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Abstract
We develop a category-theoretic criterion for determining the equivalence of causal models hav-
ing different but homomorphic directed acyclic graphs over discrete variables. Following Jacobs
et al. (2019), we define a causal model as a probabilistic interpretation of a causal string diagram,
i.e., a functor from the “syntactic” category SynG of graph G to the category Stoch of finite sets
and stochastic matrices. The equivalence of causal models is then defined in terms of a natu-
ral transformation or isomorphism between two such functors, which we call a Φ-abstraction and
Φ-equivalence, respectively. It is shown that when one model is a Φ-abstraction of another, the
intervention calculus of the former can be consistently translated into that of the latter. We also
identify the condition under which a model accommodates a Φ-abstraction, when transformations
are deterministic.
Keywords: Causal Models, Abstraction, Category Theory, String Diagrams

1. Introduction

Causal models offer a general framework for studying causal structures over variables. The frame-
work, however, lacks a formal criterion as to when two causal models having different variables
or graphs are nevertheless considered to be the “same.” This raises an issue when one wants to
extrapolate a causal model from one system to another and claim that two numerically distinct sys-
tems (say, the brain networks of macaques and humans) share the same causal structure to some
extent. Alternatively, one and the same physical system may be modeled in terms of different set of
variables at different granularities or levels (Chalupka et al., 2014, 2016, see also Fig. 1). Recent
studies attempt to answer this question in terms of variable transformations (Rubenstein et al., 2017;
Beckers and Halpern, 2019; Beckers et al., 2020), but the proposed criteria are relative to a particu-
lar sequence of interventions (as opposed to the general feature of the model) and do not reflect the
topological features of the graph, which are central to causal modeling.

In this paper we propose a novel criterion and systematic method for determining the equiv-
alence of two causal models, drawing on the category-theoretic formulation of causal models de-
veloped by Jacobs et al. (2019). In this framework, a causal model is identified with a functor,
which is a probabilistic interpretation of a string diagram constructed from the directed acyclic
graph (DAG) of the model. We then define the equivalence or abstraction of causal models, called
a Φ-abstraction, in terms of a natural transformation between such functors based on homomor-
phic DAGs. In contrast to previous approaches, a Φ-abstraction is a relation between two causal
models, defined without regard to a particular sequence of interventions. Interventions at different
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Figure 1: An example of two causal models G and H that describe the (supposedly) same phe-
nomenon, the effects of diet on heart disease (HD) (adapted from Rubenstein et al., 2017).
In graph G, diet affects heart disease through two types of blood cholesterol, low-density
lipoprotein (LDL) and high-density lipoprotein (HDL). Graph H combines these two
variables into the total cholesterol (TC).

levels are then derived consistently from models related by the Φ-abstraction, by way of a monoid
homomorphism. We will also provide a necessary and sufficient condition for a given model to
have a corresponding high-level abstraction, which has been absent in previous studies. While our
explication focuses on the micro-macro descriptions of the same phenomena, our formulation of
Φ-abstraction is general and applicable to the equivalence of causal models of physically different
systems.

The paper unfolds as follows. Section 2 briefly explains how to represent discrete causal models
using string diagrams and functors. Section 3 then defines the equivalence and abstraction relation-
ship between distinct causal models with homomorphic DAGs in terms of a natural equivalence and
transformation. Section 4 deals with interventions, and shows that the intervention calculus of a
low-level model, expressed as a monoid action, is related to that of a high-level model via a monoid
homomorphism. This means that an intervention on the former is consistently translated to that on
the latter. Section 5 compares our proposal with the existing approaches by Rubenstein et al. (2017)
and Beckers and Halpern (2019), and shows that ours incorporates some of the previous results. A
problem with the previous criteria is that they do not tell us when a given model accommodates
abstraction. Section 6 explores this problem and determines a necessary and sufficient condition for
a given model to have a non-trivial Φ-abstraction when the transformations are deterministic. We
conclude in Section 7 with a discussion of the advantage of adopting a category-theoretic approach
in addressing this kind of problem.

2. Categorical Representation of Causal Models

In this section we briefly sketch the category-theoretic formulation of causal models. Due to lack
of space, we omit technical details that have no bearing on the following discussion. We refer the
reader to Jacobs et al. (2019) for the details and to Awodey (2010) or Leinster (2014) for general
introductions to category theory. In their approach, a causal graph is reformulated as a string di-
agram category representing the “syntactical” structure of the graph, while specific causal models
are regarded as “semantic” assignments of values and stochastic matrices to each component of the
string diagram, i.e., functors from the string diagram category to the category of stochastic matrices
Stoch.
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Let G = (VG, EG) be a DAG with discrete (categorical) variables VG and edges EG. From this
one can construct a string diagram category SynG whose objects are generated by the vertices of G,
and whose morphisms are generated by the following “box” signature:

ΣG =

{
y
Y

X1 · · · Xk

∣∣∣∣X1, . . . , Xk ∈ PA(Y ), Y ∈ VG
}

where PA(Y ) is the set of parents of Y . Intuitively, each box represents a causal “mechanism”
that determines its effect from the input wires/variables. A causal string diagram is constructed by
combining these mechanisms as in Fig. 2, which illustrates a string diagram rendering of the graph
G in Fig 1. Note that in string diagrams, variables (objects) are denoted by strings and arrows by
boxes, opposite to the notation in conventional causal graphs. It is assumed that the direction of
causal influence flows from bottom to top.

Another category we need is the category Stoch, whose objects are finite sets and whose mor-
phisms f : X → Y are |X|×|Y | dimensional stochastic matrices, i.e., matrices of positive numbers
whose columns each sum up to 1. Intuitively, each object (finite set) in Stoch represents a set of
values of a particular variable, while a morphism (stochastic matrix) represents conditional prob-
abilities for the values of an effect given its causes. A parentless (exogenous) variable Y has a
morphism from the object 1; this morphism is a 1× |Y | stochastic matrix or vector, and thus gives
P (Y ), the marginal distribution of Y .

With this setup, a particular causal model is given by a systematic assignment that maps objects
(strings) in SynG to those (finite sets of values) in Stoch, and morphisms (boxes) in SynG to those
(stochastic matrices) in Stoch. This defines a causal model as a functor FG : SynG → Stoch.
Taking Fig. 2 as an example, a functor FG assigns to each string/object a set of possible values, say,
FG :: diet 7→ {poor, good},LDL 7→ {high, low} etc. To the box below LDL, it assigns conditional
probabilities P (LDL|diet) for each value of LDL and diet; these conditional probabilities can be
represented by a 2 × 2 stochastic matrix. In this way, a functor FG represents a specific Bayesian
network with graph G as in Fig. 1, and conversely, any finite Bayesian network on the DAG G can
be represented by a functor of type SynG → Stoch (Jacobs et al., 2019, Proposition 3.1), which
justifies our identification of a causal model with a functor FG.

diet

LDL

HD

HDL

HD

HDLLDL

diet

Figure 2: The string diagram rendering of graphG in Fig. 1. The black dot is a “copier” that copies
the values of the “diet” string (not discussed in the text).
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3. Equivalence of Causal Models

We now consider the equivalence and abstraction of causal models in the above framework. In con-
trast to previous approaches (Rubenstein et al., 2017; Beckers and Halpern, 2019) that focus only on
probabilistic consistency before and after transformations, we require that a transformation between
causal models preserve the graphical structure, i.e., that the models’ graphs are homomorphic. Let
G,H be DAGs, and φ : G → H be a graph homomorphism, i.e., a function φ : VG → VH such
that X → Y ∈ EG implies φ(X) → φ(Y ) ∈ EH . Since multiple variables in VG may be mapped
to a single variable in VH by φ, we call the causal model based on G the original/micro/low-level
model, and the causal model based on H the target/macro/high-level model. Let SynG,SynH be
string diagram categories, each constructed from G and H , and FG, FH be causal models, that
is, functors from SynG,SynH to Stoch, respectively. Then the graph homomorphism φ naturally
induces a functor Φ : SynG → SynH , which sends an object (string) Y in SynG to object φ(Y ) in
SynH , and boxes:

y
Y

X1 Xk

7→ φ(y)

φ(Y )

φ(X1) φ(Xk)Z1 Zl

· · · · · ·

where Z1 . . . Zl ∈ PA(φ(Y )) \ φ(PA(Y )).

The graph homomorphism φ : G→ H , along with the induced syntactical functor Φ : SynG →
SynH , assures only the consistency of the graphical properties (i.e., cause-effect relationships) of
G and H . A transformation of causal models further requires the consistency of their probability
assignment to variables, which in the present categorical framework amounts to the consistency of
functors to Stoch. This consistency condition is given by the following notion of a Φ-abstraction.

Definition 1 (Φ-abstraction) Let φ : G→ H be a graph homomorphism; Φ : SynG → SynH the
induced functor; and FG, FH functors (causal models) to Stoch from SynG and SynH , respec-
tively. We say that FH is a Φ-abstraction of FG if there is a natural transformation α : FG ⇒ FHΦ.

In category theory, a natural transformation is a set of morphisms that relate two functors in
a consistent fashion. In the present case, the natural transformation α is a set of morphisms in
Stoch, i.e., stochastic matrices whose entries are conditional probabilities of values of X ∈ VH
given those of φ−1(X), for each X ∈ VH . One may think of these morphisms as transforming
the states of “micro” variables in VG to those of the corresponding “macro” variables in VH . That
these morphisms are consistent with respect to the two functors means that the following diagram
commutes for all morphisms (i.e., boxes) f : X → Y in SynG:

FG(X)
FG(f)−−−−→ FG(Y )

αX

y yαY

FHΦ(X)
FHΦ(f)−−−−−→ FHΦ(Y )

where the upper half represents a stochastic transition along the causal arrow f : X → Y in the
original graph VG, while the bottom represents the corresponding transition in the coarse-grained
graph VH , whereas αX and αY respectively transform the marginal distributions on FG(X), FG(Y )
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of micro variables in G to the marginal distributions on FHΦ(X), FHΦ(Y ) of their macro counter-
parts. The commutativity of the diagram roughly means that one obtains the same result regardless
of whether one follows the causal path in the original model and then transforms the effect (the
clockwise path), or transforms the cause first and then calculates its causal consequence in the
coarse-grained model (the counter-clockwise path). See Fig. 3 for a numerical illustration.

x1 x2 x3 
y1 .4 

.6
.4 .1

y2 .2 .1 .3
y3 .4 .5 .6

x1 x2 x3 
z1 .2 

.6
.2 .5

z2 .4 .5 .4
z3 .4 .3 .1

{x1, x2, x3}

{y1, y2, y3} {z1, z2, z3}

u1 u2

w1 .4 .1

w2 .6 .9

u1 u2

w1 .4 .1

w2 .6 .9

x1 x2 x3

u1 1 1 0
u2 0 0 1

{u1, u2}

{w1, w2} {w1, w2}

y1z1 y1z2 y1z3 y2z1 y2z2 y2z3 y3z1 y3z2 y3z3

w1 1 1 1 0 0 0 0 0 0
w2 0 0 0 1 1 1 1 1 1

X

Y Z

U

W

(a) (b)

(c)

ϕ

αY⊗Z

αX

FG(f) FG(g) FHΦ(f) = FHΦ(g)

f

X

Y Z

Φ(X)

Φ(Y) =  Φ(Z)

g Φ(f) Φ(g)=

Φ

⊗

Figure 3: An illustration of Φ-abstraction in three steps. (a) Two DAGs related by graph homo-
morphism φ, which merges two variables Y and Z into the single W . (b) String diagram
representations of the DAGs, related via functor Φ. While the functor preserves the fork-
like structure, the two arms in the right diagram are identical. (c) Causal models related
by Φ-abstraction. Models/functors FG and FH assign values to the strings and stochas-
tic matrices to the boxes. Each matrix gives conditional probabilities of an effect given
its cause. The red dashed arrows denote a natural transformation that collapses the val-
ues {x1, x2} to {u1} and {(y1, zi)}(i = 1, 2, 3) to w1, represented by the corresponding
deterministic matrices (see Sec. 6). Since FG(f) ⊗ FG(g) satisfies the homogeneity
condition (Def. 7) with respect to α, the commutativity holds and α is indeed a natural
transformation from FG to FH · Φ.

The equivalence of causal models is then defined using the above notion of abstraction. In
a nutshell, equivalence is a special case of Φ-abstraction where all the morphisms of the natural
transformation are isomorphisms:

Definition 2 (Φ-equivalence) Causal models FG and FH are Φ-equivalent if there is a natural
isomorphism between FG and FH · Φ.
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4. Intervention

If the notion of a Φ-abstraction is intended to capture the sameness of different models, it should
relate interventions on one model to those on the other in a consistent way. In particular, we expect
that any intervention on a macro model can be realized by (a set of) intervention(s) on a correspond-
ing micro model, in such a way that manipulating the abstracted macro model on the one hand and
abstracting the manipulated micro model on the other hand yield the same outcome. To check this,
we now consider how interventions affect two causal models related by a Φ-abstraction.

Following Jacobs et al. (2019), we first define an intervention as a surgery of a string diagram.
An intervention on a variable X ∈ VG is denoted by cutX , which removes the box as well as all the
incoming wires of X and replaces them with the “intervened state” x̂ with no input:

cutX( x
X

Y1 · · · Yk
) = x̂

X

and leaves the others boxes and strings intact. The cut operation thus defined yields an endofunctor
cutX : SynG → SynG. The marginal distribution of X after intervention is given by FG(x̂) (we
thus assume that the model FG already contains the information about how each variable could be
manipulated. At this point we depart from the original formulation of Jacobs et al. (2019), in which
possible post-intervention distributions are restricted to the uniform distribution). Then the whole
causal model and joint distribution after the intervention are given by composition of cutX with the
causal model functor: FG · cutX : SynG → Stoch.

Next, we consider relating interventions on different models, by embedding interventions on the
high-level model H to those on the low-level model G. For this purpose, note that the set of all cut
operations on a given diagram, say SynG, forms a commutative monoid with the null intervention
cut∅ (which does not change anything) as the identity element and the following composition:

cutY · cutX = cut{Y,X}

that is, intervening on X and then Y amounts to intervening on {X,Y } simultaneously. We denote
this monoid of interventions on SynG by cut(G).

With a graph homomorphism φ : G→ H , a macro intervention on X ′ ⊂ VH can be expressed
as a combination of micro interventions via the following function:

φ∗ :: cutX′ 7→ cutφ−1(X′)

where φ−1(X ′) is the (possibly empty) inverse image of X ′ under φ, i.e. {X ∈ VG|φ(X) ∈ X ′}.
It is easy to see that φ∗ : cut(H)→ cut(G) is a monoid homomorphism, such that

φ∗(cutY ′ · cutX′) = φ∗(cutY ′) · φ∗(cutX′)

for all X ′,Y ′ ⊂ VH . This leads to the following lemma:

Lemma 3 For any X ′ ⊂ VH ,
cutX′ · Φ = Φ · φ∗(cutX′).
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That is, applying an intervention surgery to the abstracted diagram (LHS) and abstracting the mod-
ified diagram (RHS) yield the same string diagram. The commutativity confirms that the modifica-
tions φ∗(cutX′) of SynG and cutX′ of SynH are consistently related via the transformation functor
Φ : SynG → SynH .

With this, we can show that interventions on two models related by a Φ-abstraction yield con-
sistent outcomes.

Theorem 4 If FH is a Φ-abstraction of FG, there is a natural transformation

FG · φ∗(cutX′)⇒ FH · cutX′ · Φ

for any cutX′ ∈ cut(H).

Proof From Lemma 3, FH · cutX′ · Φ = FH · Φ · φ∗(cutX′). Then the natural transformation
α : FG ⇒ FH · Φ gives the desired natural transformation. In particular, the post-intervention
distribution FH(x̂′) for each intervened macro variable X ′ ∈ X′ is given via the push-forward
measure αXFG(x̂), where X := φ−1(X ′) is the set of micro variables that constitute X ′.

Theorem 4 claims that if two models are the “same” in the sense that one is a Φ-abstraction
of the other, interventions on the macro model can be represented as those on the micro model,
and they yield consistent outcomes. In other words, regardless of whether one intervenes on the
micro model and transforms the outcome, or one transforms variables first and then intervenes on
the macro model, the result will be the same.

5. Comparison with Existing Approaches

Φ-abstraction requires the consistency of each cause-effect connection between two causal models.
This is in contrast to existing approaches, where the transformation of causal models is defined
with respect to a particular set of interventions. Rubenstein et al. (2017), for instance, define their
exact τ -transformation as the commutativity of the joint probability distribution along a partial
order of interventions. For SEM models MG,MH with variable sets VG, VH , respectively, MH is
said to be an exact τ -transformation of MG with a variable mapping τ : VG → VH , if there are
partially ordered sets (posets) of interventions IG, IH on MG,MH respectively, and a surjective
order-preserving map ω : IG → IH such that

P
do(i)
τ(VG) = P

do(ω(i))
VH

, ∀i ∈ IG

that is, the distribution that results from applying the intervention i on MG and then the transforma-
tion τ (LHS) is the same as the one obtained by applying the variable transformation and then the
intervention ω(i) on MH (RHS).

It can be shown, within the limit of finite non-parametric models, that our Φ-abstraction implies
an exact τ -transformation:

Corollary 5 Let FH be a Φ-abstraction of FG, and MH and MG the corresponding Bayesian
networks. Then MH is an exact τ -transformation of MG.
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Sketch of proof. Since the image of φ∗ forms a submonoid in cut(G), its monoid action yields a
partial order of interventions on G (because the monoid operation is defined by union of subsets).
Let IG be one of such posets. Then ω : cutX → cutφ(X) and IH := {ω(cutX)|cutX ∈ IG} give a
bijective mapping IG → IH . The variable map τ is given by a natural transformation α such that
τ : P (X) 7→ αX · P (X) for any marginal distribution P (X) on a variable X in G. Then Theorem
4 guarantees the commutativity of the joint probability distribution.

Conversely, an exact τ -transformation does not imply a Φ-abstraction. Beckers and Halpern
(2019, Example 3.4) has shown that Rubenstein et al.’s criterion counts models with different causal
graphs as being related by an exact τ -transformation under a restricted range of allowed interven-
tions or probability distributions. Our Φ-abstraction is not liable to such counterexamples, for it
requires that models have homomorphic causal graphs.

Beckers and Halpern (2019) and Beckers et al. (2020) take a similar approach, but they restrict
the macro-level interventions IH to those induced from the micro-level ones IG via the variable
transformation τ . With this restriction, a pair (MH , IH) of macro-level model-interventions is
said to be a τ -abstraction of a micro-level pair (MG, IG) if the intervention and transformation
commute.

Our Φ-abstraction partially satisfies the conditions of a τ -abstraction. Given a set IG of micro-
level interventions, we can construct a set IH of macro-level interventions as in the proof sketch of
corollary 5 above. Then, the same corollary guarantees the desired commutativity. Precisely speak-
ing, however, this does not yet give a τ -abstraction, because while Beckers and Halpern (2019)
requires the mapping τ to be surjective, there is no corresponding restriction on the natural transfor-
mation α in our framework.

A salient feature of our notion of a Φ-abstraction compared to previous approaches is that it is
defined with respect to causal models, independently of any particular sequence or set of interven-
tions. Since a causal model contains the entire intervention calculus within it (in terms of monoid
actions as discussed in the previous section), a global correspondence over entire models guarantees
a match along any particular sequence of interventions, as long as they are consistently defined.

Another problem with previous approaches is the lack of operationality. That is, given two mod-
els, one cannot easily determine whether one is an exact τ -transformation (or τ -abstraction) of the
other. Moreover, the previous definitions do not tell us when a given low-level model accommodates
a corresponding high-level model. In contrast, in our framework there is a systematic criterion for
the existence of a Φ-abstraction, as we discuss below.

6. Existence Conditions for a Φ-abstraction

Since a Φ-abstraction is a natural transformation of functors to Stoch, it consists of matrices (i.e.,
morphisims in Stoch). Hence, to check whether one causal model is a Φ-abstraction of another, it
suffices to check the equality of the matrix compositions FHΦ(fi) · αXi = αXj · FG(fi) for each
causal link fi : Xi → Xj , starting from the exogeneous variables.

Likewise, finding an abstraction of a given causal model boils down to the problem of matrix
decomposition, i.e., determining whether for each causal relationship f : X → Y in the original
model, there are transformations αX : FG(X)→ FHΦ(X) and αY : FG(Y )→ FHΦ(Y ) such that
αY ·FG(f) = g·αX with some stochastic matrix g : FHΦ(X)→ FHΦ(Y ) between the transformed
variables. Hereinafter we assume that the models FG, FH and the graph homomorphism φ (and
hence the functor Φ) are given, and abbreviate the micro variable FG(X) as X and macro variable
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FHΦ(X) asX ′. Also, we let f : X → Y denote the stochastic matrixFG : FG(X)→ FG(Y ) when
no confusion will arise. With this notation, we now ask under what condition such a decomposition
is possible, viz., when a given model has a Φ-abstraction or equivalence.

In the case of a natural equivalence, transformations are isomorphisms in Stoch, which are
permutation matrices whose rows and columns have the entry 1 in just one place and 0 in all the
others.

Theorem 6 Causal modelsFG andFH are Φ-equivalent if and only if the translationαX : FG(X)→
FH · Φ(X) is a permutation for all X ∈ VG.

Proof Stochastic matrices are invertible if and only if they are permutations.

This means that two models are the same (equivalent) if and only if the variables in one model
are a relabeling of those in the other.

In the case of non-equivalent transformations, including abstractions of a low-level to a high-
level model, the existence of a matrix decomposition is not guaranteed, except in the following
trivial cases:

• The high-level model is a trivial model consisting of singleton variables {∗} and the trivial
identity matrix (scalar) 1 : {∗} → {∗}.

• |X ′| = |Y |, with αX := FG(f) and FHΦ(f) := αY for an arbitrary transformation αY :
Y → Y ′. This amounts to interpreting the causal relationships FG(f), FHΦ(f) at each level
as if they are “abstractions” of X and Y , respectively.

Apart from these trivial cases, the possibility of abstraction generally depends on the nature of the
original model, as well as the proposed abstraction.

However, there is a general condition for the existence of a Φ-abstraction when transformations
are deterministic. Consider a function τ : X → X ′ that maps elements (i.e., values) {x1, · · · , xn}
of setX to elements {x′1, · · · , x′m} ofX ′. Such a function gives rise to a stochastic matrix αX which
has 1 in the ij entry if τ(xj) = x′i, and zero otherwise. We call such matrices that are induced by set
functions deterministic transformations. We also call the inverse images τ−1(x′i) := {x|τ(x) = x′i}
the i-th cell ofX (with respect to τ ). Note that a permutation is a deterministic transformation where
τ is bijective. Here we focus on the case where τ is surjective (and hence n ≥ m), in which case
X has m = |X ′| cells that together partition X . The induced deterministic transformation αX then
amounts to lumping together the probability masses within each cell of the low-level variable X
and equating it with the probability of the corresponding value of the high-level variable X ′.

Now let us consider, given a low-level causal relationship f : X → Y and abstracting (i.e.,
surjective) functions τX : X → X ′ and τY : Y → Y ′, whether there is a high-level causal
relationship g : X ′ → Y ′ which is a Φ-abstraction. To see this, first note that with appropriate
permutations, the deterministic transformations induced by τX , τY can be diagonalized, and f can
be partitioned as follows:  f1

1 · · · f1
m

...
. . .

...
fs1 · · · fsm
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{ x1⋯ , ⋯ , ⋯xn }

{x′ 1, ⋯, x′ m}

m cells

{ y1⋯ , ⋯ , ⋯yt }

{y′ 1, ⋯, y′ s}

s cellsf11 ⋯ f1
m

⋮ ⋱ ⋮
f s1 ⋯ f s

m

f11

|τ−1
X (x′ 1) | columns 

|τ−1
Y (y′ 1) | rows 

τX τY

X

X′ Y′ 

Y

Figure 4: A stochastic matrix f : X → Y is partitioned into m× s blocks, where m and s are the
numbers of cells in X and Y , respectively. The size of each block is determined by the
corresponding cells.

where m and s are the numbers of cells in X and Y with respect to τX and τY , respectively, and
the size of each partition corresponds to the size of the corresponding cells, so f ji is a matrix with
|τ−1
X (x′i)| columns and |τ−1

Y (y′j)| rows (see Fig. 4).
This prepares us to determine the type of causal relationship that allows for deterministic trans-

formations.

Definition 7 (causal homogeneity) f : X → Y is causally homogeneous with respect to abstract-
ing functions τX : X → X ′ and τY : Y → Y ′ when 1T · f ji = cji ·1T for some constant cji for every
block f ji of f , where 1T is a unit row vector of an appropriate dimension.

1T · f ji are the sums of each column of f ji , where each sum represents the total probabilistic con-
tribution of an element in the i-th X cell to the j-th Y cell. That this becomes a uniform vector
cji · 1T means that each element within an X cell affects Y cells to exactly the same degree, that is,
its causal effects are homogeneous modulo cells of the effect variable. The next result shows that
this causal homogeneity is a necessary and sufficient condition for the existence of a Φ-abstraction.

Theorem 8 Given a causal relationship f : X → Y and abstracting functions τX : X → X ′, τY :
Y → Y ′, there is a (higher-level) causal relationship g : X ′ → Y ′ such that αY · f = g ·αX if and
only if f is causally homogeneous, where αX and αY are deterministic transformations induced by
τX and τY , respectively.

Proof See appendix.

Fig. 5 illustrates this with the heart disease example of Fig. 1. The upper layer of the figure is a
causal model (i.e., a probabilistic interpretation in Stoch) of the graphG in Fig. 1, while the bottom
layer is a model of the graph H , where every variable is binary. The proposed abstraction collapses
the two cholesterol variables into one via function τ : LDL × HDL → TC with τ(l1, h1) =
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τ(l1, h2) = τ(l2, h1) = t1 and τ(l2, h2) = t2, keeping the other two variables (Diet and Heart
Disease) intact. Whether this function yields a Φ-abstraction depends on the causal homogeneity
of g, for f is trivially causally homogeneous in this case. Specifically, it must be the case that
g11
i = g12

i = g21
i for i = {1, 2}. This should make sense: since τ identifies three lower-level

combinations {(l1, h1), (l1, h2), (l2, h1)} with a single higher-level value t1, these combinations
must have the same causal effect on each value {y1, y2} of HD. The above theorem shows that this
is not just a necessary but also a sufficient condition for a given causal model to have an abstraction
via deterministic transformations.

{x1, x2}
{(l1, h1),
(l1, h2),
(l2, h1),
(l2, h2)}

{y1, y2}

{x1, x2} {t1, t2} {y1, y2}

(g111 g121 g211 g221
g112 g122 g212 g222 )

f111 f 211
f112 f 212
f121 f 221
f122 f 222

id idτ

Figure 5: Checking causal homogeneity. The graph schematically shows two causal models (i.e.,
interpretations in Stoch) based on the graph G (upper) H (bottom) in Fig. 1. The ab-
stracting function τ partitions stochastic matrices f and g as shown.

7. Discussion

This paper has proposed a category-theoretic criterion of equivalence for two causal models with
homomorphic DAGs. The basic premise of our approach is that in order for two causal models to
be regarded as the same, they must at least capture the same cause-effect relationships, or in other
words, their DAGsG andH must be graph-homomorphic. In the string diagram rendition of DAGs,
this graph homomorphism φ : G → H induces a functor Φ : SynG → SynH between the corre-
sponding string diagram categories. Since causal models are identified with functors from a string
diagram category to the category Stoch of finite sets and stochastic matrices (Jacobs et al., 2019),
the “sameness” of two causal model functors FG : SynG → Stoch and FH : SynH → Stoch can
be defined by the natural transformation (or isomorphism) FG ⇒ FHΦ. If there is such a natural
transformation, i.e., when FH is a Φ-abstraction of FG, the causal flows in the original/low-level
model FG commute with the abstracting transformation, so that they are consistently preserved in
the target/high-level model FH . Moreover, interventions on the target model can be translated back
into the “constituting” interventions on the original model in such a way that they yield consistent
outcomes. Finally, we showed that a given model has a deterministic Φ-abstraction if and only if
every causal relationship in the model satisfies the particular condition called causal homogeneity
with respect to the proposed abstraction.

Conventional DAGs describe a causal structure as a system of variables connected via arrows,
where an arrow X → Y means that X is a direct cause of Y . However, the graph formalism does
not specify how the causing takes place. In particular, it does not distinguish whether there are
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one, two, or more routes through which X affects Y . In this sense, an arrow in a DAG is akin to
the notion of provability in logic, which just shows that a certain proposition is derivable from an-
other without identifying any particular proof, many of which may exist. In contrast, the categorical
approach regards a causal structure as a system of mechanisms (boxes) connected via messengers
(strings), or to use a more mundane analogy, factories connected by distribution chains. Here, cau-
sation means that some product (string) is transformed into another, and how this transformation
is effected is explicitly represented by the mediating boxes/mechanisms (if we stick to the above
logical analogy, each box here represents a specific proof). This is the reason why the fork-like
structure was preserved in the abstracted string diagram in Fig. 3: although the abstracted model
identifies the two arms of the fork, it still retains the information that there are nevertheless two
distinct routes. Our observation is that this information, which is lost in a graph-theoretic transfor-
mation (homomorphism), is essential for the step-wise comparison between two distinct models,
and thus for deciding whether they capture the same causal structure.

Another feature of our approach is that it models the intervention calculus as monoid actions
on a causal model. From this perspective, each causal model defines a monoid that encodes a law
specifying changes in distribution in response to potential interventions. If two causal models are
models of the same physical system, the intervention laws they entail must be consistent. This con-
sistency of the intervention calculus is expressed as a monoid homomorphism, whose existence is
guaranteed if the models are related by a Φ-abstraction. The consistency of any particular sequence
of interventions is then automatically derived from this global consistency.

From a broader perspective, the category-theoretic approach places causal models in the context
of process theory and monoidal categories (Coecke and Kissinger, 2017; Jacobs et al., 2019). A
further investigation of this connection, as well as an extension of the present approach to continuous
variables, should be interesting tasks for future research.
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Appendix A. Proof of Theorem 8

Let |X| = n, |X ′| = m, |Y | = t, |Y ′| = s, with n ≥ m and t ≥ s. Suppose that there is a
g : X ′ → Y ′ such that αY · f = g · αX . By diagonalization and partition we have

αY · f =

 1T · · · 0
...

. . .
...

0 · · · 1T


 f1

1 · · · f1
m

...
. . .

...
fs1 · · · fsm

 =

 1T · f1
1 · · · 1T · f1

m
...

. . .
...

1T · fs1 · · · 1T · f sm

 ,

and

g · αX =

 g1
1 · · · g1

m
...

. . .
...

gs1 · · · gsm


 1T · · · 0

...
. . .

...
0 · · · 1T

 =

 g1
1 · 1T · · · g1

m · 1T
...

. . .
...

gs1 · 1T · · · gsm · 1T

 .

Hence the identity entails 1T · f ji = gji · 1T for 1 ≤ i ≤ m and 1 ≤ j ≤ s. Since gji is a scalar and
thus the right hand side is a uniform vector, this means that f is causally homogeneous.

Conversely, if f is causally homogeneous (i.e., 1T · f ji = cji · 1T for a scalar cji for every block
f ji of f ), we can set each gji = cji . Then by the above matrix calculation we have αY · f = g · αX .

�

13


	Introduction
	Categorical Representation of Causal Models
	Equivalence of Causal Models
	Intervention
	Comparison with Existing Approaches
	Existence Conditions for a -abstraction
	Discussion
	Proof of Theorem 8

