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Abstract
We study the problem of PAC learning halfspaces with Massart noise. Given labeled samples (x, y)
from a distribution D on Rd×{±1} such that the marginalDx on the examples is arbitrary and the
label y of example x is generated from the target halfspace corrupted by a Massart adversary with
flipping probability η(x) ≤ η ≤ 1/2, the goal is to compute a hypothesis with small misclassifi-
cation error. The best known poly(d, 1/ε)-time algorithms for this problem achieve error of η + ε,
which can be far from the optimal bound of OPT + ε, where OPT = Ex∼Dx

[η(x)]. While it is
known that achieving OPT + o(1) error requires super-polynomial time in the Statistical Query
model, a large gap remains between known upper and lower bounds.

In this work, we essentially characterize the efficient learnability of Massart halfspaces in the
Statistical Query (SQ) model. Specifically, we show that no efficient SQ algorithm for learning
Massart halfspaces on Rd can achieve error better than Ω(η), even if OPT = 2− logc(d), for any
universal constant c ∈ (0, 1). Furthermore, when the noise upper bound η is close to 1/2, our error
lower bound becomes η − oη(1), where the oη(1) term goes to 0 when η approaches 1/2. Our
results provide strong evidence that known learning algorithms for Massart halfspaces are nearly
best possible.
Keywords: Statistical Query Model, Halfspaces, Linear Threshold Functions, Massart Noise

1. Introduction

A halfspace, or Linear Threshold Function (LTF), is any function f : Rm → {±1} of the form
f(x) = sign(w · x − θ), for some weight vector w ∈ Rm and threshold θ ∈ R. (The function
sign : R → {±1} is defined as sign(t) = 1 if t ≥ 0 and sign(t) = −1 otherwise.) Halfspaces are
a fundamental class of Boolean functions that have been extensively studied in computational com-
plexity and learning theory over several decades (Minsky and Papert, 1968; Yao, 1990; Goldmann
et al., 1992; Shawe-Taylor and Cristianini, 2000). The problem of learning an unknown halfspace
is as old as the field of machine learning, starting with the Perceptron algorithm (Rosenblatt, 1958).

In the realizable PAC model (Valiant, 1984), i.e., when the labels are consistent with the target
function, halfspaces are efficiently learnable via Linear Programming, see, e.g., Maass and Turan
(1994). In the presence of noisy data, the complexity of learning halfspaces depends on the un-
derlying noise model. Here we study the complexity of learning halfspaces with Massart noise. In
the Massart (or bounded) noise model, the label of each example x is flipped independently with
probability η(x) ≤ η, for some parameter η ≤ 1/2.
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Definition 1 (PAC Learning with Massart Noise) Let C be a class of Boolean-valued functions
over X = Rm, Dx be a fixed unknown distribution over X , and 0 ≤ η ≤ 1/2. Let f ∈ C be the
target concept. A Massart oracle, EXMas(f,Dx, η), works as follows: Each time EXMas(f,Dx, η)
is invoked, it returns an example (x, y), where x ∼ Dx, y = f(x) with probability 1 − η(x) and
y = −f(x) with probability η(x), for some unknown function η(x) : X → [0, 1/2] with η(x) ≤ η,
x ∈ X . Let D be the joint distribution on (x, y) generated by the Massart oracle. A PAC learning
algorithm is given i.i.d. samples from D and outputs a hypothesis h : X → {±1} such that with
high probability the error Pr(x,y)∼D[h(x) 6= y] is as small as possible.

A remark is in order. While the TCS community had only considered the case that the upper
bound η on the Massart noise rate is strictly smaller than 1/2, this is not an essential assumption in
the model. In fact, the original definition of the Massart model (Massart and Nedelec, 2006) allows
for η = 1/2. (Note that it is possible that η = 1/2 while OPT is much smaller.)

The Massart model is a natural semi-random input model formulated in Massart and Nedelec
(2006). An equivalent model had been defined in the 80s (Sloan, 1988, 1992; Rivest and Sloan,
1994; Sloan, 1996) (under the name “malicious misclassification noise”) and a similar definition had
been proposed even earlier by Vapnik (1982). The sample complexity of learning halfspaces with
Massart noise is well-understood. Specifically, halfspaces on Rm are learnable to error OPT + ε
in the Massart model with O(m/ε2) samples. In sharp contrast, our understanding of the algorith-
mic aspects of PAC learning natural concept classes with Massart noise is startlingly poor and has
remained a tantalizing open problem in computational learning theory since the 1980s.

Sloan (1988) defined the malicious misclassification noise model and asked whether there exists
an efficient learning algorithm for Boolean disjunctions— a very special case of halfspaces — in
this model. Cohen (1997) asked the same question for the general class of halfspaces. The problem
remained open and was highlighted in A. Blum’s FOCS 2003 tutorial (Blum, 2003). Surprisingly,
until recently, it was not even known whether there exists an efficient algorithm that achieves mis-
classification error 49% for Massart halfspaces with noise rate upper bound of η = 1%.

Diakonikolas et al. (2019) made the first algorithmic progress on this learning problem. Specifi-
cally, they gave a poly(m, 1/ε)-time learning algorithm for Massart halfspaces with error guarantee
of η + ε, where η is the upper bound on the Massart noise rate. This is an absolute error guarantee
which cannot be improved in general — since it may well be the case that OPT = η (this in partic-
ular happens when η(x) = η for all x ∈ X). Motivated by Diakonikolas et al. (2019), more recent
work (Diakonikolas et al., 2021a) gave an efficient boosting algorithm, achieving error η+ ε for any
concept class, assuming the existence of a weak learner for the class.

The aforementioned error bound of η + ε can be very far from the information-theoretically
optimum error of OPT + ε. Recall that OPT = Ex∼Dx [η(x)] ≤ η and it could well be the case
that OPT � η. Follow-up work by Chen et al. (2020) showed that exact learning — specifically,
obtaining error of OPT + o(1), when OPT is close to 1/2 — requires super-polynomial time in
the Statistical Query (SQ) model of Kearns (1998). The latter SQ lower bound is very fragile in the
sense that it does not even rule out any constant factor approximation algorithm for the problem,
i.e., a poly(m, 1/ε)-time learning algorithm with error C ·OPT+ε, for a universal constant C > 1.
See Appendix A for a more detailed summary of prior and related work.

The aforementioned progress notwithstanding, a very large gap remains in our understanding of
the efficient learnability of halfspaces in the presence of Massart noise.
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Question 1.1 Is there an efficient learning algorithm for Massart halfspaces achieving a relative
error guarantee? Specifically, if OPT � η is it possible to achieve error significantly better than
η? What is the best error (as a function of OPT and η) that can be achieved in polynomial time?

We emphasize here that, throughout this work, we focus on improper learning, where the learn-
ing algorithm is allowed to output any polynomially evaluatable hypothesis.
In this paper, we essentially resolve the efficient PAC learnability of Massart halfspaces in the SQ
model. Specifically, we prove a near-optimal super-polynomial SQ lower bound for this problem,
which provides strong evidence that known efficient algorithms are nearly best possible.
Statistical Query (SQ) Model SQ algorithms are the class of algorithms that are only allowed to
query expectations of bounded functions of the underlying distribution rather than directly access
samples. The SQ model was introduced in Kearns (1998) in the context of supervised learning as
a natural restriction of the PAC model (Valiant, 1984) and has been extensively studied in learning
theory. A recent line of work (Feldman et al., 2013, 2015, 2017; Feldman, 2017) generalized the
SQ framework for search problems over distributions. See Feldman (2016) for a survey.

The class of SQ algorithms is broad: a range of known algorithmic techniques in machine learn-
ing are known to be implementable in the SQ model. These include spectral techniques, moment
and tensor methods, local search (e.g., Expectation Maximization), and many others (see, e.g., Chu
et al. (2006); Feldman et al. (2013, 2017)). In the context of PAC learning classes of Boolean func-
tions (the topic of this paper), with the exception of learning algorithms using Gaussian elimination
(in particular for the concept class of parities, see, e.g., Blum et al. (2003)), all known algorithms
with non-trivial performance guarantees are either SQ or are implementable using SQs.

1.1. Our Contributions
We show that any efficient SQ learning algorithm for Massart halfspaces on Rm cannot obtain error
better than Ω(η), even if the optimal is as small as OPT = 2− logc(m), for any constant c ∈ (0, 1).

Theorem 2 (Main Result) For any universal constants c, c′ with 0 < c < 1 and 0 < c′ < 1 − c,
the following holds. For any sufficiently large positive integer m and any 0 < η < 1/2, there is no
SQ algorithm that PAC learns the class of halfspaces in Rm with η-Massart noise to error better
than Ω(η) using at most exp(log1+c(m)) queries of accuracy no better than exp(− log1+c(m)).
This holds even if the optimal classifier has error OPT = exp(− logc

′
(m)).

Recall that the efficient algorithm of Diakonikolas et al. (2019) (which can be implemented in
the SQ model) achieves error arbitrarily close to η. Moreover, it is easy to see that the Massart
learning problem is computationally easy when OPT � 1/m. As a result, the “inapproximability
gap” of Ω(η) versus 2− logc(m) established by Theorem 2 is essentially best possible (up to the
universal constant in the Ω(·)). For a more detailed statement, see Theorem 9.

Remark 3 When the Massart noise rate upper bound η approaches 1/2, we can replace the lower
bound of Ω(η) appearing in Theorem 2 by the sharper lower bound of η − oη(1). Here the term
oη(1) goes to 0 as η approaches 1/2. See Theorem 33 for the statement in this regime.

It is worth comparing Theorem 2 to the hardness result of Daniely (2016) for PAC learning
halfspaces in the agnostic model. Daniely’s result is qualitatively similar to our Theorem 2 with
two differences: (1) The lower bound in Daniely (2016) only applies against the (much more chal-
lenging) agnostic model. (2) In the agnostic setting, it is hard to learn halfspaces within error
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significantly better than 1/2, rather than error Ω(η) in the Massart setting. Theorem 9 proves an SQ
lower bound for a much more benign semi-random noise model at the cost of allowing somewhat
better error in polynomial time. We reiterate that error arbitrarily close to η is efficiently achievable
for Massart noise (Diakonikolas et al., 2019), and therefore our hardness gap is nearly best possible.

1.2. Overview of Techniques

At a high level, our proof leverages the SQ lower bound framework developed in Diakonikolas et al.
(2017). We stress that, while this framework is a key ingredient of our construction, employing it in
our context requires new conceptual and technical ideas, as we explain in the proceeding discussion.

Roughly speaking, the prior work (Diakonikolas et al., 2017) established the following generic
SQ-hardness result: Let A be a one-dimensional distribution that matches the first k moments with
the standard Gaussian G and satisfying the additional technical condition that its chi-squared norm
with G is not too large. Suppose we want to distinguish between the standard high-dimensional
Gaussian N(0, I) on Rm and a distribution PA

v that is a copy of A in a random direction v and is a
standard Gaussian in the orthogonal complement. Then any SQ algorithm for this hypothesis testing
task requires super-polynomial complexity. Roughly speaking, any SQ algorithm distinguishing
between the two cases requires either at least mΩ(k) samples or at least 2m

Ω(1)
time.

Here we require a generalization of the latter generic result that holds even if the one-dimensional
distribution A nearly matches the first k moments with G. Furthermore, in contrast to the unsuper-
vised estimation problem studied in Diakonikolas et al. (2017), in our context we require a generic
statement establishing the SQ-hardness of a binary classification problem. Such a statement (Propo-
sition 15) is not hard to derive from the techniques of Diakonikolas et al. (2017). In more detail,
Proposition 15 shows the following: LetA andB be univariate distributions (approximately) match-
ing their first k moments with G (and each having not too large chi-squared norm with respect to
G) and let p ∈ (0, 1). We consider the distribution on labeled samples PA,B,p

v that returns a sample
from (PA

v , 1) with probability p and a sample from (PB
v ,−1) with probability 1− p. Given labeled

examples from PA,B,p
v , for an unknown direction v, the goal is to output a Boolean-valued hypoth-

esis with small misclassification error. Note that it is straightforward to obtain error min{p, 1− p}
(as one of the two constant functions achieves this). We show that obtaining slightly better error is
hard in the SQ model.

To leverage the aforementioned result in our circumstances, we would like to establish the ex-
istence of a distribution (X,Y ) on R × {±1} that corresponds to a halfspace with Massart noise
such that both the distribution of X conditioned on Y = 1 (denoted by (X | Y = 1)) and the
distribution of X conditioned on Y = −1 (denoted by (X | Y = −1)) approximately match their
first k moments with the standard Gaussian. Note that k here is a parameter that we would like to
make as large as possible. In particular, to prove a super-polynomial SQ lower bound, we need to
be able to make this parameter k super-constant (as a function of the ambient dimension).

Naturally, a number of obstacles arise while trying to achieve this. In particular, achieving the
above goal directly is provably impossible for the following reason. Any distribution X that even
approximately matches a constant number of low-order moments with the standard Gaussian will
satisfy E[f(X)] ≈ E[f(G)] for any halfspace (LTF) f . To see this fact, we can use the known
statement (see, e.g., Diakonikolas et al. (2010)) that any halfspace f can be sandwiched between
low-degree polynomials f+ ≥ f ≥ f− with E[f+(G)−f−(G)] small. This structural result implies
that if both conditional distributions (X | Y = 1) and (X | Y = −1) approximately match their
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low-degree moments with G, then E[f(X)|Y = 1] will necessarily be close to E[f(X)|Y = −1],
which cannot hold in the presence of Massart noise.

In order to circumvent this obstacle, we will instead prove a super-polynomial SQ lower bound
against learning degree-d polynomial threshold functions (PTFs) under the Gaussian distribution
with Massart noise, for an appropriate (super-constant) value of the degree d. Since a degree-d PTF
on the vector random variable X ∈ Rm is equivalent to an LTF on X⊗d — a random variable in md

dimensions — we will thus obtain an SQ lower bound for the original halfspace Massart learning
problem. We note that a similar idea was used in Daniely (2016) to prove an SQ lower bound for
the problem of learning halfspaces in the agnostic model.

The next challenge is, of course, to construct the required moment-matching distributions in
one dimension. Even for our reformulated PTF learning problem, it remains unclear whether this
is even possible. For example, let f(x) = sign(p(x)) be a degree-d PTF. Then it will be the case
that E[p(X)Y ] = E[p(X)f(X)(1 − 2η(X))] = E[|p(X)|(1 − 2η(X))] > 0. This holds despite
the fact that E[p(X) | Y = 1] ≈ E[p(X) | Y = −1] ≈ E[p(G)]. If E[p(G)] > 0, it will be the
case that E[p(X) | Y = −1] will be positive, despite the fact that the conditional distribution of
X | Y = −1 is almost entirely supported on the region where p(X) < 0. Our construction will
thus need to take advantage of finding points where |p(X)| is very large.

Fortunately for us, something of a miracle occurs here. Consider a discrete univariate Gaussian
Gδ with spacing σ between its values. It is not hard to show that Gδ approximately matches mo-
ments with the standard Gaussian G to error exp(−Ω(1/σ2)) (see Lemma 18). On the other hand,
all but a tiny fraction of the probability mass of Gσ is supported on d = Õ(1/σ) points. Unfortu-
nately, a discrete Gaussian is not quite suitable for the conditional distributions in our construction,
as its χ2 inner product with respect to the standard Gaussian is infinite. We can fix this issue by
replacing the single discrete Gaussian with an average of discrete Gaussians with different offsets.
Doing so, we obtain a distribution that nearly-matches many moments with the standard Gaussian
such that all but a small fraction of its mass is supported on a small number of intervals.

As a first attempt, we can let one of our conditional distributions be this average of “offset dis-
crete Gaussians” described above, and the other be a similar average with different offsets. Thus,
both conditional distributions nearly-match moments with the standard Gaussian and are approxi-
mately supported on a small number of (disjoint) intervals. This construction actually suffices to
prove a lower bound for (the much more challenging) agnostic learning model. Unfortunately, for
the Massart noise model, additional properties are needed. In particular, for a univariate PTF with
Massart noise, it must be the case that except for points x in a small number of intervals, we have
that Pr[Y = 1 | X = x] > Pr[Y = −1 | X = x]; whereas in the above described construction we
have to alternate infinitely many times between Y = 1 being more likely and Y = −1 more likely.

To circumvent this issue, we need the following subtle modification of our construction. Let
Gσ,θ be the discrete Gaussian supported on the points nσ + θ, for n ∈ Z (Definition 17). Our
previous (failed) construction involved taking an average of Gσ,θ, for some fixed σ and θ varying in
some range. Our modified construction will involve taking an average of Gσ,θ, where both σ and
θ vary together. The effect of this feature will be that instead of producing a distribution whose
support is a set of evenly spaced intervals of the same size, the support of our distributions will
instead consist of a set of evenly spaced intervals whose size grows with the distance from the
origin. This means that for points x near 0, the support will essentially be a collection of small,
disjoint intervals. But when x becomes large enough, these intervals will begin to overlap, causing
all sufficiently large points x to be in our support. By changing the offsets used in defining the
conditional distribution for Y = 1 and the conditional distribution for Y = −1, we can ensure that
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for points x with |x| small that the supports of the two conditional distributions remain disjoint.
This allows us to take the optimal error OPT to be very small. However, for larger values of |x|,
the supports become the same. Finally, by adjusting the prior probabilities of Y = 1 and Y = −1,
we can ensure that Pr[Y = 1 | X = x] > ((1 − η)/(η))Pr[Y = −1 | X = x] for all points x
with |x| sufficiently large. This suffices to show that the distribution corresponds to a Massart PTF.

2. Preliminaries

We will use the framework of Statistical Query (SQ) algorithms for problems over distributions
introduced in Feldman et al. (2013). We start by defining a decision problem over distributions.

Definition 4 (Decision Problem over Distributions) We denote by B(D, D) the decision (or hy-
pothesis testing) problem in which the input distributionD′ is promised to satisfy either (a)D′ = D
or (b) D′ ∈ D, and the goal of the algorithm is to distinguish between these two cases.

Definition 5 (STAT Oracle) For a tolerance parameter τ > 0 and any bounded function f :
Rn → [−1, 1], STAT(τ) returns a value v ∈ [Ex∼D[f(x)]− τ,Ex∼D[f(x)] + τ ].

Definition 6 (Pairwise Correlation) The pairwise correlation of two distributions with pdfsD1, D2 :
Rm → R+ with respect to a distribution with density D : Rm → R+, where the support of D con-
tains the supports of D1 and D2, is defined as χD(D1, D2)

def
=
∫
Rm D1(x)D2(x)/D(x)dx − 1.

We say that a set of s distributions D = {D1, . . . , Ds} over Rm is (γ, β)-correlated relative to a
distribution D if |χD(Di, Dj)| ≤ γ for all i 6= j, and |χD(Di, Dj)| ≤ β for i = j.

Definition 7 (SQ Dimension) For β, γ > 0, a decision problem B(D, D), where D is a fixed
distribution and D is a family of distributions, let s be the maximum integer such that there exists a
finite set of distributionsDD ⊆ D such thatDD is (γ, β)-correlated relative toD and |DD| ≥ s.We
define the SQ dimension with pairwise correlations (γ, β) of B to be s and denote it by SD(B, γ, β).

Lemma 8 (Corollary 3.12 in Feldman et al. (2013)) Let B(D, D) be a decision problem, where
D is the reference distribution and D is a class of distributions. For γ, β > 0, let s = SD(B, γ, β).
For any γ′ > 0, any SQ algorithm for B requires at least s ·γ′/(β−γ) queries to STAT(

√
γ + γ′).

3. SQ Hardness of Learning Halfspaces with Massart Noise

In this section, we establish the following result, which implies Theorem 2.

Theorem 9 (SQ Hardness of Learning Massart Halfspaces on RM ) Let OPT > 0 and M ∈
Z+ be such that log(M)/(log log(M))3 is at least a sufficiently large constant multiple of log(1/OPT).

There exists a parameter τ def
= M

−Ω
(

log(M)

log log(M)3
/ log(1/OPT)

)
such that no SQ algorithm can learn

the class of halfspaces on RM in the presence of η-Massart noise, where OPT < η < 1/2, within
error better than Ω(η) using at most 1/τ queries of tolerance τ . This holds even if the optimal
binary classifier has misclassification error at most OPT.
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As an immediate corollary of Theorem 9, by taking OPT = exp(− logc
′
(M)) for any fixed

constant c′ ∈ (0, 1), we obtain a super-polynomial SQ lower bound against learning a hypothesis
with error better than Ω(η), even when error OPT is possible. Specifically, this setting of parameters

immediately implies Theorem 2, since log(M)

log log(M)3 / log(1/OPT) = log1−c′ (M)

log log(M)3 > logc(M), where

0 < c < 1− c′, and therefore 1/τ � exp(log1+c(M)).

Remark 10 In addition to Theorem 9, we establish an alternative “inapproximability gap” of
1/2 − O(

√
1/2− η) versus exp(− logc

′
(M)), which implies a sharper error lower bound when

η approaches 1/2. Specifically, for η close to 1/2, we obtain an error lower bound of η − oη(1),
even if OPT = exp(− logc

′
(M)). See Theorem 33 for the formal statement.

In Section 3.1, we review the SQ framework of Diakonikolas et al. (2017) with the necessary
enhancements and modifications required for our supervised setting. In Section 3.2, we establish
the existence of the one-dimensional distributions with the desired approximate moment-matching
properties. In Section 3.3, we put everything together to complete the proof of Theorem 9. Finally,
in Appendix F, we establish our sharper lower bounds for η close to 1/2, proving Theorem 33.

3.1. Generic SQ Lower Bound Construction

We start with the following definition and moment-matching condition:

Definition 11 (High-Dimensional Hidden Direction Distribution) For a distribution A on the
real line with probability density function A(x) and a unit vector v ∈ Rm, consider the distribution
over Rm with probability density function PA

v (x) = A(v·x) exp
(
−‖x− (v · x)v‖22/2

)
/(2π)(m−1)/2.

That is, PA
v is the product distribution whose orthogonal projection onto the direction of v isA, and

onto the subspace perpendicular to v is the standard (m− 1)-dimensional normal distribution.

Condition 12 Let k ∈ Z+ and ν > 0. The distribution A is such that (i) the first k moments of A
agree with the first k moments of N(0, 1) up to error at most ν, and (ii) χ2(A,N(0, 1)) is finite.

Note that Condition 12-(ii) above implies that the distributionA has a pdf, which we will denote
by A(x). We will henceforth blur the distinction between a distribution and its pdf.

Our main result in this subsection makes essential use of the following key lemma:

Lemma 13 (Correlation Lemma) Let k ∈ Z+. If the univariate distribution A satisfies Condi-
tion 12, then for all v, v′ ∈ Rm, with |v · v′| less than a sufficiently small constant, we have that
|χN(0,I)(P

A
v ,P

A
v′)| ≤ |v · v′|k+1χ2(A,N(0, 1)) + ν2 .

This lemma is a technical generalization of Lemma 3.4 from Diakonikolas et al. (2017), which
applied under exact moment matching assumptions. The proof is deferred to Appendix B.

We will establish an SQ lower bound for the following binary classification problem.

Definition 14 (Hidden Direction Binary Classification Problem) Let A and B be distributions
on R satisfying Condition 12 with parameters k ∈ Z+ and ν ∈ R+, and let p ∈ (0, 1). For m ∈ Z+

and a unit vector v ∈ Rm, define the distribution PA,B,p
v on Rm×{±1} that returns a sample from

(PA
v , 1) with probability p and a sample from (PB

v ,−1) with probability 1− p. The corresponding
binary classification problem is the following: Given access to a distribution on labeled examples
of the form PA,B,p

v , for a fixed but unknown unit vector v, output a hypothesis h : Rm → {±1} such
that Pr

(X,Y )∼PA,B,pv
[h(X) 6= Y ] is (approximately) minimized.
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Note that it is straightforward to obtain misclassification error min{p, 1 − p} (as one of the
identically constant functions achieves this guarantee). We show that obtaining slightly better error
is hard in the SQ model. The following result is the basis for our SQ lower bounds:

Proposition 15 (Generic SQ Lower Bound) Consider the classification problem of Definition 14.
Let τgν2 + 2−k(χ2(A,N(0, 1)) + χ2(B,N(0, 1))). Then any SQ algorithm that, given access to
a distribution PA,B,p

v for an unknown v ∈ Rm, outputs a hypothesis h : Rm → {±1} such that
Pr

(X,Y )∼PA,B,pv
[h(X) 6= Y ] < min(p, 1 − p) − 4

√
τ must either make queries of accuracy better

than 2
√
τ or must make at least 2Ω(m)τ/(χ2(A,N(0, 1)) + χ2(B,N(0, 1))) statistical queries.

The proof of Proposition 15 is deferred to Appendix C.

3.2. Construction of Univariate Moment-Matching Distributions

In this subsection, we give our univariate approximate moment-matching construction (Proposi-
tion 16), which is the key new ingredient to establish our desired SQ lower bound. The moment-
matching construction of this subsection (along with its refinement for η close to 1/2 presented in
Section F) is the main technical contribution of this work.

We will use G for the measure of the univariate standard Gaussian distribution N(0, 1) and
g(x) = 1√

2π
exp(−x2/2) for its probability density function.

We will construct two (non-negative, finite) measuresD+ andD− on this space with appropriate
properties. The main technical result of this section is captured in the following proposition.

Proposition 16 Let 0 < ε < s < 1 be real numbers such that s/ε is at least a sufficiently large
universal constant. Let 0 < η < 1/2. There exist measures D+ and D− over R and a union J of
d = O(s/ε) intervals on R such that:

1. (a) D+ = 0 on J , and (b) D+/D− > (1− η)/η on Jc := R \ J .

2. All but ζ = O(ηs/ε) exp(−Ω(s4/ε2)) of the measure of D− lies in J .

3. For any t ∈ N, the distributions D+/‖D+‖1 and D−/‖D−‖1 have their first t moments
matching those of G within additive error at most (t+ 1)! exp(−Ω(1/s2)).

4. (a) D+ is at most O(s/ε) G, and (b) D− is at most O(sη/ε) G.

5. (a) ‖D+‖1 = Θ(1), and (b) ‖D−‖1 = Θ(η).

Discussion Essentially, in our final construction, D+ will be proportional to the distribution of
X conditioned on Y = 1 and D− proportional to the distribution of X conditioned on Y = −1.
Furthermore, the ratio of the probability of Y = 1 to the probability of Y = −1 will be equal to
‖D+‖1/‖D−‖1. The Massart PTF that f(X) is supposed to simulate will be −1 on X ∈ J and 1
elsewhere (thus making it a degree-2d PTF).

We now provide an explanation of the properties established in Proposition 16. Property 1(a)
says that Y will deterministically be −1 on J , while property 1(b) says that the ratio between D+

and D− will be greater than (1 − η)/η on the complement of J . This implies that Y amounts to
f(X) with Massart noise at most η. Property 2 implies that Y only disagrees with the target PTF
with probability roughly ζ, i.e., that the optimal misclassification value OPT will be less than ζ.
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Property 3 says that D+ and D−, after rescaling, approximately match many moments with the
standard Gaussian, which will be necessary in establishing our SQ lower bounds. Property 4 is
necessary to show that D+ and D− have relatively small chi-squared norms. Finally, Property5 is
necessary to figure out how big the parameter p (i.e., Pr[Y = 1]) should be (approximately).
Proof [of Proposition 16] We will use the following two-parameter family of discrete Gaussians.

Definition 17 (Discrete Gaussian) For σ ∈ R+ and θ ∈ R, letGσ,θ denote the measure of the “σ-
spaced discrete Gaussian distribution”. In particular, for each n ∈ Z,Gσ,θ assigns mass σg(nσ+θ)
to the point nσ + θ.

Note that Gσ,θ is not a probability measure as its total measure is not equal to one. However,
it is not difficult to show (see Lemma 18 below) that the measure of Gσ,θ is close to one for small
σ > 0, hence can be intuitively thought of as a probability distribution.
Remark: Due to space limitations, the proofs of some intermediate lemmas are given in Appendix D.

The following lemma shows that the moments of Gσ,θ approximately match the moments of the
standard Gaussian measure G.

Lemma 18 For t ∈ N, σ ≥ 0, and θ ∈ R we have that
∣∣∣E[Gtσ,θ]−E[Gt]

∣∣∣ = t!O(σ)t exp(−Ω(1/σ2)).

The proof of Lemma 18 proceeds by analyzing the Fourier transform of Gσ,θ and using the fact
that the tth moment of a measure is proportional to the tth derivative of its Fourier transform at 0.

Note that Lemma 18 for t = 0 implies the total measure of Gσ,θ is exp(−Ω(1/σ2)) close to
one, i.e., for small σ > 0 Gσ,θ can be thought of as a probability distribution.

Definition of the MeasuresD+ andD− We define our measures as mixtures of discrete Gaussian
distributions. This will allow us to guarantee that they nearly match moments with the standard
Gaussian. In particular, for a sufficiently large constant C > 0, we define:

D+ := C (s/ε)

∫ ε

0

1

s+ y
Gs+y,y/2 dy , and D− := η (s/ε)

∫ ε

0

1

s+ y
Gs+y,(y+s)/2dy . (1)

We will require the following explicit formulas for D+ and D−.

Lemma 19 For all x ∈ R, we have that D+(x) = C g(x) (s/ε)
∑

n∈Z
1{x∈[ns,ns+(n+1/2)ε]}

|n+1/2| ,
where by 1{x ∈ [ns, ns + (n + 1/2)ε]} we denote the indicator function of the event that x is
between ns and ns+ (n+ 1/2)ε, even in the case where n < 0 and ns+ (n+ 1/2)ε < ns.

Similarly, we have that D−(x) = η g(x) (s/ε)
∑

n∈Z
1{x∈[(n+1/2)s,(n+1/2)s+(n+1/2)ε]}

|n+1/2| .

Intuition on Definition of D+ and D− We now attempt to provide some intuition regarding the
definition of the above measures. We start by noting that each of D+(x) and D−(x) will have
size roughly g(x) on its support. This can be seen to imply on the one hand that the chi-squared
divergence of (the normalization of) D± from the standard Gaussian G is not too large, and on the
other hand that D± roughly satisfy Gaussian concentration bounds.

The critical information to consider is the support of these distributions. Each of the two mea-
sures is supported on a union of intervals. Specifically, D+ is supported on intervals located at the
point n s of width |n + 1/2|ε; and D− is supported on intervals located at the point (n + 1/2)s of
width |n + 1/2|ε. In the case where ε � s, these intervals will be disjoint for small values of n

9
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(roughly, for |n| � s/ε). The factor of C > 0 difference in the definitions of the two measures will
ensure thatD+ > D−(1−η)/η on their joint support; and once |n| has exceeded a sufficiently large
constant multiple of s/ε, the intervals will be wide enough that they overlap causing the support to
be everything.

In other words, for |x| less than a sufficiently small constant multiple of s2/ε, D+ and D−
will be supported on O(s/ε) many intervals and will have disjoint supports. We define J to be
the union of the O(s/ε) many intervals in the support of D− that are not in the support of D+.
With this definition, we will have that (1) D+ is equal to zero in J , and (2) D+/D− is sufficiently
large on Jc. Furthermore, since D− only assigns mass to Jc for x with |x| � s2/ε, we can take
ζ = exp(−Ω(s4/ε2)).

Given the above intuition, we begin the formal proof, starting with moment-matching.

Lemma 20 For t ∈ N, the distributions D+/‖D+‖1 and D−/‖D−‖1 match the first t moments
with the standard Gaussian G to within additive error t!O(s)t exp(−1/s2).

Proof This follows from Lemma 18 by noting that both of these distributions are mixtures of
discrete Gaussians with σ = Θ(s).

Our next lemma provides approximations to the corresponding L1 norms.

Lemma 21 We have that ‖D+‖1 = Θ(1) and ‖D−‖1 = Θ(η).

For the rest of the proof, it will be important to analyze the intervals on which D+ and D− are
supported. To this end, we start by introducing the following notation.

Definition 22 For m ∈ Z, let Im+ be the interval with endpoints ms and ms + (m + 1/2)ε, and
let Im− be the interval with endpoints (m + 1/2)s and (m + 1/2)s + (m + 1/2)ε. Additionally,
for x ∈ R, let n+(x) be the number of integers m such that x ∈ Im+ , and n−(x) be the number of
integers m such that x ∈ Im− .

The following corollary is an easy consequence of the definition.

Corollary 23 For x ∈ R, we have that x ∈ Im+ only if m = x/s + O((|x| + s)ε/s). Similarly,
x ∈ Im− only if m = x/s− 1/2 +O((|x|+ s)ε/s).

Combining Corollary 23 with the formulas for D+ and D− given in Lemma 19, we have that:

Corollary 24 For all x ∈ R we have that

D+(x) = Θ(Cg(x)(s2/ε)n+(x)/(|x|+ s)) and D−(x) = Θ(ηg(x)(s2/ε)n−(x)/(|x|+ s)) .

Proof This follows from the explicit formulas for D+ and D− given in Lemma 19 along with
Corollary 23, which implies that the denominators |n+ 1/2| are Θ((|x|+ s)/s).

We next need to approximate the size of n+(x) and n−(x). We have the following lemma.

Lemma 25 For x ∈ R, we have n+(x), n−(x) = |x| (1/s− 1/(s+ ε)) + O(1) = |x|Θ(ε/s2) +
O(1) .

10
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Proof We will prove the desired statement for x ≥ 0 and n+(x). The other cases follow sym-
metrically. Note that x ∈ Im+ only for non-negative m. For such m, x ∈ Im+ if and only if
ms ≤ x ≤ m(s + ε) + ε/2. This is the difference in the number of m’s for which ms ≤ x and
the number of m’s for which m(s + ε) + ε/2 < x. The former is |x|/s + O(1) and the latter is
|x|/(s+ ε) +O(1). The lemma follows.

Lemma 25 implies the following.

Corollary 26 We have that n+(x) ≥ 1 for all x� s2/ε.

Combining Lemma 25 with Corollary 24, we get the following.

Corollary 27 For all x ∈ R, we have thatD+(x) = O (g(x)(s/ε)) , D−(x) = O (g(x) η (s/ε)) .

A combination of Lemma 25 with Corollary 24 also implies that on the support of D+ the ratio
D+/D− is sufficiently large.

Corollary 28 If x ∈ R is such that D+(x) > 0, then D+(x)/D−(x) > (1− η)/η.

Proof If D+(x) > 0, then n+(x) > 0. Lemma 25 implies that n−(x) = n+(x) + O(1), and
therefore n−(x)/n+(x) = O(1). Combining this with Corollary 24, we have thatD+(x)/D−(x) =
Ω(C/η) . For C a sufficiently large universal constant, this implies our result.

We also need to show that the intersection of the supports of D+ and D− occurs only for |x|
sufficiently large. Specifically, we have the following lemma.

Lemma 29 For x ∈ R, it holds that min(n+(x), n−(x)) > 0 only if |x| = Ω(s2/ε).

Proof We have that min(n+(x), n−(x)) > 0 only if there exist integers m and m′ with x ∈
Im+ ∩ Im

′
− . By Corollary 23, it must be the case that |m|, |m′| = O(|x|/s + 1). On the other hand,

we have that Im+ is an interval containing the point ms, and Im
′
− is an interval containing the point

(m′ + 1/2)s. These points must differ by at least s/2, and therefore the sum of the lengths of
these intervals must be at least s/2. On the other hand, these intervals have length |m + 1/2|ε and
|m′ + 1/2|ε respectively. Thus, min(n+(x), n−(x)) > 0 can only occur if s/2 = O(|x|ε/s + ε),
which implies that x = Ω(s2/ε), as desired.

We define J to be J def
= R\

⋃
m∈Z I

m
+ . We claim that J is a union of O(s/ε) many intervals.

Indeed, by Corollary 26, J is an interval J0 = [−O(s2/ε), O(s2/ε)] minus all of the intervals Im+
that intersect J0. By Corollary 23, Im+ intersects J0 only when |m| = O(s/ε). Thus, J is an interval
minus a union of O(s/ε) other intervals. Thus, it is a union of O(s/ε) many intervals.

We can now directly verify the properties of Proposition 16. The definition of J implies that
n+(x) = 0 on J , which itself implies that D+(x) = 0 for x ∈ J . The latter fact combined with
Corollary 28 imply Property 1. Lemma 29 implies that the intersection of Jc with the support of
D− consists only of points x with |x| = Ω(s2/ε). This fact and Corollary 27 imply Property 2 (by
Gaussian concentration). Property 3 follows from Lemma 20. Property 4 follows from Corollary
27. Property 5 follows from Lemma 21. This completes the proof of Proposition 16.
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3.3. Putting Everything Together: Proof of Theorem 9

Parameter Setting Recall the parameters in the theorem statement. We have that OPT > 0
and M ∈ Z+ are such that log(M)/(log log(M))3 is at least a sufficiently large constant multiple

of log(1/OPT). Moreover, we define a parameter τ which is set to M
−Θ

(
log(M)

log log(M)3
/ log(1/OPT)

)
,

where the implied constant in the exponent is sufficiently small.
Let C > 0 be a sufficiently large universal constant. We define positive integers m and d as

follows: m = dC log(1/τ)e and d = dC
√

log(1/OPT) log(1/τ) log log(1/τ)e. Observe that(
2d+m

m

)
≤ m2d = exp(O(C

√
log(1/OPT) log(1/τ)(log log(1/τ))3)) . (2)

We note that if log(1/τ) is a sufficiently small constant multiple of log2(M)
(log log(M))3 log(1/OPT)

, then the

RHS of (2) is less than M . Thus, by decreasing M if necessary, we can assume that M =
(

2d+m
m

)
.

Consider the Veronese mapping, denote by V2d : Rm → RM , such that the coordinate functions of
V2d are exactly the monomials in m variables of degree at most 2d.
Hard Distributions We can now formally construct the family of high-dimensional distributions
on labeled examples that (1) corresponds to Massart halfspaces, and (2) is SQ-hard to learn. We
define univariate measuresD+ andD− on R, as given by Proposition 16, with s and ε picked so that
s2/ε is a sufficiently large constant multiple of

√
log(1/OPT) and s/ε a sufficiently small constant

multiple of d (for example, by taking s = C2
√

log(1/OPT)/d = Θ(1/
√

log(1/τ) log log(1/τ))
and ε = C3

√
log(1/OPT)/d2).

For a unit vector v ∈ Rm, consider the distribution P
D+,D−,p
v , as in Proposition 15, with p =

‖D+‖1/(‖D+‖1 + ‖D−‖1). By property 5 of Proposition 16, note that min(p, 1 − p) = 1 − p =
Θ(η). Our hard distribution is the distribution (X ′, Y ′) on RM ×{±1} obtained by drawing (X,Y )

from P
D+,D−,p
v and letting X ′ = V2d(X) and Y ′ = Y .

We start by showing that this corresponds to a Massart halfspace (for the proof, see Appendix E).

Claim 30 The distribution (X ′, Y ′) on RM × {±1} is a Massart LTF distribution with optimal
misclassification error OPT and Massart noise rate upper bound of η.

We are now ready to complete the proof of our SQ lower bound. It is easy to see that finding
a hypothesis that predicts Y ′ given X ′ is equivalent to finding a hypothesis for Y given X (since
Y = Y ′ and there is a known 1-1 mapping between X and X ′). The pointwise bounds on D+ and
D−, specifically properties 4 and 5 in Proposition 16, imply that χ2(D±/‖D±‖1 , G) ≤ O(s/ε)2 =
polylog(M) . The parameter ν in Proposition 15 is k! exp(−Ω(1/s2)) = exp(−Ω(1/s2)) after
taking k to be a sufficiently small constant multiple log(1/s)/s2.

Thus, by Proposition 15, in order to output a hypothesis with error smaller than min(p, 1−p) =
Θ(η), any SQ algorithm either needs queries with accuracy better than

ν2 + 2−k(χ2(A,G) + χ2(B,G)) = exp(−Ω(log(1/s)/s2))polylog(M) < τ

or a number of queries more than 2Ω(m)τ(χ2(A,G) + χ2(B,G)) > 1/τ . Therefore, Proposition
15 implies that it is impossible for an SQ algorithm to learn a hypothesis with error better than Θ(η)
without either using queries of accuracy better than τ or making at least 1/τ many queries. This
completes the proof of Theorem 9.
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4. Conclusions

This work gives a super-polynomial SQ lower bound with near-optimal inapproximability gap for
the fundamental problem of (distribution-free) PAC learning Massart halfspaces. Our lower bound
provides strong evidence that known algorithms for this problem are essentially best possible. An
obvious open question is whether the constant factor in the Ω(η)-term of our lower bound can be
improved to C = 1 for all η > 0. Recall that we have shown such a bound for η close to 1/2.
Followup work (Nasser and Tiegel, 2022) showed that this is indeed possible with our techniques
via a modification of our one-dimensional construction. This matches known algorithms exactly,
specifically showing that the error of η + ε cannot be improved even for small values of η > 0. For
a list of open questions coming out of our work, see Appendix G.
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Appendix

Appendix A. Additional Related Work

Here we summarize the most relevant literature on learning halfspaces in related noise models.
Massart noise lies in between Random Classification noise and the Agnostic model.

Random Classification Noise Random Classification Noise (RCN) (Angluin and Laird, 1988) is
the special case of Massart noise where each label is flipped with probability exactly η < 1/2. Half-
spaces are known to be efficiently learnable to optimal accuracy in the (distribution-independent)
PAC model with RCN (Blum et al., 1996, 1997). In fact, it is well-known that any SQ learning
algorithm (Kearns, 1998) can be transformed to an RCN noise tolerant learning algorithm — a fact
that inherently fails in the presence of Massart noise. Roughly speaking, the ability of the Mas-
sart adversary to choose whether to flip a given label and, if so, with what probability, makes the
algorithmic problem in this model significantly more challenging.

Agnostic Learning The agnostic model (Haussler, 1992; Kearns et al., 1994) is the strongest
noise model in the literature, where an adversary is allowed to adversarially corrupt an arbitrary
OPT < 1/2 fraction of the labels. In the distribution-independent setting, even weak agnostic PAC
learning of halfspaces (i.e., obtaining a hypothesis with non-trivial accuracy) is known to be in-
tractable. A long line of work (see, e.g., Guruswami and Raghavendra (2006); Feldman et al. (2006))
has established NP-hardness of weak agnostic proper learning. (See Feldman (2015) for a survey on
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hardness of proper learning results.) More recently, Daniely (2016) gave super-polynomial lower
bounds for improper learning, under certain average-case complexity assumptions, and simulta-
neously established SQ lower bounds for the problem. Concretely, Daniely (2016) showed that
no polynomial-time SQ algorithm for agnostically learning halfspaces on Rm can compute a hy-
pothesis with error 1/2 − 1/mc, for some constant c > 0, even for instances with optimal error
OPT = 2− log1−ν(m), for some constant ν ∈ (0, 1/2).

Finally, it is worth noting that learning to optimal accuracy in the agnostic model is known to be
computationally hard even in the distribution-specific PAC model, and in particular under the Gaus-
sian distribution (Klivans and Kothari, 2014; Goel et al., 2020; Diakonikolas et al., 2020b, 2021c).
However, these distribution-specific hardness results are very fragile and do not preclude efficient
constant factor approximations. In fact, efficient constant factor approximate learners are known
for the Gaussian and other well-behaved distributions (see, e.g., Awasthi et al. (2017); Diakonikolas
et al. (2018)).

Prior SQ Lower Bound for Massart Halfspaces Chen et al. (2020) showed an SQ lower bound
of mΩ(log(1/ε)) for learning halfspaces with Massart to error OPT + ε, when OPT is close to 1/2.
Specifically, Chen et al. (2020) observed a connection between SQ learning with Massart noise and
the Correlational Statistical Query (CSQ) model, a restriction of the SQ model defined in Bshouty
and Feldman (2002) (see also Feldman (2008, 2011)). Given this observation, Chen et al. (2020)
deduced their SQ lower bound by applying as a black-box a previously known CSQ lower bound
by Feldman (2011). This approach is inherently limited to exact learning. Establishing lower bounds
for approximate learning requires new ideas.

Distribution-Specific Learning We note that poly(m, 1/ε) time learning algorithms for homo-
geneous Massart halfspaces with optimal error guarantees have been developed when the marginal
distribution on examples is well-behaved (Awasthi et al., 2015, 2016; Zhang et al., 2017; Yan and
Zhang, 2017; Zhang et al., 2020; Diakonikolas et al., 2020c,d,a, 2021b). The hardness result ob-
tained in this paper provides additional motivation for such distributional assumptions. As follows
from our inapproximability result, without some niceness assumption on the distribution of exam-
ples, obtaining even extremely weak relative approximations to the optimal error is hard.

Appendix B. Proof of Lemma 13

Let θ be the angle between v and v′. By making an orthogonal change of variables, we can reduce
to the case where v = (1, 0, . . . , 0) and v′ = (cos(θ), sin(θ), 0, 0, . . . , 0). Then by definition we
have that χN(0,I)(Pv,Pv′) + 1 is∫
Rm

(
A(x1)A(cos(θ)x1 + sin(θ)x2)g(x2)g(sin(θ)x1 − cos(θ)x2)

g(x1)g(x2)

)
g(x3) · · · g(xm)dx1 · · · dxm .

Noting that the integral over x3, . . . , xm separates out, we are left with∫
R2

(
A(x)A(cos(θ)x+ sin(θ)y)g(y)g(sin(θ)x− cos(θ)y)

g(x)g(y)

)
dxdy .

Integrating over y gives∫
A(x)

g(x)

(∫
A(cos(θ)x+ sin(θ)y)g(sin(θ)x− cos(θ)y)dy

)
dx =

∫
A(x)Ucos(θ)A(x)

g(x)
dx ,
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where Ut is the Ornstein-Uhlenbeck operator. We will simplify our computations by expressing the
various quantities in terms of the eigenbasis for this operator.

In particular, let hn(x) = Hen(x)/
√
n! where Hen(x) is the probabilist’s Hermite polynomial.

We note the following basic facts about them:

1.
∫
R hi(x)hj(x)g(x)dx = δi,j .

2. Ut(hn(x)g(x)) = tnhn(x)g(x).

We can now write A(x) in this basis as

A(x) =

∞∑
n=0

anhn(x)g(x) .

From this, we obtain that

χ2(A,N(0, 1)) =

∫
R

( ∞∑
n=0

anhn(x)g(x)

)2

/g(x)dx

=

∫
R

∞∑
n,m=0

anamhn(x)hm(x)g(x)dx

=

∞∑
n=0

a2
n .

Furthermore, we have that∫
R
hs(x)A(x)dx =

∫
R

∞∑
n=0

anhs(x)hn(x)g(x)dx = as .

For 1 ≤ s ≤ k, we have that

hs(x) =
√
s!

bs/2c∑
t=0

(−1)txs−2t

2tt!(n− 2t)!
.

We therefore have that

as =

bs/2c∑
t=0

(√
s!(−1)txs−2t

2tt!(s− 2t)!

)
E[As−2t] .

Note that the above is close to

bs/2c∑
t=0

(√
s!(−1)txs−2t

2tt!(s− 2t)!

)
E[Gs−2t] = E[hs(G)] = 0 .

In particular, the difference between the two quantities is at most

ν

bs/2c∑
t=0

( √
s!

2tt!(s− 2t)!

)
.
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It is easy to see that the denominator is minimized when t = s/2 − O(
√
s). From this it follows

that this sum is 2O(s) ν. Therefore, we have that as = 2O(s) ν, for 1 ≤ s ≤ k. Furthermore,
a0 =

∫
A(x)dx = 1. Thus, we have that

χN(0,I)(Pv,Pv′) + 1 =

∫
R

A(x)Uv·v′A(x)

g(x)
dx

=

∫
R

( ∞∑
n=0

anhn(x)g(x)

)( ∞∑
n′=0

a′n(v · v′)n′h′n(x)g(x)

)
/g(x)dx

=

∫
R

∞∑
n,n′=0

ana
′
n(v · v′)n′hn(x)h′n(x)g(x)dx

=

∞∑
n=0

a2
n(v · v′)n

= 1 +
k∑

n=1

a2
n(v · v′)n +

∞∑
n=k+1

a2
n(v · v′)n .

Therefore,

|χN(0,I)(Pv,Pv′)| ≤ O(ν2)
k∑

n=1

2O(n) |v · v′|n + |v · v′|k+1
∞∑
n=0

a2
n

≤ ν2 + |v · v′|k+1χ2(A,N(0, 1)) .

This completes our proof.

Appendix C. Proof of Proposition 15

We will use the following standard fact:

Fact 31 For any constant c > 0 there exists a set S of 2Ωc(m) unit vectors in Rm such that any pair
u, v ∈ S, with u 6= v, satisfies |u · v| < c.

In fact, an appropriate size set of random unit vectors satisfies the above statement with high
probability. We note that Diakonikolas et al. (2017) made use of a similar statement, albeit with
different parameters.

The proof proceeds as follows: We start by defining a related hypothesis testing problem H
and show that H efficiently reduces to our learning (search) problem. We then leverage Lemma 13
and Fact 31 to prove an SQ lower bound for H, which in turns implies an SQ lower bound for our
learning task.

Let S be a set of 2Ω(m) unit vectors in Rm whose pairwise inner products are at most a suffi-
ciently small universal constant c. (In fact, any constant c < 1/2 suffices.) By Fact 31, such a set is
guaranteed to exist. Given S, our hypothesis testing problem is defined as follows.

Definition 32 (Hidden Direction Hypothesis Testing Problem) In the context of Definition 14,
the testing problem H is the task of distinguishing between: (i) the distribution PA,B,p

v , for v ran-
domly chosen from S, and (ii) the distribution G′ on Rm × {±1}, where for (X,Y ) ∼ G′ we have
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that X is a standard Gaussian G ∼ N(0, I), and Y is independently 1 with probability p and −1
with probability 1− p.

We claim that H efficiently reduces to our learning task. In more detail, any SQ algorithm
that computes a hypothesis h satisfying Pr

(X,Y )∼PA,B,pv
[h(X) 6= Y ] < min(p, 1 − p) − 4

√
τ can

be used as a black-box to distinguish between PA,B,p
v , for v randomly chosen from S, and G′.

Indeed, suppose we have such a hypothesis h. Then, with one additional query to estimate the
Pr[h(X) 6= Y ], we can distinguish between PA,B,p

v , for v randomly chosen from S, and G′ for the
following reason: For any function h, we have that Pr(X,Y )∼G′ [h(X) 6= Y ] ≥ min(p, 1− p).

It remains to prove that solving the hypothesis testing problemH is impossible for an SQ algo-
rithm with the desired parameters. We will show this using Lemma 8.

More specifically, we need to show that for u, v ∈ S we have that |χG′(PA,B,p
v ,PA,B,p

u )| is
small. Since G′,PA,B,p

v , and PA,B,p
u all assign Y = 1 with probability p, it is not hard to see that

χG′(P
A,B,p
v ,PA,B,p

u ) = p χ(G′|Y=1)

(
(PA,B,p

v | Y = 1), (PA,B,p
u | Y = 1)

)
+

(1− p) χ(G′|Y=−1)

(
(PA,B,p

v | Y = −1), (PA,B,p
u | Y = −1)

)
= p χG(PA

v ,P
A
u ) + (1− p) χG(PB

v ,P
B
u ) .

By Lemma 13, it follows that

χG′(P
A,B,p
v ,PA,B,p

u ) ≤ ν2 + 2−k(χ2(A,N(0, 1)) + χ2(B,N(0, 1))) = τ .

A similar computation shows that

χG′(P
A,B,p
v ,PA,B,p

v ) = χ2(PA,B,p
v , G′) ≤ χ2(A,N(0, 1)) + χ2(B,N(0, 1)) .

An application of Lemma 8 for γ = γ′ = τ and β = χ2(A,N(0, 1)) + χ2(B,N(0, 1)) completes
the proof.

Appendix D. Proof of Proposition 16

In this section, we prove the lemmas and claims that are used in the proof of Proposition 16.

D.1. Proof of Lemma 18

We consider the Fourier transform ofGσ,θ. Note thatGσ,θ is the pointwise product ofGwith a mesh
of delta-functions. Therefore, its Fourier transform is the convolution of their Fourier transforms.
The Fourier transform of G is

√
2πG. The Fourier transform of the net of delta-functions f(ξ) =∑

n∈Z δ(ξ − n/σ)e2πiθξ. Thus, we have that the Fourier transform of Gσ,θ at ξ is∑
n∈Z

√
2πg(ξ + n/σ)e−2πinθ/σ .

The tth moment of a pseudodistribution is proportional to the value of the tth derivative of its Fourier
transform at ξ = 0. For G, this is

√
2πg(t)(0). For Gσ,θ, it is equal to this term plus∑

n∈Z,n 6=0

√
2πg(t)(n/σ)e−2πinθ/σ .
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Computing the derivative of g using Cauchy’s integral formula (integrating around a circle of radius
1/(2σ) centered at n/σ), we find that

|g(t)(n/σ)| = t!O(σ)t exp(−Ω(n/σ)2).

Taking a sum over n yields our result.

D.2. Proof of Lemma 19

To prove the lemma, we unravel the definition of the discrete Gaussian to find that:

D+(x) = Cs/ε

∫ ε

0

∑
n∈Z(s+ y)g(n(s+ y) + y/2)δ(x− (n(s+ y) + y/2))

s+ y
dy

= Cs/ε
∑
n∈Z

∫ ε

0
g(n(s+ y) + y/2)δ(x− (n(s+ y) + y/2))dy

= Cs/ε
∑
n∈Z

∫ ε

0
g((n+ 1/2)y + ns)δ(x− ((n+ 1/2)y + ns))dy

= Cg(x)s/ε
∑
n∈Z

1{x ∈ [ns, ns+ (n+ 1/2)ε]}
|n+ 1/2|

.

The calculation for D−(x) is similar.

D.3. Proof of Lemma 21

Applying Lemma 18 with t = 0, we get that ‖Gs+y,y/2‖1 = Θ(1). Thus, working from the
definition, we find that

‖D+‖1 = C (s/ε)

∫ ε

0

Θ(1)

s+ y
dy

= C (s/ε)

∫ ε

0
Θ(1/s)dy

= Θ(1) .

The proof for D− follows similarly.

Appendix E. Proof of Claim 30

For a unit vector v ∈ Rm, let gv : Rm → {±1} be defined as gv(x) = −1 if and only if v · x ∈ J ,
where J is the union of intervals in the construction of Proposition 16. Note that gv is a degree-2d
PTF on Rm, since gv is a (2d+ 1)-piecewise constant function of v ·x. Therefore, there exists some
LTF L : RM → {±1} such that gv(x) = L(V2d(x)) for all x ∈ Rm.

Note that our hard distribution returns (X ′, Y ′) with Y ′ = L(X ′), unless it picked a sample
corresponding to a sample of D− coming from Jc, which happens with probability at most ζ <
OPT. Additionally, suppose that our distribution returned a sample with X ′ = V2d(X), for some
X ∈ Rm. By construction, conditioned on this event, we have that Y ′ = 1 with probability
proportional toD+(v ·X), and Y ′ = −1 with probability proportional toD−(v ·X). We note that if
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L(V2d(X)) = 1, then v ·X 6∈ J ; so, by Proposition 16 property 1(b), this ratio is at least 1− η : η.
On the other hand, if L(V2d(X)) = −1, then v ·X ∈ J , so D+(v ·X) = 0. This implies that the
pointwise probability of error η(X ′) is at most η, completing the proof of the claim.

Appendix F. Obtaining Optimal Error: The Case of Large η

In this section, we refine the construction of the previous subsections to obtain a sharp lower bound
of η − oη(1), when η is close to 1/2. Here the term oη(1) goes to zero when η approaches 1/2.
Specifically, we show:

Theorem 33 (Sharp SQ Hardness of Massart Halfspaces for Large η) Let OPT > 0 and M ∈
Z+ be such that log(M)/(log log(M))3 is at least a sufficiently large constant multiple of log(1/OPT).
Let c > 0 be any parameter such that c�

√
1/2− η. There exists a parameter

τ
def
= M

−Ωc
(

log(M)

log log(M)3
/ log(1/OPT)

)

such that no SQ algorithm can learn the class of halfspaces on RM in the presence of η-Massart
noise, where OPT < η ≤ 1/2, within error better than 1/2 − c using at most 1/τ queries of
tolerance τ . This holds even if the optimal classifier has misclassification error at most OPT.

Conceptually, Theorem 33 provides evidence that even the constant factor (of 1) in the error
guarantee (of η+ε) achieved by the Massart learner of Diakonikolas et al. (2019) cannot be improved
in general.

The proof of Theorem 33 proceeds along the same lines as the proof of Theorem 9. The main
difference is in the choice of the one-dimensional moment-matching distributions. For this, we use
a construction that is qualitatively similar (though somewhat more sophisticated) to that used in the
proof of Section 3.2.

Specifically, for some carefully chosen parameter C > 0 (to be determined), we define the
positive measures:

D+ := C (s/ε)

∫ ε

0

Gs+y,y/2

s+ y
dy ,

and

D− := (s/ε)

∫ ε

0

Gs+y,(y+s)/2

s+ y
dy .

As a refinement of Corollary 24, we obtain the following.

Corollary 34 For all x ∈ R, we have that

D+(x) = Cg(x)(s2/ε)n+(x)/(|x|+ 1)(1 +O(ε/(|x|+ 1)))

and
D−(x) = g(x)(s2/ε)n−(x)/(|x|+ 1)(1 +O(ε/(|x|+ 1))) .

Proof This follows from the explicit formulas for D+ and D− (Lemma 19) along with the fact that
for x ∈ I±m, 1/|m| and 1/|m+ 1/2| are s/(|x|+ 1)(1 +O(ε/(|x|+ 1))).

Using the above corollary, we obtain the following.
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Corollary 35 For all x ∈ R, we have that D+(x)/D−(x) = C q(x)(1 + O(ε/(|x| + 1))), where
q(x) = n+(x)/n−(x) is a rational number with numerator and denominator at most O(|x|/s+ 1).

We want to guarantee that for all x ∈ R it holds thatD+(x)/D−(x) 6∈ [η/(1−η), (1−η)/η]. We
note that this condition automatically holds for |x| less than a sufficiently small constant multiple
of s2/ε, as in this range we have that min(n+(x), n−(x)) = 0. For points x outside this range, we
have that D+(x)/D−(x) = C q(x)(1 + O(ε/s)2). Furthermore, since |n+(x) − n−(x)| ≤ 1, the
latter implies that in this range D+(x)/D−(x) is always one of:

• C(1 +O(ε/s)2) ,

• C(1 + 1/m)(1 +O(ε/s)2), for some integer m,

• C(1− 1/m)(1 +O(ε/s)2), for some integer m.

We will arrange that this quantity is always in the appropriate range by picking the parameter C, so
that for some well chosen m0 we have that

C(1− 1/m0)(1 +O(ε/s)2) ≤ η/(1− η), and C(1− 1/(m0 + 1))(1−O(ε/s)2) ≥ (1− η)/η .

If the above holds, it is easy to see that D+(x)/D−(x) will never be in the range [η/(1 − η), (1 −
η)/η] for any value of x. In order to arrange this, we set C to satisfy

C(1− 1/m0)(1 +O(ε/s)2) = η/(1− η) .

In order for the second condition to hold, it must be the case that(
1− 1/(m0 + 1)

1− 1/m0

)
(1−O(ε/s)2) > ((1− η)/η)2 = 1 +O(1/2− η) .

For the latter to be true, it must hold that 1/m2
0 is at least a sufficiently large constant multiple of

(1/2−η)+(ε/s)2, or thatm0 is at most a sufficiently small constant multiple of min(s/ε,
√

1/2− η).
In particular, if we take m0 to be at most a sufficiently small constant multiple of 1/

√
1/2− η

and ensure that ε/s is sufficiently small, this construction can be made to work with C = 1+1/m0.
We then let J be the set of points x ∈ R for which D−(x) > D+(x). It is easy to see that

J = {x : m0 ≥ n−(x) > n+(x)}, and from this it can be seen that J is a union of O(m0s/ε)
intervals. As before, D+ and D− approximately match many moments with a Gaussian and the
mass of D+ on J and D− on Jc are both supported on points x such that |x| ≥ Ω(s2/ε), and thus
have mass exp(−Ω(s4/ε2)).

Furthermore, we have that D−(x)/D+(x) > (1 − η)/η for x ∈ J and D+(x)/D−(x) >
(1−η)/η for x ∈ Jc. Therefore, the appropriate hidden-direction distribution is a degree-O(m0s/ε)
PTF with at most η Massart noise.

Finally, it is not hard to see that ‖D+‖1/‖D−‖1 = 1 + 1/m0. Therefore, by following the
arguments of Section 3.3 mutatis-mutandis, it follows that for any constant η < 1/2 it is SQ-hard to
learn an LTF with η-Massart noise to error better than 1/2 − c for any c �

√
1/2− η, even when

OPT is almost polynomially small in the dimension. This completes the proof of Theorem 33.
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Appendix G. Conclusions and Future Work

This work gives a super-polynomial Statistical Query (SQ) lower bound with near-optimal inap-
proximability gap for the fundamental problem of (distribution-free) PAC learning Massart half-
spaces. Our lower bound provides strong evidence that known algorithms for this problem are
essentially best possible. An obvious open question is whether the constant factor in the Ω(η)-term
of our lower bound can be improved to the value C = 1 for all η > 0. Recall that we have shown
such a bound for η close to 1/2. Followup work (Nasser and Tiegel, 2022) showed that this is indeed
possible with our techniques via a modification of our one-dimensional construction. This matches
known algorithms exactly, specifically showing that the error of η + ε cannot be improved even for
small values of η > 0.

Interestingly, SQ lower bounds are the only known evidence of hardness for our Massart halfs-
pace learning problem. Via a recent reduction (Brennan et al., 2020), our SQ lower bound implies
a similar low-degree polynomial testing lower bound for the problem. An interesting open question
is to prove similar hardness results against families of convex programming relaxations (obtained,
e.g., via the Sum-of-Squares framework). Such lower bounds would likely depend on the underlying
optimization formulation of the learning problem.

A related question is whether one can establish reduction-based computational hardness for
learning halfspaces in the presence of Massart noise. Daniely (2016) gave such a reduction for the
(much more challenging) problem of agnostically learning halfspaces, starting from the problem of
strongly refuting random XOR formulas. It currently remains unclear whether the latter problem
is an appropriate starting point for proving hardness in the Massart model. That said, obtaining
reduction-based hardness for learning Massart halfspaces is left as an interesting open problem.
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