k ≥ 1, return the k-nearest
neighbors to the query point in S. A value of k = 10 was used for benchmarking.

• Range search: Given a query q ∈ Rd and a distance threshold R, return all points in
S that are at distance at most R from q.

178

Billion-scale ANNS results

2.1. Hardware tracks

To provide a platform for the development of both algorithmic and systems innovation, the
challenge introduces three different tracks: two standardized hardware tracks (T1 and T2)
and one custom hardware track (T3).

Most current solutions to ANNS are limited in scale as they require data and indices
to be stored in expensive main memory. To motivate the development of algorithms that
use main memory effectively, we limit and normalize the amount of DRAM available in the
standardized hardware tracks to 64GB. This is insufficient to store an uncompressed version
of any of the datasets used in this competition, which range from 100GB to 800 GB in size.

Track T1. Search uses a Standard F32s v2 Azure VM3 with 32 vCPUs and 64GB main
memory. 64GB. Index construction can use up to 4 days of time on Standard F64s v2
machine with 64 vCPUs and 128GB main memory. Note that the main memory allowed for
index construction is smaller than most billion-scale datasets. Algorithms must navigate
these constraints by efficiently compressing and indexing data much larger than the main
memory. We use the IVFPQ algorithm (Jégou et al., 2011) from the FAISS suite (Johnson
et al., 2017) as our baseline. This track thus provides a platform for algorithmic innovation
in efficient and accurate vector quantization methods, as well as compact indices.

Track T2. The second standardized hardware (T2) track incorporates an additional 1TB
of inexpensive SSD to serve indices. This track allows more accuracy due to the allowance
for storing uncompressed data – the SSD is larger than all datasets in the competition.
This track provides a platform for algorithmic innovation for out-of-core indexing. Search
uses a 8 vCPU Standard L8sv 2 Azure VM4 which hosts a local SSD in addition to its
64GB main memory. Algorithms can use 1TB of the SSD to store the index and the data.
Index constructions rules are the same as in Track T1. The baseline is an open source
implementation5 of DiskANN (Subramanya et al., 2019) which uses a hybrid DRAM-SSD
index to achieve high recall and throughput.

Track T3. The specialized/custom hardware track T3 aims to encourage systems innova-
tion to improve the cost and power-normalized performance. It allows the most flexibility
in hardware and allows the use of any existing combination of hardware or even the devel-
opment of custom hardware. This may include GPUs, reconfigurable hardware like FPGAs,
custom accelerators available as add-on PCI board6, and hardware not readily available on
public cloud such as dedicated co-processors. Participants were required to either send the
organizers an add-on PCI boards along with installation instructions, or if that is not possi-
ble, provide access to run validation scripts and docker containers on private hardware. The
baseline used in this track was IVF1048576,SQ8 from the FAISS suite (Johnson et al., 2017)
running on a machine with 56-core Intel Xeon with an NVIDIA V100 GPU and 700GB of
RAM.

3. https://docs.microsoft.com/en-us/azure/virtual-machines/fsv2-series
4. https://docs.microsoft.com/en-us/azure/virtual-machines/lsv2-series
5. https://github.com/microsoft/DiskANN/commit/4c7e9603324061916c64dee203343bdafab43a32
6. For examples, see https://www.amd.com/en/graphics/radeon-rx-graphics, https://www.apple.com/

shop/product/HM8Y2VC/A/blackmagic-egpu, https://www.xilinx.com/, https://flex-logix.com/

179

https://docs.microsoft.com/en-us/azure/virtual-machines/fsv2-series
https://docs.microsoft.com/en-us/azure/virtual-machines/lsv2-series
https://github.com/microsoft/DiskANN/commit/4c7e9603324061916c64dee203343bdafab43a32
https://www.amd.com/en/graphics/radeon-rx-graphics
https://www.apple.com/shop/product/HM8Y2VC/A/blackmagic-egpu
https://www.apple.com/shop/product/HM8Y2VC/A/blackmagic-egpu
https://www.xilinx.com/
https://flex-logix.com/

Simhadri et al.

Dataset Type Dim. Distance Query Type Source
BIGANN uint8 128 L2 k-NN [Link]

Facebook SimSearchNet++ uint8 256 L2 Range [Competition]
Microsoft Turing ANNS float32 100 L2 k-NN [Competition]

Microsoft SpaceV int8 100 L2 k-NN [Link]
Yandex DEEP float32 96 L2 k-NN [Link 1] [Link 2]

Yandex Text-to-Image float32 200 Inner Product k-NN [Link]

Table 1: Summary of the six one billion point datasets used for benchmarking.

2.2. Datasets

The following datasets, summarized in Table 1, were released on the competition website or
linked via websites where the data was originally published. The experimental framework
manages working with (variants of) these datasets automatically.

• BIGANN contains SIFT image similarity descriptors applied to 1 billion images (Jegou
et al., 2011) and is benchmark used by existing algorithms.

• Facebook SimSearchNet++ is a new dataset of image descriptors7 used for copyright
enforcement, content moderation, etc., released by Facebook for this competition.
The original Vectors are compressed to 256 dimensions by PCA for this competition.

• Microsoft SpaceV1B is a new web relevance dataset released by Microsoft Bing for
this competition. It consists of web documents and queries vectors encoded by the
Microsoft SpaceV Superion model (Shan et al., 2021) to capture generic intent repre-
sentation for both documents and queries.

• Microsoft Turing ANNS is a new web query similarity dataset released by the Microsoft
Turing group for this competition. It consists of web search queries encoded by the
universal language AGI/Spacev5 model trained to capture generic intent representa-
tion (Zhang et al., 2019) and uses the Turing-NLG architecture8. The query set also
consists of web search queries, and the goal is to match them to the closest queries
seen by the search engine in the past.

• DEEP1B consists of the outputs of the GoogleNet model for a billion images on the
web, introduced in (Babenko and Lempitsky, 2016). This dataset is already used for
benchmarking in the community.

• Yandex Text-to-Image is a new cross-modal dataset, where database and query vectors
can potentially have different distributions in a shared representation space. The
database consists of image embeddings produced by the Se-ResNext-101 model (Hu
et al., 2018) and queries are textual embeddings produced by a variant of the DSSM
model (Huang et al., 2013). The mapping to the shared representation space is learned
via minimizing a variant of the triplet loss using click-through data.

7. https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content
8. https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

180

http://corpus-texmex.irisa.fr/
https://big-ann-benchmarks.com
https://big-ann-benchmarks.com
https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B
https://research.yandex.com/datasets/biganns
https://github.com/arbabenko/GNOIMI/blob/master/downloadDeep1B.py
https://research.yandex.com/datasets/biganns
https://ai.facebook.com/blog/using-ai-to-detect-covid-19-misinformation-and-exploitative-content
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

Billion-scale ANNS results

File formats were made as uniform as possible, taking into account the fact that some
datasets are in float32 and others are in uint8. For each dataset, we provide:

• a set of 1 billion database vectors to index;

• a set of query vectors for validation (at least 10 000 of them);

• a set of query vectors held out for the final evaluation (the same size);

• ground truth consisting of the 100 nearest neighbors for each query in the validation
set, including results at the reduced scales of 10M and 100M vectors.

3. Evaluation

3.1. Metrics

As is the general practice in benchmarking ANNS algorithms (see Aumüller et al. (2020)),
we evaluate implementations based on the quality-performance tradeoff they achieve. For
each dataset, participants could provide one configuration for index building and up to 10
different sets of search parameters. Each set of search parameters is intended to strike a
different trade-off in terms of accuracy vs. search time. At evaluation time, the sets of search
parameters were evaluated in turn, recording the search accuracy and througput achieved.
To obtain a single value for the leaderboard, we defined a threshold on the throughput
achieved and score the participants by the accuracy of the results.

Throughput. We report the query throughput obtained using all the threads available
on the standardized machine. All queries are provided at once, and we measure the wall
clock time between the ingestion of the vectors and when all the results are output. The
resulting measure is the number of queries per second (QPS).

Search accuracy. We use two notions of search accuracy, defined as follows, depending
on the dataset. For scenarios require k-NN search, we measure 10-recall@10, i.e. the number
of true 10-nearest neighbors found in the k = 10 first results reported by the algorithm.

A range search returns a list of database items whose length is not fixed in advance
(unlike k-NN search). We compute the ground truth range search results. The range search
accuracy measure is the precision and recall of the algorithm’s results w.r.t. the ground
truth results. Accuracy is then defined as the mean average precision over recall values
when clipping the result list with different values of the threshold.

Power and Cost. In the T3 track, in addition to search accuracy and throughput, we
ranked participants on two additional benchmarks related to power and cost. For power,
we leveraged standard power monitoring interfaces available in data-center grade systems
to obtain KiloWatt-hour/query (or Joule/query) for the participant’s algorithm and hard-
ware. For cost, we used a capacity planning formula based on horizontally replicating the
participant’s hardware to achieve 100 000 queries/second for a period of 4 years. The cost
is the product of the number of machines required to serve at 100 000 QPS and the total
cost per machine, including both the manufactured suggested retail price of the hardware
as well as the cost of power consumption based on a global average of $0.10/kWh.

181

Simhadri et al.

Synthetic performance measure. Participants obtained several tradeoffs in the QPS-
accuracy space. On the challenge page and in Section 4, we report these tradeoff plots.
While such plots give the most accurate overview of an implementation’s performance, the
leaderboard reports a synthetic scalar metric to rank the participants. For each track, we fix
a given QPS target, and find the maximum accuracy an algorithm can get with at least as
many QPS from the Pareto-optimal curve. The QPS targets are calibrated on the baseline
methods described in Section 2.1. The thresholds for the competition are 10 000 with 32
vCPUs(T1), 1 500 with 8vCPUs (T2), and 2 000 (T3). The score for the recall leaderboard
is the sum of improvements in recall over the baseline over all datasets. An algorithm is
expected to submit entries for at least three algorithms to be considered for the leaderboard.
3.2. Evaluation Framework

We provide a standard benchmarking framework using and extending the techniques in the
evaluation framework Aumüller et al. (2020). The framework takes care of downloading
and preparing the datasets, running the experiments for a given implementation, and eval-
uating the result of the experiment in terms of the metrics mentioned above. Adding an
implementation consist of three steps. First, it requires the implementation to provide a
Dockerfile to build the code and set up the environment. Second, a Python wrapper script
that calls the correct internal methods to build an index and run queries against the index
must be provided. A REST-based API exists to work with a client/server-based model
in case a Python wrapper is not available.9 Lastly, authors provide a set of index build
parameters (one per dataset) and query parameters (maximum of ten per dataset).
3.3. Evaluation Process

The evaluation process differed slightly among the three different tracks.

Track 1 and 2. We provided Azure compute credit to participants to work with virtual
machine SKUs that were used in the final evaluation. Participants sent in their code via a
pull requests to the evaluation framework. The organizers used this code to build indices
on Azure cloud machines for the datasets pointed out in the pull request, and run queries
the public query set. Organizers then provide these results to the participants, and iterated
on fixing problems until the participants agreed with the results reported here. As a result
of this process, all implementations, configurations and conversations with participants are
publicly available via the pull requests linked in Tables 2 and 3.

Track 3. Since this track allowed participants to work with alternative hardware config-
uration, organizers were given (usually remote) access to the machine and the framework
was run remotely on these machines. Some of the implementations participating in this
track are not publicly available.

4. Outcome of the Challenge

A total of 30 teams expressed interest in this contest. Eventually, we received 13 submissions
that participated in the final evaluation: 5 submissions for T1, 3 submissions for T2, and 5
submissions for T3. Winners mentioned below gave a short presentation of their approach
during NeurIPS break-out session; these talks are shared on the competition website.

9. We thank Alex Klibisz for his work on this API.

182

Billion-scale ANNS results

0.6 0.7 0.8
Recall

0

10000

20000

30000

40000

50000
Qu

er
ie

s p
er

 S
ec

on
d

bigann-1B
BUDDY-T1
FAISS-T1
KST_ANN_T1
PUCK-T1

0.6 0.7 0.8
Recall

msturing-1B
FAISS-T1
KST_ANN_T1
PUCK-T1
TEAM11

0.6 0.7 0.8
Recall

deep-1B
FAISS-T1
KST_ANN_T1
PUCK-T1
TEAM11

Figure 1: Selection of results for track 1. QPS-recall tradeoff; the QPS-cutoff was 10 000.

Algorithm BIGANN DEEP MS SPACEV MS Turing SSN++ Text-to-Image

Baseline 0.6345 0.6503 0.7289 0.7036 0.7538 0.0693

team11 0.6496 0.7122
puck-t1 0.7147 0.7226 0.7938* 0.1610*
ngt-t1
kst ann t1 0.7122 0.7122 0.7645 0.7564
buddy-t1 0.6277

Table 2: Leaderboard for Track T1. Recall/AP achieved at 10000 QPS on Azure F32v2
VM with 32 vCPUs. * indicates entries submitted after the competition closed.

4.1. Track 1

The results of this track are summarized in Table 2. In this track the whole index had
to fit into 64GB of RAM, which limits the accuracy. The challenge was to invent more
efficient compression/quantization schemes. We see that most entries were able to improve
on the baseline, and figure 1 gives a more detailed overview of the performance on the
datasets where most solutions offered improvements. As we can see from the plot, for
most implementations the cutoff at 10 000 QPS is in a region where the loss in accuracy
due to quantization saturates and no big improvements seem possible. The entry PUCK-T1

provided query settings that provided better recall than other approaches, but is much below
the QPS threshold, and a few of the entries were submitted after the competition deadline.
However, it shows the potential of their approach and presents a promising direction to
pursue. On the other hand, Text-to-Image proved to be a particularly challenging dataset
for the quantization/compression-based methods in this track because the query distribution
and base distribution are completely different, with one coming from text embeddings and
the other from image embeddings. This again presents an interesting and important research
direction to pursue. In summary, since the starred results for PUCK-T1 in Table 2 have been
obtained after the competition deadline, the winner of this track is:

KST-ANN-T1, Li Liu, Jin Yu, Guohao Dai, Wei Wu, Yu Qiao, Yu Wang,
Lingzhi Liu, Kuaishou Technology and Tsinghua University, China.

183

https://github.com/harsha-simhadri/big-ann-benchmarks/pull/58
https://github.com/harsha-simhadri/big-ann-benchmarks/pull/60
https://github.com/harsha-simhadri/big-ann-benchmarks/pull/66
https://github.com/harsha-simhadri/big-ann-benchmarks/pull/69
https://github.com/harsha-simhadri/big-ann-benchmarks/pull/71

Simhadri et al.

Algorithm BIGANN DEEP MS SPACEV MS Turing SSN++ Text-to-Image

baseline 0.9491 0.9371 0.9010 0.9356 0.1627 0.4885

kota-t2 0.9509 0.9040 0.9398 0.1821
ngt-t2
bbann 0.7602 0.8857 0.4954

Table 3: Leaderboard for Track T2. Recall/AP achieved at 1500 QPS on Azure Ls8v2 VM.

0.2 0.4 0.6 0.8
mAP

1000

2000

3000

Qu
er

ie
s p

er
 S

ec
on

d

ssnpp-1B
KOTA-T2
BBANN
DISKANN-T2

0.2 0.4 0.6 0.8
Recall

msspacev-1B
BBANN
DISKANN-T2
KOTA-T2

Figure 2: Selection of results for track 2. QPS-accuracy tradeoff; the QPS-cutoff was 1 500.

4.2. Track 2

The results of this track are summarized in Table 3 and more detailed plots for a couple
of datasets are provided in Figure 2. This track allowed participants to use a SSD large
enough to store the original vectors, thus allowing for better accuracy than in Track 1.
There were only two approaches except the baseline. We suspect that this is due to the
short timeframe of the challenge, since external memory implementations require more care
than the in-memory approaches in Track 1. Among these two competitors, BBANN provided
a huge improvement on the SSNPP dataset that required range-search queries using a hybrid
graph-inverted index data structure. While this design showed recall regression on other
datasets using a k-NN recall metric, the improvements outweighed the regression, leading
to them being the top of the leaderboard for Track 2:

BBANN, Xiaomeng Yi, Xiaofan Luan, Weizhi Xu, Qianya Cheng, Jigao Luo,
Xiangyu Wang, Jiquan Long, Xiao Yan, Zheng Bian, Jiarui Luo, Shengjun Li,
Chengming Li, Zilliz and Southern University of Science and Technology, China.

4.3. Track 3

Track 3 submissions offered by far the largest improvement over the baseline. NVidia
submitted algorithms that ran on an A100 8-GPU system, while Intel submitted their al-
gorithm, OptaNNE GraphNN, an adaptation of DiskANN leveraging Optane non-volatile

184

https://github.com/harsha-simhadri/big-ann-benchmarks/pull/62
https://github.com/harsha-simhadri/big-ann-benchmarks/pull/6
https://github.com/harsha-simhadri/big-ann-benchmarks/pull/70

Billion-scale ANNS results

Recall achieved at a minimum of throughput 2K QPS

Algorithm DEEP BIGANN MS Turing MS SpaceV Text-to-image SSN++

baseline 0.94275 0.93260 0.91322 0.90853 0.86028 0.97863

OptaNNE GraphNN 0.99882 0.99978 0.99568 0.99835 0.97340 -
CUANNS IVFPQ 0.99543 0.99881 0.988993 0.99429 0.94692 -
CUANNS MultiGPU 0.99504 0.99815 0.98399 0.98785 - -

Querries per second at 90% recall

Algorithm DEEP BIGANN MS Turing MS SpaceV Text-to-image SSN++

baseline 44464 3271 2845 3265 1789 5699

CUANNS MultiGPU 8016944 747421 584293 839749 - -
OptaNNE GraphNN 1965446 335991 161463 157828 17063 -
CUANNS IVFPQ 91701 80109 109745 108302 19094 -

Joule/query achieved at minimum of 2K QPS and 0.9 recall

Algorithm DEEP BIGANN MS Turing MS SpaceV Text-to-image SSN++

baseline 0.1117 0.1576 0.1743 0.1520 0.1128 0.0904

OptaNNE GraphNN 0.00441 0.0022 0.0048 0.0049 0.0446 -
CUANNS IVFPQ 0.0112 0.0112 0.0119 0.0090 0.0480 -
CUANNS MultiGPU 0.0029 0.0024 0.0049 0.0023 - -

Total cost to horizontally replicate a system to serve 100 000 queries per second

Algorithm DEEP BIGANN MS Turing MS SpaceV Text-to-image SSN++

baseline 545.6 737.9 853.9 735.9 1272.7 428.1

OptaNNE GraphNN 16.1 15.4 16.3 16.4 103.6 -
CUANNS IVFPQ 303.9 304.2 153.2 153.2 916.8 -
CUANNS MultiGPU 569.1 569.2 286.9 398.2 1213.8 629.4

Table 4: Recall, Throughput, Power and Cost Leaderboards for Track T3. Participant rank
is preserved in the table for the non-baseline participants. Organizer submitted
entries are not shown. All rankings for all submissions as well as performance on
individual datasets are detailed on the competition and github site.

memory. Competition organizers also submitted entries which included the baseline sub-
mitted by Meta (formerly Facebook FAISS) for a V100 1-GPU system with 700GB RAM,
GSI Technology submitted an algorithm that ran on their in-SRAM PCI accelerator in a
system with 1TB RAM, and Microsoft submitted DiskANN which ran on a standard Dell
server. The competition github site has more information about these systems.

Table 4 summarizes the results of the competition. The OptaNNE GraphANN imple-
mentation scored the highest on the recall and cost- and power-normalized leaderboards.
The CUANNS MultiGPU implementation scored the highest on the throughput leader-
board. We did not combine the four different benchmark to determine one winner. We
instead chose to name Intel and NVidia the co-winners of this track:

OptaNNE GraphNN, Sourabh Dongaonkar (Intel Corporation), Mark Hilde-
brand (Intel Corporation / UC Davis), Mariano Tepper (Intel Labs), Cecilia
Aguerrebere (Intel Labs), Ted Willke (Intel Labs), Jawad Khan (Intel Corpora-
tion)

CUANNS MultiGPU, Akira Naruse (NVIDIA), Jingrong Zhang (NVIDIA),
Mahesh Doijade (NVIDIA), Yong Wang (NVIDIA), Hui Wang (Xiamen Uni-
versity), Harry Chiang (National Tsing Hua University)

185

Simhadri et al.

5. Conclusion, Lessons learned, and Outlook

With this challenge, we started a principled and reproducible research environment for
the design and the evaluation of nearest neighbor implementations. In all three tracks we
received implementations that were able to beat the well-designed baseline, which shows
that improvements in the state-of-the-art are in reach even in a short time span.

Lessons learned. As mentioned by several participants, the design, implementation, and
iterative engineering of nearest neighbor search methods usually takes time that exceeds
the short time span of such a challenge. For this reason, the evaluation framework, which
is now well established, will continue to accept new submissions. Moreover, the evaluation
process is time consuming because of the scale of the problem. Some additional software
development is required to further automate the evaluation and ensure organizers are not
the bottleneck in the evaluation process. The cost related to building indices in the cloud
is a limit to frequently re-running the entire evaluation, and could also be a bottleneck for
non-industry affiliated teams when thinking of going beyond billion-scale datasets.

Future Directions. Possible future directions were discussed at an open forum during
the NeurIPS break-out session and documented on the evaluation framework 10. Some
questions and directions for new tasks include:

• Support ANNS queries which also allow filters such as date range, author, language,
image color or some combination of such attributes. See, for example, (Wei et al.,
2020), a candidate algorithm for the problem.

• Design algorithms whose accuracy and performance is robust to insertions and dele-
tions. A possible strong baseline is Fresh-DiskANN (Singh et al., 2021).

• Design algorithms that are robust to datasets with out-of-distribution queries such as
those arising from cross-modal embeddings.

• Design compression with lesser information loss, perhaps at the price of more expen-
sive decoding.

Outlook. We invite researchers and practitioners to use our framework as a starting point,
and look forward to contributions of new datasets and algorithms on an ongoing basis. The
website https://big-ann-benchmarks.com/ will serve as the main interface, and we plan
to repeat the challenge in the future, possibly with additional directions.

Acknowledgements

We thank all the participants for their submissions to this challenge. Moreover, we thank
Alexandr Andoni and Anshumali Shrivastava for their invited talks. We thank Microsoft
Research for help in organizing this competition, and contributing compute credits. We
thank Microsoft Bing and Turing teams for creating datasets for release. Furthermore, we
thank the organizing committee Douwe Kiela, Barbara Caputo, and Marco Ciccone of the
NeurIPS 2021 challenge track for their excellent work.

10. https://github.com/harsha-simhadri/big-ann-benchmarks/issues/90

186

https://big-ann-benchmarks.com/
https://github.com/harsha-simhadri/big-ann-benchmarks/issues/90

Billion-scale ANNS results

References

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. Commun. ACM, 51(1):117–122, January 2008. ISSN 0001-
0782. doi: 10.1145/1327452.1327494. URL http://doi.acm.org/10.1145/1327452.

1327494.

Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. Hd-index: Pushing
the scalability-accuracy boundary for approximate knn search in high-dimensional spaces.
Proceedings of the VLDB Endowment, 11, 04 2018. doi: 10.14778/3204028.3204034.

Sunil Arya and David M. Mount. Approximate nearest neighbor queries in fixed dimen-
sions. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’93, pages 271–280, Philadelphia, PA, USA, 1993. Society for Industrial
and Applied Mathematics. ISBN 0-89871-313-7. URL http://dl.acm.org/citation.

cfm?id=313559.313768.

Martin Aumüller, Tobias Christiani, Rasmus Pagh, and Michael Vesterli. PUFFINN: pa-
rameterless and universally fast finding of nearest neighbors. In ESA, volume 144 of
LIPIcs, pages 10:1–10:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. Ann-benchmarks: A bench-
marking tool for approximate nearest neighbor algorithms. Information Systems, 87,
2020. ISSN 0306-4379. URL http://www.sciencedirect.com/science/article/pii/

S0306437918303685. http://ann-benchmarks.com.

Artem Babenko and Victor S. Lempitsky. Additive quantization for extreme vector com-
pression. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2014, Columbus, OH, USA, June 23-28, 2014, pages 931–938. IEEE Computer Society,
2014. doi: 10.1109/CVPR.2014.124. URL https://doi.org/10.1109/CVPR.2014.124.

Artem Babenko and Victor S. Lempitsky. Efficient indexing of billion-scale datasets of deep
descriptors. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 2055–2063, 2016. doi: 10.
1109/CVPR.2016.226. URL https://doi.org/10.1109/CVPR.2016.226.

Dmitry Baranchuk, Artem Babenko, and Yury Malkov. Revisiting the inverted indices for
billion-scale approximate nearest neighbors. In The European Conference on Computer
Vision (ECCV), September 2018.

Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor.
In Proceedings of the 23rd International Conference on Machine Learning, ICML ’06,
page 97–104, New York, NY, USA, 2006. Association for Computing Machinery. ISBN
1595933832. doi: 10.1145/1143844.1143857. URL https://doi.org/10.1145/1143844.

1143857.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training
of deep bidirectional transformers for language understanding. CoRR, abs/1810.04805,
2018. URL http://arxiv.org/abs/1810.04805.

187

http://doi.acm.org/10.1145/1327452.1327494
http://doi.acm.org/10.1145/1327452.1327494
http://dl.acm.org/citation.cfm?id=313559.313768
http://dl.acm.org/citation.cfm?id=313559.313768
http://www.sciencedirect.com/science/article/pii/S0306437918303685
http://www.sciencedirect.com/science/article/pii/S0306437918303685
https://doi.org/10.1109/CVPR.2014.124
https://doi.org/10.1109/CVPR.2016.226
https://doi.org/10.1145/1143844.1143857
https://doi.org/10.1145/1143844.1143857
http://arxiv.org/abs/1810.04805

Simhadri et al.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv
Kumar. Accelerating large-scale inference with anisotropic vector quantization. In ICML,
volume 119 of Proceedings of Machine Learning Research, pages 3887–3896. PMLR, 2020.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck. Learning
deep structured semantic models for web search using clickthrough data. In Proceedings
of the 22nd ACM international conference on Information & Knowledge Management,
pages 2333–2338, 2013.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Symposium on
Theory of Computing, STOC ’98, pages 604–613, New York, NY, USA, 1998. ACM.
ISBN 0-89791-962-9. doi: 10.1145/276698.276876. URL http://doi.acm.org/10.1145/

276698.276876.

Masajiro Iwasaki and Daisuke Miyazaki. Optimization of indexing based on k-nearest neigh-
bor graph for proximity search in high-dimensional data. CoRR, abs/1810.07355, 2018.

Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Product Quantization for Nearest
Neighbor Search. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33
(1):117–128, January 2011. doi: 10.1109/TPAMI.2010.57. URL https://hal.inria.

fr/inria-00514462.

Herve Jegou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. Searching in one
billion vectors: Re-rank with source coding. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011, May 22-27, 2011,
Prague Congress Center, Prague, Czech Republic, pages 861–864, 2011. doi: 10.1109/
ICASSP.2011.5946540. URL https://doi.org/10.1109/ICASSP.2011.5946540.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus.
arXiv preprint arXiv:1702.08734, 2017.

Yury A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest neighbor
search using hierarchical navigable small world graphs. CoRR, abs/1603.09320, 2016.
URL http://arxiv.org/abs/1603.09320.

Hanan Samet. Foundations of multidimensional and metric data structures. Morgan Kauf-
mann, 2006.

Xuan Shan, Chuanjie Liu, Yiqian Xia, Qi Chen, Yusi Zhang, Kaize Ding, Yaobo Liang,
Angen Luo, and Yuxiang Luo. Glow: Global weighted self-attention network for web
search. In 2021 IEEE International Conference on Big Data (Big Data), pages 519–528.
IEEE, 2021.

Aditi Singh, Suhas Jayaram Subramanya, Ravishankar Krishnaswamy, and Harsha Vardhan
Simhadri. Freshdiskann: A fast and accurate graph-based ANN index for streaming

188

http://doi.acm.org/10.1145/276698.276876
http://doi.acm.org/10.1145/276698.276876
https://hal.inria.fr/inria-00514462
https://hal.inria.fr/inria-00514462
https://doi.org/10.1109/ICASSP.2011.5946540
http://arxiv.org/abs/1603.09320

Billion-scale ANNS results

similarity search. CoRR, abs/2105.09613, 2021. URL https://arxiv.org/abs/2105.

09613.

Suhas Jayaram Subramanya, Fnu Devvrit, Rohan Kadekodi, Ravishankar Krish-
nawamy, and Harsha Vardhan Simhadri. Diskann: Fast accurate billion-point nearest
neighbor search on a single node. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Ad-
vances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancou-
ver, BC, Canada, pages 13748–13758, 2019. URL http://papers.nips.cc/paper/

9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node.

Yifang Sun, Wei Wang, Jianbin Qin, Ying Zhang, and Xuemin Lin. Srs: Solving c-
approximate nearest neighbor queries in high dimensional euclidean space with a tiny
index. Proc. VLDB Endow., 8(1):1–12, September 2014. ISSN 2150-8097. doi:
10.14778/2735461.2735462. URL https://doi.org/10.14778/2735461.2735462.

Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and Heng Tao Shen. A survey
on learning to hash. IEEE Trans. Pattern Anal. Mach. Intell., 40(4):769–790, 2018. doi:
10.1109/TPAMI.2017.2699960. URL https://doi.org/10.1109/TPAMI.2017.2699960.

Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. A comprehensive sur-
vey and experimental comparison of graph-based approximate nearest neighbor search.
CoRR, abs/2101.12631, 2021. URL https://arxiv.org/abs/2101.12631.

Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In Proceedings of the
24rd International Conference on Very Large Data Bases, VLDB ’98, pages 194–205, San
Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc. ISBN 1-55860-566-5. URL
http://dl.acm.org/citation.cfm?id=645924.671192.

Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and Yuanzhe
Cai. Analyticdb-v: A hybrid analytical engine towards query fusion for structured and
unstructured data. Proc. VLDB Endow., 13(12):3152–3165, aug 2020. ISSN 2150-8097.
doi: 10.14778/3415478.3415541. URL https://doi.org/10.14778/3415478.3415541.

Hongfei Zhang, Xia Song, Chenyan Xiong, Corby Rosset, Paul N. Bennett, Nick Craswell,
and Saurabh Tiwary. Generic intent representation in web search. CoRR, abs/1907.10710,
2019. URL http://arxiv.org/abs/1907.10710.

189

https://arxiv.org/abs/2105.09613
https://arxiv.org/abs/2105.09613
http://papers.nips.cc/paper/9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node
http://papers.nips.cc/paper/9527-rand-nsg-fast-accurate-billion-point-nearest-neighbor-search-on-a-single-node
https://doi.org/10.14778/2735461.2735462
https://doi.org/10.1109/TPAMI.2017.2699960
https://arxiv.org/abs/2101.12631
http://dl.acm.org/citation.cfm?id=645924.671192
https://doi.org/10.14778/3415478.3415541
http://arxiv.org/abs/1907.10710

	Introduction
	Tasks, Hardware Tracks, and Datasets
	Hardware tracks
	Datasets

	Evaluation
	Metrics
	Evaluation Framework
	Evaluation Process

	Outcome of the Challenge
	Track 1
	Track 2
	Track 3

	Conclusion, Lessons learned, and Outlook

