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Abstract
Despite rapid progress in theoretical reinforcement learning (RL) over the last few years, most of
the known guarantees are worst-case in nature, failing to take advantage of structure that may be
known a priori about a given RL problem at hand. In this paper we address the question of whether
worst-case lower bounds for regret in online learning of Markov decision processes (MDPs) can
be circumvented when information about the MDP, in the form of predictions about its optimal
Q-value function, is given to the algorithm. We show that when the predictions about the optimal
Q-value function satisfy a reasonably weak condition we call distillation, then we can improve
regret bounds by replacing the set of state-action pairs with the set of state-action pairs on which
the predictions are grossly inaccurate. This improvement holds for both uniform regret bounds
and gap-based ones. Further, we are able to achieve this property with an algorithm that achieves
sublinear regret when given arbitrary predictions (i.e., even those which are not a distillation). Our
work extends a recent line of work on algorithms with predictions, which has typically focused on
simple online problems such as caching and scheduling, to the more complex and general problem
of reinforcement learning.
Keywords: Reinforcement learning, Q-learning, Learning-augmented algorithms

1. Introduction

The study of worst-case algorithm design has traditionally been a mainstay of much of computer
science, leading to provable and efficient algorithms for various tractable problems. However, many
problems encountered in practice are often intractable, in the sense that efficient algorithms for
them would violate widely held complexity theoretic hypotheses, or there are strong unconditional
lower bounds on the amount of data required to achieve desired error bounds. As such, the study of
beyond-worst case algorithm design (Roughgarden, 2021), which aims to use additional information
about the structure of problem instances to improve algorithms’ guarantees, has attracted significant
attention in recent years.

An exciting approach to beyond-worst case algorithm design is to assume that the algorithm has
access to certain predictions regarding the nature of the problem instance at hand. For example,
while millions of samples may be required in order to teach a humanoid robot to walk starting from
scratch, physical approximations of the robot’s dynamics can be used to furnish an approximately
optimal policy, viewed as a prediction about the optimal policy. Then, starting from this predicted
policy, we can algorithmically fine-tune it using relatively few samples. This general approach,
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known as algorithm design with predictions (or advice), aims to improve an algorithm’s guarantees,
such as by reducing sample complexity, when it is given access to accurate predictions. It has
been studied from a theoretical perspective in several recent works for online problems such as the
ski rental problem, scheduling, caching, and many others (Mitzenmacher and Vassilvitskii, 2020).
In this paper we address the design of algorithms with predictions for the much broader problem
of reinforcement learning, in particular the setting of no-regret online learning in tabular Markov
decision processes (MDPs). In turn, MDPs can be used to model learning problems in a plethora of
settings including, for instance, personalized medicine, optimal control, and market design (Sutton
and Barto, 2018).

1.1. Model overview

We consider the setting of a tabular finite-horizon episodic MDP with a finite state space S consist-
ing of S states, a finite action space A consisting of A actions, and a horizon of length H (Agarwal
et al., 2021). In this setting, the rewards and transitions of the MDP are unknown, but the learning
algorithm has the ability to simulate trajectories in the MDP corresponding to policies of its choice.
In total the learner simulates K ∈ N trajectories, each of which consists of H steps; the total num-
ber of samples is then T := KH . The learner aims to minimize the regret, namely the difference
between the reward it would have received had it always followed the optimal policy and its actual
aggregate reward; we refer the reader to Section 2 for additional preliminaries. In Definition 1 be-
low, we introduce the setting of RL with Q-value predictions, namely where the algorithm is given
access to predictions Q̃ of the optimal Q-value function Q?h(x, a). Recall that for a state x ∈ S ,
action a ∈ A, and step h ∈ [H], Q?h(x, a) denotes the cumulative expected reward when action a is
taken at state x and step h, and thereafter the optimal policy is followed.

Definition 1 (RL with Q-value predictions) We assume the learning algorithm is given, at the
onset of its interaction with the MDP, access to a collection of predictions Q̃ = (Q̃1, . . . , Q̃H),
where each Q̃h : S ×A → R represents a prediction for the optimal Q-value function Q?h.

For many important applications of reinforcement learning (RL), predictions Q̃ as in Definition
1 may be readily available to a learning algorithm; for instance:

• In robotics, powerful physics-based simulation engines allow easy collection of large amounts
of data from simulated environments, but the learned policies from these simulated envi-
ronments often do not transfer directly to real-world environments due to factors such as
measurement error and mis-specification of the simulation parameters. To bridge this gap,
information gleaned from learning in the simulated environment can be used as a prediction
to be fine-tuned when interacting with the real-world environment. This general approach
(sometimes called sim-to-real) has attracted much attention recently, such as in Rusu et al.
(2018); Chebotar et al. (2019).

• In applications of RL to healthcare, Q-learning based methods (such as deep Q-learning) are
commonly employed (Yu et al., 2020). It is therefore reasonable to expect that predictions
Q̃ for a given task can be computed based on data collected for similar tasks, such as from a
previous iteration of a clinical trial to treat a particular disease. Such ideas were used in Liao
et al. (2020), where various parameters to an algorithm in a mobile health trial, HeartSteps
V2, were set based on data collected in an earlier iteration, HeartSteps V1.1

1. The algorithm used was an ad hoc approach tuned to the particular task, rather than Q-learning.
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• More broadly, our framework provides an approach for the related problems of multi-task
learning and transfer learning in RL (Taylor and Stone, 2009; Zhu et al., 2021). These prob-
lems consider an RL agent which wishes to perform well on multiple related tasks (e.g., a
robot moving in an environment with gradually changing obstacles) throughout its lifetime.
An estimate of Q? for earlier tasks (e.g., as obtained by Q-learning) may be used as the input
predictions Q̃ for later tasks. As discussed in Section 1.4, there has been a large body of
empirical work devoted to improving transfer learning in RL. Some of this work considers
the reuse of certain representations of an MDP such as the Q-value function; our results can
thus be interpreted as a theoretical justification for such techniques.

In this paper we address the following question(s): Is it possible to leverage prior knowledge,
in the form of access to predictions Q̃ as in Definition 1, to show a regret bound that beats the
worst-case? Moreover, can we achieve such a result with an algorithm that still obtains sublinear
regret when the predictions Q̃ are arbitrary?

1.2. Overview of results

We begin by reviewing known results regarding worst-case regret in online learning for tabular
MDPs. In this paper we prove both uniform regret bounds, which depend only on the parameters
S,A,H of the MDP as well as the number of samples T , as well as instance-dependent gap-based
bounds, which we proceed to explain. The gap for action a at state x and step h is defined to
be ∆h(x, a) = V ?

h (x) − Q?h(x, a), where V ?
h and Q?h are the optimal value function and Q-value

function, respectively.2 ∆h(x, a) denotes the marginal loss incurred, relative to the optimal policy,
when action a is taken at state x and step h. In this section (including in Theorems 2 and 3) we make
the simplifying assumption that for each (x, h) there is a unique optimal action a (this assumption
is relaxed in the full statements of our results in Section 3). In this case Xu et al. (2021) exhibit an
algorithm, AMB, which satisfies the following regret guarantee:

RegretT ≤Õ

min


√
H5SAT ,

∑
(x,a,h)∈S×A×[H]:

∆h(x,a)>0

H5

∆h(x, a)


 , (1)

The regret bound (1) is optimal up to lower-order terms in the following sense: the uniform
regret bound of Õ(

√
H5SAT ) matches the minimax regret in tabular MDPs, Õ(

√
H2SAT ) (Jin

et al., 2018; Zhang et al., 2020), up to a factor of
√
H3.3 Moreover, (Simchowitz and Jamieson,

2019, Proposition 2.2) shows that a term of the form
∑

(x,a,h):S×A×[H]:
∆h(x,a)>0

logK
∆h(x,a) must appear in the

gap-based regret bound in (1).
Our first main result addresses the following question: Suppose the learning algorithm has

access to predictions Q̃ which are accurate on an unknown set of many state-action pairs. Then
can we improve upon the worst-case regret bound (1), as if we had fewer state-action pairs to begin
with? We show an affirmative answer to this question, replacing the set of all state-action pairs
with the set of those for which Q̃ is inaccurate. In order for our improved bounds to “kick in”,

2. Q?h was defined previously, and V ?h (x) = maxa∈A{Q?h(x, a)}; see Section 2 for further details.
3. In this paper we generally disregard factors polynomial in H and log(SAT ), and do not attempt to optimize the

dependence of our own bounds on H and log(SAT ).
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though, it is necessary that the predictions Q̃ satisfy an additional property, which we formalize as
being a (approximate) distillation of Q? (Definition 5). We focus on the case of exact distillation
here, which corresponds to ε = 0 in Definition 5: we say that Q̃ is a distillation of Q? if for each
state x ∈ S and step h ∈ [H], letting π?h(x) denote the optimal action at (x, h), it holds that
Q̃h(x, π?h(x)) ≥ Q?h(x, π?h(x)). Intuitively, Q̃ “picks out” the good action π?h(x) at (x, h).4 Of
course, there could be additional actions a′ for which Q̃h(x, a′) is equally large, but for which a′

is very much suboptimal at (x, h). Theorem 2 shows that when the predictions are a distillation of
Q?, the regret bound (1) can be improved by replacing the set S ×A× [H] with a much smaller set
consisting of tuples (x, a, h) for which Q̃h(x, a) is grossly inaccurate:

Theorem 2 (Simplified/informal version of Theorem 8, item 2) Suppose that Q̃ is guaranteed
to be a distillation of Q?. Then there is an algorithm (QLearningPreds, Algorithm 15) which
achieves regret

Õ

min

√H5T · |F|,
∑

(x,a,h)∈F

H4

∆h(x, a)


 , (2)

where

F :=
{

(x, a, h) ∈ S ×A× [H] : Q̃h(x, a) > V ?
h (x) or

(
a 6= π?h(x) and Q̃h(x, a) ≥ V ?

h (x)
)}

.

(3)
The regret bound (2) of Theorem 2 depends on the set F of action-state pairs (x, a, h) for which
Q̃h(x, a) is larger than the optimal value at (x, h), namely V ?

h (x) = maxa∈AQ
?
h(x, a). Recall

that since the distillation property requires that Q̃h(x, π?h(x)) ≥ Q?h(x, π?h(x)) for all (x, h), if
Q̃h(x, π?h(x)) 6= Q?h(x, π?h(x)), then (x, π?h(x), h) ∈ F . In the full version of Theorem 8 we relax
the condition of exact equality by allowing for an approximate version of distillation (Definition 5)
and an approximate version of the set F which set call the fooling set (Definition 6).

To complement Theorem 2, it is desirable to have a single algorithm which obtains nontrivial
regret bounds (i.e., sublinear regret) for arbitrary predictions Q̃, i.e., even those which are not an
(approximate) distillation of Q?, which also obtains improved regret bounds (such as (2)) when Q̃
is an approximate distillation. The former guarantee is often known as robustness in the literature
on algorithms with predictions (Lykouris and Vassilvitskii, 2020; Mitzenmacher and Vassilvitskii,
2020). Robustness in this context is well-motivated since the predictions are often generated by
an ad hoc procedure with few provable guarantees (such as the use of deep RL techniques on a
simulated environment to estimate Q̃ for use in the real-world environment), making them liable
to be grossly inaccurate. Theorem 3 below gives such a guarantee for the case of uniform regret
bounds; Theorems 8 and 9 provide more general robustness bounds that cover the gap-based case
as well.

Theorem 3 (Simplified/informal version of Theorem 8, uniform version) There is an algorithm
(QLearningPreds, Algorithm 1) which satisfies the following two guarantees, when given as in-
put a parameter λ ∈

(
SAH4

T , 1
)

and predictions Q̃:

1. For an arbitrary choice of Q̃, the regret is Õ
(√

TSAH10

λ

)
.

4. We give an example in Section 3.1 showing that this assumption is necessary to beat minimax lower bounds.
5. The parameter λ is set to 0 for the purposes of Theorem 2.
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2. If the predictions Q̃ are a distillation of Q?, then the regret is

Õ
(√

λ · SATH10 +
√
|F| · TH5

)
, (4)

where F was defined in (3).

As was the case for Theorem 2, the notion of distillation and the set F are relaxed to their approx-
imate analogues in Theorems 8 and 9. Notice that there is a tradeoff (mediated by the parameter
λ) in Theorem 3 between the regret for arbitrary Q̃ (i.e., the robustness) and the improved regret
bound for Q̃ that is an ε-approximate distillation of Q?. It follows from (Lattimore, 2015, Theorem
1) that even in the simpler multi-armed bandit setting, the dependence of this tradeoff on λ cannot
be improved. This is a common occurrence in the study of algorithms with predictions, occurring,
for instance, in the ski rental problem (Purohit et al., 2018; Wei and Zhang, 2020) and the problem
of non-clairvoyent scheduling (Purohit et al., 2018; Wei and Zhang, 2020). We remark that in many
such problems where the tradeoff occurs (including the ski rental problem), there is only a single
episode of play. In contrast, in episodic RL one could allow the algorithm designer to tune λ after
multiple epochs; we leave a thorough investigation of such a possibility to future work.

1.3. Warm up: Stochastic multi-armed bandits

In this section we give a brief overview of the techniques used to prove our regret upper bounds;
a detailed description of the algorithm is given in Section A, and a more in-depth overview of the
proof is given in Section B. As a warm-up, we begin by addressing the easier case of multi-armed
bandits: in this case there is a single state, and for each action (also known as an arm) a ∈ A,
we denote the expected reward of taking a as Q?(a).6 Again we assume that there is a unique
optimal action, denoted by a?. The algorithm receives at onset a function Q̃ : A → [0, 1] denoting
predictions for the mean reward of each arm. Moreover, Q̃ is a distillation ofQ? if Q̃(a?) ≥ Q?(a?).
The below proposition specializes Theorem 3 to the multi-armed bandit setting.

Proposition 4 (Bandit case) There is an algorithm (BanditPreds, Algorithm 5) which satisfies
the following two guarantees, when given as input a parameter λ ∈

(
A
T , 1

)
and predictions Q̃:

1. If the predictions Q̃ are a distillation ofQ?, then the regret is Õ(
√
|G| · T +

√
λ ·AT ), where

G :=
{
a ∈ A\{a?} : Q̃(a) ≥ Q?(a?)

}
.

2. For an arbitrary choice of Q̃, the regret is Õ
(√

TA
λ

)
.

For simplicity we have only stated uniform regret bounds in Proposition 4, but gap-based regret
bounds specializing Theorems 8 and 9 to the bandit case may readily be derived using similar
techniques. Algorithm 5, which establishes Proposition 4, generally speaking aims to choose the
action a which maximizes Q̃(a). Of course, when Q̃ is not accurate (e.g., because it is not a
distillation or G is nonempty) Algorithm 5 must make the following modifications:

6. In the bandit setting, the reward received upon taking action a is a random variable; this is in contrast to the full RL
setting where we assume the immediate rewards r(x, a) are deterministic. This discrepancy does not lead to any
significant differences in the algorithm or analysis, though.
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• To handle non-optimal actions a which are in the set G (i.e., actions for which Q̃ predicts
them as having higher reward than a?), we maintain both upper and lower confidence bounds
for the mean reward of each action a. For each t we then project Q̃(a) onto the interval
[Qt(a), Q

t
(a)] and use the resulting projected value instead of Q̃(a).

• Even with the use of upper and lower confidence bounds, we could run into the following
difficulty: if Q̃(a) = Q?(a) for all a 6= a?, but Q̃(a?)� Q?(a?) (which can happen when Q̃
is not a distillation), then choosing the action a to maximize Q̃(a) would simply choose the
second-best action at all time steps, thus incurring linear regret. To deal with this situation,
we insert an initial exploration phase consisting of λT time steps, in which we choose an
action with the highest upper confidence bound (as per the UCB algorithm (Lattimore and
Szepesvari, 2020, Chapter 7)). If Q̃(a?) is significantly sub-optimal, this initial exploration
phase will discover that and subsequently learn to ignore the prediction Q̃(a?) (i.e., round it
up to Qt(a?), which, over time, will approach Q?(a?)).

The case of full RL (i.e., learning in MDPs) requires significant innovation beyond the above tech-
niques for the multi-armed bandit case. At a high level, this occurs because errors in Q̃ can com-
pound over multiple steps h in the standard Q-learning updates. To handle such challenges, we
have to use a more sophistocated rule to modify Q̃(a) over time than simply projecting it onto
[Qt(a), Q

t
(a)]. Additionally, the initial exploration phase described above must be made state-

specific, meaning that different states may leave the exploration phase at different times, according
to the current value estimates at each respective state. We refer the reader to Sections A and B for
further details.

1.4. Related work

Algorithms with predictions Many recent works studying algorithms with predictions have pri-
marily focused on relatively specific online problems including the ski rental problem (Purohit et al.,
2018; Wei and Zhang, 2020), scheduling (Purohit et al., 2018; Wei and Zhang, 2020; Mitzenmacher,
2019b; Lattanzi et al., 2019), caching (Lykouris and Vassilvitskii, 2020; Rohatgi, 2019), design of
bloom filters (Kraska et al., 2018; Mitzenmacher, 2019a), and revenue optimization (Medina and
Vassilvitskii, 2017); see also (Mitzenmacher and Vassilvitskii, 2020) for an overview of the above
papers. In many of these problems, the performance parameter optimized by the algorithm (and im-
proved with access to predictions) is the competitive ratio, namely the ratio between a cost measure
specific to the problem and the optimal cost in hindsight, rather than the regret. There has also been
a fruitful line of work showing that by using predictions it is possible, using variants of optimistic
mirror descent, to significantly decrease the regret in settings including online linear optimization
(Hazan and Kale, 2010; Rakhlin and Sridharan, 2012, 2013; Steinhardt and Liang, 2014; Mohri and
Yang, 2015; Bhaskara et al., 2020) and contextual bandits (Wei et al., 2020). As some of these works
include the case of bandit feedback, they might seem to generalize Proposition 4; however, this is
not the case, since they face the significant limitation that a prediction is required by the algorithm
at each time step, and the regret bound depends on the aggregate distance between the predictions
and the realized values of the cost vectors or rewards over all time steps. In the setting of stochastic
multi-armed bandits, this would require the predictions to track the noise of the realized reward over
all T time steps in order to achieve sublinear regret; in contrast, Proposition 4 only requires a single
set of predictions which must be close to the mean reward vector.
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Transfer learning in RL More closely related to our results is a collection of work which pro-
poses to solve the problem of transfer learning in RL (Taylor and Stone, 2009; Zhu et al., 2021)
by reusing information (such as Q-values) from certain RL tasks in order to solve related RL tasks.
In the particular case of Q-value reuse, the Q-values for each successive task may be initialized as
some function (e.g., the mean) of the Q-values from the previous tasks; these Q-values are then
updated over the course of the learning procedure for the current task (Singh, 1992; Asada et al.,
1994; Tanaka and Yamamura, 2003; Torrey et al., 2005; Taylor et al., 2009). Many of these papers
show that doing so outperforms an initialization of Q which is agnostic to previous tasks. These
works, however, are purely empirical in nature, with no supporting theory.

Very recently there has been some effort to perform theoretical analyses for such transfer learn-
ing techniques; Tkachuk et al. (2021) shows that if the algorithm is given at onset predictions Q̃
which are known to be equal to Q? at all state-action pairs except a single known state-action pair
at step h = 1, then it is possible to achieve regret Õ(

√
H2T ) using Q-learning (thus eliminating

the dependence on SA). Additionally, the recent work (Zhang and Wang, 2021) shows that if M
agents are interacting with separate MDPs whose optimalQ-value functions are known to be ε-close
in `∞ distance, then by sharing information about their respective MDPs, they can decrease their
aggregate regret by a factor of

√
M (in the uniform case) or M (in the gap-based case). Unlike our

work, Zhang and Wang (2021) does not show that minimax regret bounds can be beaten for a single
MDP; moreover, both Tkachuk et al. (2021); Zhang and Wang (2021) do not consider any notion of
robustness nor do they allow relaxations to the `∞-closeness of the Q-value functions.

Theoretical RL background The minimax optimal regret for online learning in tabular MDPs
is (up to polylogarithmic factors) Θ(

√
SATH2); the lower bound is shown by Jin et al. (2018),

and the upper bound is known for both model-based algorithms such as UCBVI (Azar et al., 2017),
as well as the model-free algorithm UCB-Advantage (Zhang et al., 2020) (which is a variant of
the Q-learning algorithm). Non-asymptotic gap-based upper bounds for tabular MDPs were shown
in Simchowitz and Jamieson (2019) using the model-based StrongEuler algorithm, a variant
of EULER (Zanette and Brunskill, 2019); additional algorithms achieving gap-based bounds were
shown in Lykouris et al. (2020); Yang et al. (2021); Xu et al. (2021). Our gap-based bounds are
based on the techniques in Xu et al. (2021). Very recently some works (Dann et al., 2021; Tirinzoni
et al., 2021; Wagenmaker et al., 2021) have derived new instance-dependent bounds in RL, such
as by making alternative definitions of gaps; using insights from these works to improve our gap-
based bounds is an interesting direction left for future work. The books Agarwal et al. (2021);
Lattimore and Szepesvari (2020) contain a more comprehensive overview of the flurry of recent
work in theoretical RL.

2. Preliminaries

We consider the setting of a tabular finite-horizon episodic Markov decision process (MDP) M =
(S,A, H,P, r), where S denotes the (finite) state space, A denotes the (finite) action space, H ∈ N
denotes the horizon, P = (P1, . . . ,PH) denotes the transitions, and r = (r1, . . . , rH) denotes the
reward functions. In particular, for each h ∈ [H], Ph(x′|x, a) (for x, x′ ∈ S , a ∈ A) denotes the
probability of transitioning to x′ from x at step h when action a is taken; and rh(x, a) denotes the
reward received when at state x and step h when action a is taken. We assume each reward lies in
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[0, 1], i.e., rh : S × A → [0, 1]. We write S := |S| and A := |A|. A policy π is a collection of
mappings πh : S → A, for each h ∈ [H].7

In each episode, a state x1 is picked by an adversary. For each h ∈ [H], the agent observes the
state xh, picks an action ah ∈ A (usually given according to some policy π, i.e., ah = πh(xh)),
receives reward rh(xh, ah), and transitions to a new state xh+1, drawn according to Ph(·|xh, ah).
Upon receiving the reward rH(xH , aH) at the final step H , the episode ends. For a policy π, we let
V π
h : S → R denote the V -value function at step h; in particular, V π

h (x) gives the expected total
reward received by the agent when it starts in state x at step h and thereafter follows policy π. In a
similar manner, we let Qπh : S × A → R denote the Q-value function at step h; Qπh(x, a) gives the
expected total reward received by the agent when it starts in state x at step h, takes action a, and
thereafter follows policy π. Formally, V π

h and Qπh are defined as follows:

V π
h (x) := Eπ

[
H∑

h′=h

rh(xh′ , ah′)|xh = x

]
, Qπh(x, a) = Eπ

[
H∑

h′=h

rh′(xh′ , ah′)|xh = x, ah = a

]
,

where Eπ[·] denotes that π is used to choose the action at each state.
We let π? denote the optimal policy, namely the policy which maximizes V π?

h (x) for all (x, h) ∈
S × [H]. We write V ?

h (x) := V π?

h (x) for all x, h. With slight abuse of notation, we let Ph denote
the Markov operator Ph : RS → RS×A, defined by, for any value function Vh+1 : S → R,
(PhVh+1)(x, a) := Ex′∼Ph(·|x,a)[Vh+1(x′)]. The following relations (Bellman equation and Bellman
optimality equation) are standard and follow easily from the definitions: for all (x, a, h) ∈ S ×A×
[H], 

V π
h (x) = Qπh(x, πh(x))

Qπh(x, a) = (rh + PhV π
h+1)(x, a)

V π
H+1(x) = 0

and


V ?
h (x) = maxa∈AQ

?
h(x, a)

Q?h(x, a) = (rh + PhV ?
h+1(x, a)

V ?
H+1(x) = 0.

For some K ∈ N, over a series of K episodes, the RL agent interacts with the MDP M as follows:
for each k ∈ K, the agent chooses a policy πk, and applies the policy πk in the MDP to obtain
a trajectory (xk1, a

k
1, r

k
1), . . . , (xkH , a

k
H , r

k
H), as explained above; here rkh := rh(xkh, a

k
h) ∈ [0, 1]

denotes the reward received at step h. We measure the agent’s performance with the regret:

RegretK :=

K∑
k=1

E
[
V ?

1 (xk1)− V πk

1 (xk1)
]
,

where the expectation is taken over the randomness of the environment (in particular, the policies
πk are random variables since they depend on trajectories from previous episodes).

Notation for gap-based bounds In this paper we will derive gap-dependent regret bounds; for
(x, a, h) ∈ S ×A× [H], the gap at (x, a, h) is defined as:

∆h(x, a) := V ?
h (x)−Q?h(x, a).

7. Note that our setting of finite-horizon MDPs is equivalent to the setting of layered MDPs in the literature (e.g., Xu
et al. (2021)), where a different copy of the state space S is created for each step h, and transitions from states in
layer h always to go states in layer h+ 1.
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The gap denotes the marginal sub-optimality in reward the agent suffers as a result of taking action
a at state x and step h. For ε > 0, we write, for (x, h) ∈ S × [H],

Aopt
h,ε (x) := {a ∈ A : ∆h(x) ≤ ε}

to denote the set of actions with gap at most ε at (x, h). For x ∈ S and h ∈ [H], define
∆min,h(x) := mina6∈Aopt

h,0(x){∆h(x, a)} to be the minimum positive gap at (x, h). Also define the

minimum positive gap in the entire MDP to be ∆min := minx,a,h:∆h(x,a)>0{∆h(x, a)}. Following
Xu et al. (2021), our gap-based bounds will have a term depending on the number of state-action
pairs which are optimal and for which there is not a unique optimal action at that state, i.e., the size
of the set:

Amul := {(x, a, h) ∈ S ×A× [H] : ∆h(x, a) = 0 and |Aopt
h,0(x)| > 1}.

Prior worst-case regret bound In the special case that each state has a unique optimal action we
discussed the worst-case regret bound (1) and prior work showing its optimality. In the general case,
(Xu et al., 2021, Theorem B.1 & Corollary B.10) showed the following regret bound:

RegretT ≤O

H2SA+ log(SAT ) ·min


H5|Amul|

∆min
+

∑
(x,a,h)∈S×A×[H]:

∆h(x,a)>0

H5

∆h(x, a)
,
√
H5SAT


 .

(5)

(Xu et al., 2021, Theorem 5.1) shows that a term of the form logK · |A
mul|

∆min
is necessary, even in the

presence of the term
∑

(x,a,h)∈S×A×[H]:
∆h(x,a)>0

1
∆h(x,a) of the regret bound. Thus, in general, the bound

(5) cannot be improved by more than poly(H, log(SAT )) factors.

Additional notation Given a real number x, let [x]+ denote x if x > 0, and 0 otherwise. We will
write T = HK to denote the total number of samples over K episodes; note that RegretK ≤ T
always holds. We also set ι := log(SAT ). For (x, a, h, k) ∈ S ×A× [H]× [K], Nk

h (x, a) denotes
the number of episodes before episode k in which (x, a, h) is visited, i.e., action a was taken at
state x and step h (Nk

h (x, a) is also defined in step 2(b)i of Algorithm 1). For integers i ≥ 1 and
(x, a, h) ∈ S ×A× [H], we let kih(x, a) denote the episode k which is the ith episode that (x, a, h)
was visited. If no such episode exists, we set kih(x, a) = K + 1 as a matter of convention.

3. Learning in MDPs with predictions: main results

3.1. Properties of the predictions Q̃

Our main result shows that in the presence of arbitrary predictions Q̃, we are able to obtain a sublin-
ear regret bound for our algorithm QLearningPreds, and moreover, if Q̃ satisfies an additional
property, then we can obtain an improved regret bound that can beat the minimax regret bounds for
learning in MDPs (i.e., (5)), replacing the space S × A × [H] with a smaller space representing
the set of state-action pairs where Q̃ is inaccurate (consistency). Definition 5 below captures the
additional property (referred to as being an approximate distillation of Q?) that Q̃ needs to satisfy
in order to obtain improved regret bounds.

9
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To motivate the definition, consider the setting where there is a single state x0 and H = 1
(which is equivalent to the stochastic multi-armed bandit problem). Moreover suppose there is a
unique optimal action a? with reward 1 and all other A − 1 actions have reward 1 − ∆ for some
positive ∆ < 1/A. If we are given the predictions Q̃F

1 , where Q̃F
1 (x0, a) := 1 − ∆ for all a,

then Q̃F
1 is only incorrect at a single action (namely, a?), but it provides no information about what

a? is, and it is straightforward to show that, even given Q̃F
1 , the regret of any algorithm must be

Ω(A/∆), giving no improvement over the setting without predictions (Lattimore and Szepesvari,
2020, Chapter 16). On the other hand, consider the predictions Q̃T

1 defined as equal to Q?1 except
at a single (unknown) non-optimal action a′.8 Though both Q̃F

1 , Q̃
T
1 both differ from Q̃?1 at a single

action, it will follow from Theorem 8 (with λ = A/T ) that given Q̃T
1 , QLearningPreds obtains

the much smaller regret bound of Õ(1/∆). As this example shows, a set of accurate predictions
Q̃ cannot entirely mitigate the exploration problem: even if the predictions are accurate at nearly
all states and actions, if they do not provide any information as to the identity of the optimal action
at a given state (e.g., as for Q̃F

1 ), then we cannot hope to beat existing regret bounds. The notion
of approximate distillation, defined below, formalizes the notion that Q̃ must provide information
about the optimal action at each state:

Definition 5 (Approximate distillation) Consider a predicted Q-value function Q̃ ∈ R[H]×S×A.
For ε > 0, we say that Q̃ is an ε-approximate distillation of the optimal value function Q? if the
following holds: for each (x, h) ∈ S × [H], there is some a ∈ A so that

∆h(x, a) + [Q?h(x, a)− Q̃h(x, a)]+ ≤ ε.

In words, Definition 5 requires that for each (x, h), there is some action a which is nearly optimal
and for which Q̃h(x, a) does not greatly underestimate the value of Q?h(x, a). It follows from Defi-
nition 5 that maxa∈A Q̃h(x, a) ≥ V ?

h (x)− ε for all x, h; thus a trivial way to utilize the predictions
Q̃ is to follow the greedy policy with respect to Q̃ for O((H/ε)2) iterations, which suffices to check
if the greedy policy’s value is ε-close to maxa∈A Q̃h(x, a), and if not, then apply a standard worst-
case RL algorithm. This approach suffers from two serious shortcomings: first, it may not obtain
the optimal dependence of regret on T (e.g., if ε decays with T ), and second, there may be a few
actions whose value is grossly over-estimated by a distillation Q̃, so that the greedy policy fails yet
the predictions can still be effectively used. Our regret bounds, in contrast, can handle the presence
of such actions, which we formally define below as the fooling set:

Definition 6 (Fooling set) Given a set of predictions Q̃ for any ε1, ε2 > 0, we define the set of
(ε1, ε2)-fooling tuples (x, a, h), denoted F(ε1, ε2) ⊂ S × A × [H], to be the set of tuples (x, a, h)
so that

Q̃h(x, a)−Q?h(x, a) ≥ ∆h(x, a)− ε1 ≥ ε2 − ε1 or Q̃h(x, a) > V ?
h (x) + ε2. (6)

In this context, we will always have ε2 > ε1 > 0.

Notice that the first condition in (6) subsumes the second when ∆h(x, a) ≥ ε2 (as it requires
Q̃h(x, a) ≥ V ?

h (x)− ε1); the second condition is added to account for near-optimal actions, namely
those satisfying ∆h(x, a) < ε2. Moreover, we could alternatively define the fooling set as those

8. Q̃T
1 (x, a′) can be set to any real number.

10
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(x, a, h) for which |Q̃h(x, a) − Q?h(x, a)| > ε2 − ε1; this set, however, is in general larger than
F(ε1, ε2), and so using F(ε1, ε2) allows us to obtain tighter regret bounds.

One of our results will also make use of the following additional assumption on Q̃:

Definition 7 (Optimal fooling actions) For ε′ > 0, we say that predictions Q̃ lack ε′-fooling opti-
mal actions if there is no (x, h) with multiple optimal actions (i.e., for which |Aopt

h,0(x)| > 1) so that

for some a ∈ Aopt
h,0(x), Q̃h(x, a) > V ?

h (x) + ε′.

Note that in the context of Definition 7, Q̃h(x, a) > V ?
h (x) + ε′ implies that (x, a, h) ∈ F(ε, ε′) for

any ε, explaining the terminology of the definition.

3.2. Main theorems

A common thread in the literature on algorithms with predictions is an inherent tradeoff between
an algorithm’s robustness and its accuracy when it receives correct predictions (sometimes called
consistency) (Purohit et al., 2018; Wei and Zhang, 2020). Such a tradeoff occurs in our setting too.
To describe this tradeoff, we introduce a parameter λ ∈ (0, 1): as λ decreases to 0, the regret in
the presence of predictions which are an (approximate) distillation improves but the robustness (i.e.,
regret in the presence of arbitrary predictions) worsens.

λ-Cost We will be able to obtain both gap-based regret bounds and (instance-independent) uni-
form ones for both robustness and consistency in the presence of predictions. To simplify the de-
pendence of these bounds on the parameter λ introduced above, we define the λ-cost for an MDP
M as follows: given an MDP M , a value T ∈ N and a value λ ∈ (0, 1), the λ-cost of M , denoted
CM,T,λ, is the following quantity:

CM,T,λ := min


√
λ · TSAH8ι, H8ι ·

 ∑
(x,a,h)∈S×A×[H]:a6∈Aopt

h,0(x)

1

∆h(x, a)
+
|Amul|
∆min


 (7)

Recall that ι = log(SAT ). Note that, ignoring poly(H, ι) factors, CM,T,λ is in general no greater
than the worst-case regret bound (5): moreover, if the first term in the minimum in (7) (i.e.,√
λ · TSAH8ι) is much smaller than the second, then due to the factor of

√
λ in this term, CM,T,λ

will be much smaller than the right-hand side of (5) (again, ignoring poly(H, ι) factors).

Explicit-λ guarantee Our first main result is stated below; for simplicity, we present here the
result under the additional assumption that each (x, h) has a unique optimal action (i.e., |Aopt

h,0(x)| =
1); this assumption has been made previously in Xu et al. (2021). As we show in an extended
version of the theorem (see the version in Section E), this assumption may be removed if we assume
that ∆min is known to the algorithm; further, our second main result (Theorem 9) avoids making
either assumption altogether. Theorem 8 states that the regret of QLearningPreds (Algorithm
1) under arbitrary predictions Q̃ is Õ(Hλ · CM,T,λ), whereas the regret under accurate predictions
(i.e., predictions which are an approximate distillation) is the sum of Õ(H ·CM,T,λ) plus a quantity
that grows as the degree of accuracy of the predictions degrades.

Theorem 8 Suppose that for each (x, h) there is a unique optimal action (i.e., |Aopt
h,0(x)| = 1).

The algorithm QLearningPreds (Algorithm 1) with the DeltaIncr subroutine (Algorithm 4)

11
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with parameter ∆̃min = 0 satisfies the following two guarantees, when given as input a parameter
λ ∈ [0, 1] and predictions Q̃:

1. Suppose λ ≥ SAH4

T . Then for an arbitrary choice of input predictions Q̃, the regret of
QLearningPreds is O(Hιλ · CM,T,λ).

2. Fix any ε > 0, and set ε′ = 4ε · (H + 1). When the input predictions Q̃ are an ε-approximate
distillation of Q? (Definition 5), the regret of QLearningPreds is

O

H2ι · CM,T,λ + ε′TH + min

√H5Tι · |F(ε′/2, ε′)|,
∑

(x,a,h)∈F(ε′/2,ε′)

H4ι

[∆h(x, a)− ε′/2]+


 .

(8)

Notice that the gap-based term in CM,T,λ (see (7)) does not depend on λ (i.e., it does not decrease
when λ decreases). Nevertheless, Theorem 8 implies that accurate predictions can improve logarith-
mic regret bounds involving gaps, if additional information about the MDP is known. For instance,
suppose the algorithm is promised that one of the following holds: either Q̃ = Q? (and so Q̃ is a
0-approximate distillation),9 or it holds that all non-zero gaps are at least a constant, which implies
that CM,T,λ ≤ poly(H, ι)·O(SA); however, which of these possibilities holds is unknown. Then by

choosing λ =
√

SA
T in Theorem 8 (with ε = ε′ = 0), we obtain a regret bound of poly(H, ι)·O(SA)

(which is independent of K) in the case that Q̃ = Q?, and a regret bound of poly(H, ι) ·O(
√
SAT )

in the other case. Thus we always manage to achieve regret at least as small as the minimax bound
of Õ(

√
H2SAT ) (up to poly(H, ι) factors), and in the case of accurate predictions can get a much-

improved regret bound that is polylogarithmic in K. This example shows that it can be beneficial to
useQ-value predictions for gap-dependent guarantees: if the algorithm designer has a prior over the
space of MDPs indicating that the former possibility (accurate Q̃, but possibly small gaps) is much
more likely than the latter, then it is beneficial to use Theorem 8 and obtain the polylogarithmic
regret bound with high probability over the prior (and near-minimax regret in all cases), rather than
using a worst-case gap-based result such as Xu et al. (2021).

Implicit-λ guarantee Unlike in much of the literature on algorithms with predictions (Mitzen-
macher and Vassilvitskii, 2020), the quantity CM,T,λ which appears in our regret bounds is in gen-
eral unknown to the algorithm, as the quantities ∆h(x, a), |Amul|,∆min are all unknown. Therefore,
the standard paradigm in which a user chooses a parameter λ and then runs an algorithm depending
on λ is somewhat less well-motivated because the user does not have an explicit formula for how
the choice of λ influences the regret bounds in the case when either the predictions are accurate
or inaccurate. Therefore, in our next main result, Theorem 9, we adopt the alternative procedure
in which the user instead inputs a parameter R < T . Given R, the algorithm’s robustness (i.e.,
performance under arbitrary predictions) is guaranteed to be O(R), while the performance under
accurate predictions grows with C

M,T,λ̂
for λ̂ implicitly chosen optimally so as to still guarantee

regret O(R) in the worst case.

Theorem 9 The algorithm QLearningPreds with the DeltaConst subroutine satisfies the
following two guarantees, when given as input a parameter R ∈ [SAH3, T

SA ] and predictions Q̃:

9. More generally, we could assume that Q̃ is an ε-approximate distillation and that F(ε′/2, ε′) is small.

12
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1. If R ≥ CM,T,1, for any choice of predictions Q̃, the regret of QLearningPreds is O(R).

2. Fix any ε > 0, and set ε′ = 4ε · (H + 1). When the input predictions Q̃ are an ε-approximate
distillation of Q? (Definition 5) and lack ε′-fooling optimal actions (Definition 7), the regret
of QLearningPreds is

O

H · C
M,T,λ̂

+ ε′TH + min

√H5Tι · |F(ε′/2, ε′)|,
∑

(x,a,h)∈F(ε′/2,ε′)

H4ι

[∆h(x, a)− ε′/2]+


 ,

(9)

where λ̂ ∈ (0, 1) is chosen so that 1

λ̂
· C

M,T,λ̂
= R.
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Appendix A. Algorithm overview

A.1. Algorithm description

Our algorithm, QLearningPreds (Algorithm 1) used in Theorems 8 and 9, is based loosely
off of the Q-learning algorithm (Jin et al., 2018), and incorporates numerous additional aspects
(including several ideas from Xu et al. (2021)) to effectively use the predictions Q̃h(x, a). In this
section we describe the main ideas of the algorithm. At each episode k, the algorithm maintains
upper and lower bounds on the Q-value and V -value functions, denoted Qkh(x, a), V

k
h(x, a) and

Qk
h
(x, a), V k

h(x, a), respectively. Unlike previous versions of Q-learning, our algorithm makes use

of additional functions, denoted Rkh(x, a), Q̃kh(x, a), Ṽ k
h (x), which may be interpreted as follows:

• Q̃kh(x, a) is a refinement of the predictions Q̃h(x, a) given to the algorithm as input; Q̃1
h is set

to equal Q̃h (step 1), and Q̃kh is refined over time as the algorithm collects trajectories.

• The values Rkh(x, a) are used in the process of refining Q̃kh(x, a); Rkh(x, a) represents an
approximate upper bound on Q?h(x, a), assuming that the prediction Q̃ is an ε-approximate
distillation (Definition 5).

• Ṽ k
h (x) is an upper estimate for the V -value function at a state x that makes use of the refined

predictions Q̃kh(x, a).
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QLearningPreds additionally employs the technique of action elimination, maintaining sets
Akh(x) (defined in step 2c) which for each x, h, k contain the actions a which could plausibly be
optimal at the beginning of episode k (A1

h(x) is initialized to all of A in step 1). Action elimination
has previously been used in bandit learning and reinforcement learning when one must be robust
to adversarial corruptions (Even-Dar et al., 2006; Lykouris et al., 2018, 2020), as well as to obtain
gap-based regret bounds (Xu et al., 2021; Lykouris et al., 2018, 2020). In our algorithm, the sets
Akh(x) are again used for each of these purposes (where the robustness is with respect to the possible
inaccuracy of the predictions Q̃h). For convenience, we set Gkh to denote the set of states x for which
|Akh(x)| = 1 (meaning all but one action at x has been eliminated at the beginning of episode k; see
step 2f).

After being initialized in step 1 of QLearningPreds, the valuesQkh, Q
k
h
, V

k
h, V

k
h, Q̃

k
h, Ṽ

k
h , R

k
h

are updated in QLearningPreds in steps 2b and 2d according to established updating procedures,
namely using exploration bonuses of bn = C0 ·

√
H3ι/n (for some constant C0) and a learning rate

of αn = H+1
H+n , for n ∈ N (Jin et al., 2018; Xu et al., 2021). In particular, V k

h, V
k
h, Q

k
h, Q

k
h

are
updated in step 2b according to the adaptive multi-step bootstrap technique of Xu et al. (2021),
which uses sequences of multiple rewards (namely, at contiguous sequences of states in which the
optimal action has been determined) to perform the Bellman update. Our updates differ slightly from
those in previous works in that we also maintain supplementary estimates qkh, q

k
h

(steps 2(b)iv and

2(b)vi) to ensure that Qkh, V
k
h are non-increasing with respect to k, and Qk

h
, V k

h are non-decreasing
with respect to k (Lemma 15).

The purpose of maintaining V k
h, V

k
h, Q

k
h, Q

k
h

is primarily to obtain the robustness regret bounds

(i.e., of 1
λ · CM,T,λ) in Theorems 8 and 9. On the other hand, the values Q̃kh, Ṽ

k
h , R

k
h, which are up-

dated in step 2d of QLearningPreds, are used to obtain improved regret bounds in the presence
of accurate predictions. The updates here only use a single step to perform the Bellman update, as
in the standard Q-learning algorithm (Jin et al., 2018).

For future reference we define the following learning rate parameters used in the algorithm’s
analysis: for n ≥ i ≥ 1, set

α0
0 := 1, α0

n := 0, αin := αi

n∏
j=i+1

(1− αj). (10)

Intuitively, αin denotes the impact of an update made the ith time a state-action pair (x, a, h) is vis-
ited on the value of any value function (e.g., Qkh, Q

k
h
, etc.) when (x, a, h) is visited for the nth time.

In the remainder of the section, we describe how QLearningPreds chooses its policies (step 2a);
the challenge of doing so leads to most of the algorithmic novelties in QLearningPreds.

State-specific exploration & exploitation phases At each episode k, QLearningPreds chooses
a policy πk by using the functions Qkh, Q

k
h
, Q̃kh in the PolicySelection subroutine (Algorithm

2). A key challenge addressed in this step is that of obtaining a “best of both worlds” guarantee
which improves upon the minimax regret guarantee of Õ(

√
SATHO(1)) (or, in the gap-based case,

poly(H) · Õ
(∑

(x,a,h)
1

∆h(x,a) + |Amul|
∆min

)
) in the case that the predictions Q̃ are accurate, but still

manages to obtain sublinear regret when Q̃ is arbitrarily inaccurate. QLearningPreds over-
comes this challenge by dividing the set of episodes in which we visit each state x at each step h
into two phases:
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• In the first phase, we employ exploration: whenever (x, h) is visited during an episode k
in this phase, the policy πk takes an action a ∈ Akh(x) which maximizes the gap between
Q
k
h(x, a) and Qk

h
(x, a) (this approach is slightly different from the more standard UCB ap-

proach which chooses a to maximize Qkh(x, a) (Jin et al., 2018), but was used in Xu et al.
(2021) to obtain gap-based bounds; it is used in QLearningPreds for the same reason).

• After a certain number of episodes, QLearningPreds will decide it has sufficiently ex-
plored at the state (x, h), and thus, when visiting (x, h), it will choose an action â ∈ Akh(x)

which maximizes the refined predictions Q̃kh(x, â)10. This second phase may be seen as a
constrained exploitation phase: it attempts to exploit the predictions Q̃h, but the action â is
constrained to lie in the action setAkh(x). As explained below, any action a′ at xwhich is very
suboptimal will be removed from Akh(x) after a bounded number of episodes, which limits
the impact of inaccurate predictions.

We emphasize that the partition into the two phases is state-specific; namely, at any given episode,
some states may be in their exploration phase whereas others may be in their exploitation phase.
Notice that there is a tradeoff between the lengths of the two phases: if the first phase, which does
not make use of the predictions Q̃h and thus cannot outperform the minimax bounds, is too long,
then if the predictions Q̃ are accurate we will not improve sufficiently upon the minimax regret
guarantee. On the other hand, if the first phase is too short (or nonexistent), the following may
occur: suppose that the predictions Q̃ are inaccurate in that for some state x, step h, and sub-
optimal action a, Q̃h(x, a) is large, but Q̃h(x, a?) is small, where a? 6= a is the unique optimal
action at (x, h) and satisfies V ?

h (x) = Q?h(x, a?) � Q?h(x, a). Suppose for simplicity that A =

{a, a?} and that Q̃h ≡ Q̃kh (which can approximately hold). Ideally the first phase should be long
enough to eliminate a fromAkh(x); this will happen whenQk

h
(x, a?) grows sufficiently to be greater

than Qkh(x, a). However, if the first phase ends before this happens, then at the beginning of the
second phase, Akh(x) = A, and so πkh(x) will be set to a in step 2 of PolicySelection. Thus
QLearningPreds would suffer linear regret.

An adaptive exploration-exploitation cutoff QLearningPreds trades off the lengths of the
exploration and exploitation phases described above according to the input parameter λ (or, in the
case of Theorem 9, λ̂ as determined by R). To describe how QLearningPreds makes this
tradeoff, we begin by defining theQ- and V -range functions (following the presentation of Xu et al.
(2021)). First, we make a few additional definitions: for (k, h) ∈ [K]× [H], for which xkh 6∈ Gkh , set
h′(k, h) ∈ [H + 1] to be the first step h′ after step h for which xkh′ 6∈ Gkh (if such h′ ≤ H does not
exist, then set h′(k, h) = H + 1). Next, for n ∈ N, define the following parameters βn, which may
be viewed as aggregated versions of the exploration bonuses bi = C0

√
H3ι/i (recall the definition

of αin in (10)):

β0 := 0, βn = 2
n∑
i=1

αin · bi. (11)

10. For technical reasons, â is actually chosen to maximize max{Q̃kh(x, â), Qk
h
(x, â)}

19



GOLOWICH MOITRA

Definition 10 (Range function) For (x, a, h, k) ∈ S × A × [H] × [K] for which x 6∈ Gkh and
a ∈ Akh(x), define the range Q-function as follows: set ∆Q0

h(x, a) = H , and

∆Qkh(x, a) := min

{
∆Qk−1

h (x, a), α0
nH + βn +

n∑
i=1

αin ·∆V
kih
h′(kih,h)

(x
kih
h′(kih,h)

)

}
where n = Nk

h (x, a), kih = kih(x, a) ∀i ∈ [n].

Moreover, for (x, h, k) ∈ S × [H]× [K] for which x 6∈ Gkh , define the range V -function as follows:
set ∆V 0

h (x) = H , and

∆V k
h (x) := min{∆V k−1

h (x), ∆Qkh(x, a?)} for a? = arg max
a′∈Akh(x)

Q
k
h(x, a′)−Qk

h
(x, a′).

Finally, define ∆QkH+1(x, a) = ∆V k
H+1(x) = 0 for all x, a, k.

The functions ∆Qkh,∆V
k
h should be interpreted as upper bounds on the gap between the upper and

lower Q,V values; note that they satisfy a similar recursion to Qkh − Qkh and V k
h − V k

h (see (24)).

Indeed, in Lemma 16 below we show that ∆Qkh,∆V
k
h are upper bounds on Qkh − Qkh, V

k
h − V k

h,
respectively.

Now that we have defined the range functions, the choice of policy at each (x, h) (equivalently,
the choice of “exploration” and “constrained exploitation” phases described above) is simple to
state: QLearningPreds maintains a parameter ∆̂k at each episode k, which represents a “target
error bound” that QLearningPreds hopes to obtain. The parameter ∆̂k adapts to the input pa-
rameter R (or λ) as well as the gap-based complexity of the given MDP. Given ∆̂k at episode k,
the policy πkh at each step h is specified in (12) in the algorithm PolicySelection: following
our terminology above, a state (x, h) is declared to be in the “exploration” phase if ∆V̆ k

h (x) >

ϕh(∆̂k)11 (meaning there is still much uncertainy about the optimal value at (x, h) relative to ∆̂k),
and is defined to be in the “constrained exploitation” phase otherwise (i.e., ∆V̆ k

h (x) ≤ ϕh(∆̂k)).
We will show (in Lemmas 19 and 20) that ∆V̆ k

h (x) is nonincreasing with respect to k and ϕh(∆̂k)
is nondecreasing with respect to k; thus, each state can only move from the “exploration” to “con-
strained exploitation” phase.

A.2. How to choose ∆̂k

As we discussed in the previous section, ∆̂k is chosen to adapt to the input parameter R or λ. In
the setting of Theorem 9, where the user inputs a parameter R representing the target worst-case
regret bound, the choice of ∆̂k is extremely simple (Algorithm 3, DeltaConst): for all k, we set
∆̂k := R/(KH). In the setting of Theorem 8, where the user inputs a parameter λ specifying a
trade-off between the worst-case and ideal-case settings, ∆̂k is set (in Algorithm 4, DeltaIncr)
to a more complex expression which is a surrogate for the worst-case regret bound 1

λCM,T,λ (thus
overcoming the challenge that the algorithm does not know CM,T,λ). This surrogate uses the frozen
range function (defined in Definition 12), denoted ∆Q̊kh(x, a), as a proxy for the action-value gaps
∆h(x, a), for all (x, a, h) ∈ S ×A× [H]. We refer the reader to Section B.5 for further details.

11. Recall that for a > 0 and some constant C1, we have defined ϕh(a) = C1 ·
(
1 + 1

H

)4(H+1−h) · a in
QLearningPreds. Thus ϕh(∆̂k) = Θ(∆̂k); the function ϕh(·) is introduced for technical considerations in
the proof.
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Algorithm 1: QLearningPreds
Input: State space S, action spaceA, horizonH , number of episodesK, predictions Q̃h : S×A →

[0, H] for all h ∈ [H], parameter λ ∈ [0, 1]. For some constant C1 > 0 and 1 ≤ h ≤ H + 1,
set, for a > 0, ϕh(a) = C1 ·

(
1 + 1

H

)4(H+1−h) · a.

1. Initialize N1
h(x, a) = 0, R1

h(x, a) = Q
1
h(x, a) = V

1
h(x, a) = q1

h(x, a) = H , Q1
h
(x, a) =

V 1
h(x, a) = q1

h
(x, a) = 0 for all (x, a, h) ∈ S ×A× [H]. Also set Q̃1

h = Q̃h and Ṽ 1
h (x) =

maxa′∈A Q̃
1
h(x, a′) for all (x, h) ∈ S × [H]. Set A1

h(x) = A for all (x, h) ∈ S × [H], and
G1
h = ∅ for all h ∈ [H]. Set ∆̂1 ← 0.

2. For episode 1 ≤ k ≤ K:

(a) Receive πk and the policy rollout (xk1, a
k
1), . . . , (xkH , a

k
H) from the

PolicySelection algorithm.

(b) For each h = 1, 2, . . . ,H such that xkh 6∈ Gkh:

i. Set Nk+1
h ← Nk

h (xkh, a
k
h) + 1, n = Nk+1

h (xkh, a
k
h), and write bn = C0

√
H3ι/n.

ii. Let xkh′ be the first state in the episode after xkh so that xkh′ 6∈ Gkh′ (if such h′ does
not exist, set h′ = H + 1).

iii. Let r̂kh =
∑h′−1

h′′=h rh′′(x
k
h′′ , a

k
h′′).

iv. Set qk+1
h (xkh, a

k
h)← (1− αn) · qkh(xkh, a

k
h) + αn · (r̂kh + V

k
h′(x

k
h′) + bn).

v. Set Qk+1
h (xkh, a

k
h)← mink′≤k+1

{
qk
′
h (xkh, a

k
h)
}

.

vi. Set qk+1
h

(xkh, a
k
h)← (1− αn) · qkh(xkh, a

k
h) + αn · (r̂kh + V k

h′(x
k
h′)− bn).

vii. Set Qk+1
h

(xkh, a
k
h)← maxk′≤k+1

{
qk
′

h
(xkh, a

k
h)
}

.

viii. Set V k+1
h (xkh)← maxa′∈Akh(xkh){Qk+1

h
(xkh, a

′)}.

ix. Set V k+1
h (xh)← maxa′∈Akh(xh){Q

k+1
h (xh, a

′)}.

(c) For all (x, h) ∈ S × [H], set Ak+1
h (x)← {a′ ∈ Akh(x) : Q

k+1
h (x, a′) ≥ V k+1

h (x)}.
(d) For each h = 1, 2, . . . ,H:

i. SetRk+1
h (xkh, a

k
h)← (1−αn)·Rkh(xkh, a

k
h)+αn ·(rh(xkh, a

k
h)+Ṽ k

h+1(xh+1)+bn).

ii. Set Q̃k+1
h (xkh, a

k
h)← min{Rk+1

h (xkh, a
k
h), Q̃kh(xkh, a

k
h), Q

k+1
h (xkh, a

k
h)}.

iii. Set Ṽ k+1
h (xkh)← maxa′∈Ak+1

h (xkh) max{Q̃k+1
h (xkh, a

′), Qk+1
h

(xkh, a
′)}.

(e) For all h and all (x, a) 6= (xkh, a
k
h) set

Nk+1
h (x, a), Q

k+1
h (x, a), Qk+1

h
(x, a), qk+1

h (x, a),

qk+1
h

(x, a), V
k+1
h (x), V k+1

h (x), R
k+1
h (x, a), Q̃k+1

h (x, a), Ṽ k+1
h (x) equal to their

values at episode k.

(f) For all h ∈ [H], set Gk+1
h ← {x ∈ S : |Ak+1

h (x)| = 1}.

(g) Choose ∆̂k+1 according to either DeltaConst or DeltaIncr.
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Algorithm 2: PolicySelection
Input: Internal state of the algorithm QLearningPreds at the beginning of episode k (includ-

ing, in particular, the previous pollicy rollouts, and the functions Q̃kh, Q
k
h
, Q

k
h, as well as

∆̂k,Gkh, Akh).

1. For h ∈ [H], construct ∆V k
h (·) per Definition 10.

2. Define the policy πk by, for (x, h) ∈ S × [H]:

πkh(x) :=


The action in Akh(x) if |Akh(x)| = 1

arg maxa∈Akh(x){max{Q̃kh(x, a), Qk
h
(x, a)}} if ∆V k

h (x) ≤ ϕh(∆̂k)

arg maxa∈Akh(x){Q
k
h(x, a)−Qk

h
(x, a)} if ∆V k

h (x) > ϕh(∆̂k)

(12)

3. Let (xk1, a
k
1), . . . , (xkH , a

k
H) be a policy rollout obtained by following πk.

4. Return the policy πk and the policy rollout (xk1, a
k
1), . . . , (xkH , a

k
H).

Algorithm 3: DeltaConst
Input: Episode number k, input regret bound R of QLearningPreds, and total number K of

episodes.

1. Return

∆̂k+1 := R/(KH). (13)

Algorithm 4: DeltaIncr
Input: Internal state of the algorithm QLearningPreds at the beginning of episode k+1 (in par-

ticular, the necessary information to compute the frozen Q-range function), and parameters
λ ∈ [0, 1] and ∆̃min ≥ 0 (which is guaranteed to satisfy ∆̃min ≤ ∆min).

1. For h ∈ [H], construct ∆̃Q̊k+1
h (·) which is defined identically to ∆Q̊k+1

h (·) per Defini-
tion 12, except with the parameter ∆̃min replacing ∆min in the clipped value functions
∆V̆ k+1

h ,∆Q̆k+1
h .

2. Return

∆̂k+1 := min


H6ι2

λ ·K
·
∑

(x,a,h)

1

max

{
∆̃Q̊k+1

h (x,a)

2H , ∆̃min
4H2

} ,√SAH8ι2

λ ·K

 . (14)
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Appendix B. Proof overview

In this section we overview the proofs of Theorems 8 and 9; we focus mainly on Theorem 9 since
its proof is slightly simpler. At a high level, the key tools needed in the proof of Theorem 9 are as
follows:

1. First, we need to define the the clipped range functions (Definition 11), as in Xu et al. (2021),
which aid in proving gap-based bounds.

2. To prove the O(R) regret bound for worst-case predictions (i.e., robustness, first item of
Theorem 9), we first prove a regret decomposition (Lemma 29) showing that regret can be
bounded in terms of the clipped V -range functions.

In Lemma 27, our main technical lemma for the worst-case regret bound, we then show how to
bound the clipped V -range functions in the presence of arbitrary predictions Q̃ using certain
monotonicity properties of the value functions.

3. To establish the improved regret bounds for the case that Q̃ is an approximate distillation
(second item of Theorem 9), we first need to bound the number of episodes during which the
predictions Q̃ are not used to choose the policy.

Then we upper bound the value functionsRkh, Ṽ
k
h at the set of episodes k where the predictions

are used and show that doing so suffices to bound regret.

The proof of Theorem 8 is similar to that of Theorem 9. One additional tool needed (which
shows up in the algorithm DeltaIncr) is a variation of the clipped range functions that we call
the frozen range functions (Definition 12).

In Sections B.1 through B.4 we expand upon the above items to overview the proof of Theorem
9. In Section B.5 we overview the changes that must be made to QLearningPreds and the proof
to establish Theorem 8.

B.1. Clipped range functions

We begin by defining the clipped Q-value and V -value functions, which were originally introduced
in Xu et al. (2021) to obtain gap-based bounds on the regret (they play a similar role in this paper).
For real numbers x, y, define the clip function as follows: clip [x| y] := 1[x ≥ y] · x.

Definition 11 (Clipped range function, Xu et al. (2021)) For all (x, a, h, k) ∈ S×A×[H]×[K]
for which x 6∈ Gkh and a ∈ Akh(x), define the clipped range Q-function as follows: set ∆Q̆0

h(x, a) =
H , and

∆Q̆kh(x, a) := min

{
∆Q̆k−1

h (x, a), α0
nH + clip

[
βn|

∆min

4H2

]
+

n∑
i=1

αin ·∆V̆
kih
h′(kih,h)

(x
kih
h′(kih,h)

)

}
(15)

where n = Nk
h (x, a), kih = kih(x, a) ∀i ∈ [n].

Moreover, for (x, h, k) ∈ S × [H]× [K] for which x 6∈ Gkh , define the clipped range V -function as
follows: set ∆V̆ 0

h (x) = H , and

∆V̆ k
h (x) := min{∆V̆ k−1

h (x), ∆Q̆kh(x, a?)} for a? = arg max
a′∈Akh(x)

Q
k
h(x, a′)−Qk

h
(x, a′).
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Finally, define ∆V̆ k
H+1(x) = ∆Q̆kH+1(x, a) = 0 for all x, a, k.

The clipped range functions ∆Q̆kh(x, a),∆V̆ k
h (x) are defined to satisfy a similar recursion as the

quantities Qkh(x, a) − Qk
h
(x, a) and V k

h(x) − V k
h(x) (see (24)). Unlike in (24), in the definition

of ∆Q̆kh,∆V̆
k
h , the bonuses βn are clipped, leading ∆V̆ k

h ,∆Q̆
k
h to be smaller than their unclipped

counterparts (Lemma 18), which aids in obtaining gap-based regret bounds. Despite this clipping,
the combination of Lemmas 16 and 17 shows that, with high probability, for all x, a, h, k, the
clipped range functions are still approximately lower bounded by the gap between the upper and
lower Q,V -values, as follows:

∆Q̆kh(x, a) ≥ Qkh(x, a)−Qk
h
(x, a)− ∆min

4H
, ∆V̆ k

h (x) ≥ V k
h(x)− V k

h(x)− ∆min

4H
. (16)

B.2. Worst-case regret bound

In this section we overview the proof that QLearningPreds achieves regret O(R) for arbitrary
predictions Q̃ in the setting of Theorem 9. For all (h, k) for which xkh 6∈ Gkh , define δ̆kh = ∆V̆ k

h (xkh).
Using (16), the following regret decomposition is straightforward to prove (it is similar to that in
Lemma B.6 of Xu et al. (2021)).

Lemma 29 (Regret decomposition; abbreviated) There is an event Ewc that occurs with proba-
bility at least 1− 1/(H2K) so that the regret of QLearningPreds may be bounded as follows:

K∑
k=1

E
[
V ?

1 (xk1)− V πk

1 (xk1)
]
≤ 1 + 4 · E

 ∑
(k,h):akh 6∈A

opt
h,0(xkh)

δ̆kh

∣∣∣∣∣∣∣ Ewc

 .
(The right-hand side of the above expression makes sense since under the event Ewc, it turns out
that for all (k, h) so that akh 6∈ A

opt
h,0(xkh), xkh 6∈ Gkh , i.e., δ̆kh is well-defined.)

Lemma 29 reduces the problem of bounding the regret to bounding the clipped value functions
δ̆kh for h, k such that xkh 6∈ Gkh . In turn, we bound δ̆kh in Lemma 27, of which a simplified version
combining it with Lemma 30 is presented below:

Lemma 27 (Abbreviated & combined with Lemma 30) Fix any h ∈ [H], any set W ⊂ [K] so
that for all k ∈ W , xkh 6∈ Gkh , and any k? ≥ maxk∈W{k}. Then

∑
k∈W

δ̆kh ≤|W| · ϕh(∆̂k?) +O

min

√H5SA|W|ι, H5ι ·

 ∑
(x,a,h′)

1

∆h′(x, a)
+
|Amul|
∆min


 .

(17)

The starting point for the proof of Lemma 27 is to use the definition of the clipped value functions
∆V̆ k

h together with reverse induction on h (i.e., bounding the values δ̆kh in terms of δ̆kh′ for h′ >
h) in a similar manner as was done in Lemma B.8 of Xu et al. (2021). However, the proof of
Lemma 27 must depart from that of (Xu et al., 2021, Lemma B.8) since in the PolicySelection
subroutine of QLearningPreds, we do not always choose the action a ∈ Akh(x) maximizing
the confidence interval, i.e., maximizing Qkh(x, a) − Qk

h
(x, a). Typically such an action choice
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maximizing the confidence interval is necessary to upper bound the values δ̆kh. We are able to
nevertheless bound δ̆kh using the fact that for steps (h, k) for which we do not choose the action a
maximizing the confidence interval (i.e., we are in the constrained exploitation phase), it must hold
that δ̆kh = ∆V̆ k

h (xkh) ≤ ∆V k
h (xkh) ≤ ϕh(∆̂k). This observation leads to the quantity |W| · ϕh(∆̂k?)

on the right-hand side of (17).
The proof of Lemma 27 is made somewhat more complex by the fact that the choice of action

at step h affects δ̆kh′ for h′ < h and various k (via the reverse induction argument), and without
care one will end up with a multiplier of ϕh(∆̂k?) in (17) that is much larger than |W|. To avoid
this complication, we must carefully account for the effect the values δ̆kh have on the bounds we can
prove on δ̆kh′ for h′ < h. To do so we make use of a monotonicity propery of the clipped value
functions (Lemma 19, showing that ∆V̆ k

h (x) is non-increasing with k) and introduce the notion of
level-h sets (Definition 24) which are intermediate setsW ′ of tuples (k′, h′) for which we need to
bound

∑
(k′,h′)∈W ′ δ̆

k′
h′ in the course of the induction.

Completing the worst-case regret bound The proof of item 1 of Theorem 9 is fairly straightfor-
ward given the above components; the details are worked out in Lemma 31. The dominant term in
the bound (17) turns out to be |W| · ϕh(∆̂k?), which due to the choice ∆̂k = R/(HK) and the
bound |W| ≤ K, leads to the bound O(R) on regret.

B.3. Exploration-constrained exploitation cutoffs

Before discussing the proof of the improved regret bound for the case of Q̃ being an approximate dis-
tillation, we introduce the following notation relating to the exploration and constrained exploitation
phases in QLearningPreds that we discussed above. For (k, h) ∈ [K]× [H], define τkh ∈ {0, 1}
as follows:

τkh =

{
0 if xkh ∈ Gkh or ∆V k

h (xkh) ≤ ϕh(∆̂k)

1 otherwise.
(18)

The parameter τkh is the indicator of whether QLearningPreds is in the exploration or con-
strained exploitation step at step h of episode k: if τkh = 0, then we have either determined the
optimal action at xkh (i.e., xkh ∈ Gkh), or else the range function ∆V k

h (xkh) is sufficiently small, so we
engage in constrained exploitation (see the choice of πkh in (12), which chooses a′ ∈ Akh(xkh) max-
imizing max{Q̃kh(xkh, a

′), Qk
h
(xkh, a

′)}), and otherwise, if τkh = 1, we use optimistic exploration,
choosing a′ ∈ Akh(xkh) to maximize the confidence interval.

Note that the parameters τkh depend on the unclipped range functions ∆V k
h ; as we have discussed

above, in order obtain our gap-based bounds, it is necessary to bound the clipped range functions
∆V̆ k

h . Therefore, when reasoning about the exploration and constrained exploitation phases, we
will additionally introduce the parameters σkh ∈ {0, 1} (for (k, h) ∈ [K]× [H]), which are defined
similarly to τkh except with respect to ∆V̆ k

h :

σkh =

{
0 if xkh ∈ Gkh or ∆V̆ k

h (xkh) ≤ 1
1+ 1

H

· ϕh(∆̂k)

1 otherwise.
(19)

The parameters σkh can be thought of as a proxy for the true exploration parameters τkh . As discussed
in the following section, in order to establish improved regret bounds for the case that Q̃ is an
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approximate distillation, we need to, loosely speaking, upper bound the number of episodes in which
we engage in exploration (i.e., in which the predictions Q̃ are not used). For technical reasons, it
turns out to be more convenient to bound the number of (k, h) so that σkh = 1 (as opposed to
bounding the number of (k, h) so that τkh = 1).

B.4. Proofs for Q̃ an approximate distillation

Now we discuss the proof of item 2 of Theorem 9; the proof of item 2 of Theorem 8 is very similar
(see Section D for the full proof). As discussed in the previous section, the first step is to bound the
number of episodes for which we do not engage in constrained exploitation; in particular, for each
h, we bound the number of k for which σkh = 1:

Lemma 33 Suppose QLearningPreds is run with DeltaConst to choose the values ∆̂k. Then
for all h ∈ [H], the number of episodes k ∈ [K] for which σkh = 1 is at most max{SAH3, λ̂ ·K}.
(Recall that λ̂ is chosen so that R = 1

λ̂
· C

M,T,λ̂
.)

We write ∆̂ = ∆̂k (as all ∆̂k are equal). Also, for any h ∈ [H], write Yh := {k : σkh = 1}. The
main tool in the proof of Lemma 33 is Lemma 27, which upper bounds

∑
k∈Yh δ̆

k
h by the sum of

|Yh| · (1 + 1/H)2 · ϕh+1(∆̂) and some additional terms. On the other hand, that σkh = 1 implies
that δ̆kh ≥

1
1+1/H · ϕh(∆̂). These facts (together with the fact that ϕh(∆̂) is greater than ϕh+1(∆̂)

by a factor of (1 + 1/H)4) allow us to upper bound |Yh| in terms of an expression which ultimately
simplifies to max{SAH3, λ̂ ·K}.

Regret decomposition and induction Given Lemma 33, we proceed to complete the proof of
item 2 of Theorem 9. The first step is the following regret decomposition (stated in (89)), which
follows from the fact that Q̃ is an ε-approximate distillation as well as the definition of Ṽ k

h in
QLearningPreds: for any ε′ > 0, we have

K∑
k=1

E
[
V ?

1 (xk1)− V πk

1 (xk1)
]

≤O(KH(εH + ε′)) + E

[
K∑
k=1

H∑
h=1

(1− τkh ) · 1[akh 6∈ A
opt
h,ε′(x

k
h)] · (Rkh(xkh, a

k
h)−Q?h(xkh, a

k
h)) +

K∑
k=1

H∑
h=1

4σkhδ̆
k
h

∣∣∣∣∣ Ewc

]
.

(20)

The above regret decomposition reduces bounding the regret to bounding the following two types
of quantities (under the event Ewc):

1. The quantity Rkh(xkh, a
k
h)−Q?h(xkh, a

k
h), for (k, h) satisfying τkh = 0 and akh 6∈ A

opt
h,ε′(x

k
h);

2. The quantity δ̆kh for (k, h) satisfying σkh = 1.12

The latter of these quantities (i.e., item 2) is straightforward to control: for each h ∈ [H], we use
Lemma 27 with the setW equal to the set of k so that σkh = 1 and k? = K. Crucially, the conclusion
of Lemma 33 above gives that |W| ≤ max{SAH3, λ̂ ·K}, which, together with the inequality (17)
of Lemma 27, gives us that

∑K
k=1

∑H
h=1 σ

k
hδ̆
k
h may be bounded by O(C

M,T,λ̂
). This argument is

carried out formally in Lemma 44.

12. Note that σkh = 1 implies that xkh 6∈ Gkh , which implies that δ̆kh is indeed well-defined.
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Bounding Rkh, Ṽ k
h on non-exploratory episodes We next describe how the quantity in item 1

above is bounded. Our general strategy is to use the definition of Rkh in terms of Ṽ k
h+1 (step 2(d)i

of QLearningPreds) to bound the gaps Rkh(xkh, a
k
h)−Q?h(xkh, a

k
h) at step h in terms of the gaps

Ṽ k′
h+1(xk

′
h+1) − V ?

h+1(xk
′
h+1) at step h + 1, for appropriate choices of k′. In turn, we will bound

the gaps Ṽ k′
h+1(xk

′
h+1)− V ?

h+1(xk
′
h+1) in terms of the gaps Rk

′

h+1(xk
′
h+1, a

k′
h+1)−Q?h+1(xk

′
h+1, a

k′
h+1),

completing the inductive step. When proving these bounds, we must take care to meet our goal of
obtaining a regret bound (see (9)) that only has terms corresponding to tuples (x, a, h) belonging to
the fooling set F(ε(H + 1), ε′). To do so, we use the following claim:

Claim 43 For any (k, h) satisfying τkh = 0, if either

1. akh 6∈ A
opt
h,ε′(x

k
h); or

2. (Ṽ k
h − V ?

h )(xkh) > ε′,

then under the event Ewc it holds that (xkh, a
k
h, h) ∈ F(ε(H + 1), ε′).

Claim 43 allows us to upper bound the term
∑K

k=1

∑H
h=1(1−τkh )·1[akh 6∈ A

opt
h,ε′(x

k
h)]·(Rkh(xkh, a

k
h)−

Q?h(xkh, a
k
h)) in the regret decomposition (20) with a sum of Rkh(x, a) − Q?h(x, a) over only those

(x, a, h) ∈ F(ε(H + 1), ε′). In turn, for such tuples (x, a, h), it is possible to upper boundRkh(x, a)−
Q?h(x, a) in terms of the sum of βn (for n = Nk

h (x, a)) and a weighted sum of (Ṽ k′
h+1−V ?

h+1)(xk
′
h+1)

for certain values of k′ (see Lemma 38). The terms βn in this sum form the main contribution
to the regret bound (9); crucially we use the fact that we only have such terms for (x, a, h) ∈
F(ε(H + 1), ε′).

Finally, when completing the inductive step by bounding the gaps Ṽ k′
h+1(xk

′
h+1) − V ?

h+1(xk
′
h+1),

we again have to ensure that we only use terms of the form (R
k′

h+1(x, a)−Q?h+1(x, a)) in our upper
bound for which (x, a, h+ 1) ∈ F(ε(H + 1), ε′). For this we again use Claim 43 (with the second
option). We refer the reader to Section D.4 for further details.

B.5. Proof of Theorem 8: implicit-λ bound

The proof of Theorem 8 is similar to that of Theorem 9. The main difference is that, because the
algorithm is not given as input the target worst-case regret bound R (which in turn is used to choose
∆̂k in DeltaConst for the proof of Theorem 9), it must construct a proxy value to assign to ∆̂k.
This proxy is constructed in DeltaIncr (Algorithm 4): for each episode k, ∆̂k is set in (14) to
equal an expression which resembles the definition of 1

λ ·CM,T,λ in (7), except that (a) the minimum
gap ∆min is replaced with the provided lower bound ∆̃min, and (b) the gaps ∆h(x, a) are replaced
the the frozen range function ∆Q̊kh(x, a), defined below:

Definition 12 (Frozen range function) For all (x, a, h, k) ∈ S×A× [H]× [K], define the frozen
Q-function, ∆Q̊kh(x, a), as follows: given (x, a, h), choose k′ ≤ k as large as possible so that
(xk

′
h , a

k′
h ) = (x, a) and τk

′
h = 1 (if no such k′ exists, set k′ = 1). Then set ∆Q̊kh(x, a) = ∆Q̆k

′
h (x, a).

In Lemma 30 we show, roughly speaking, that the frozen range function at the final episode, namely
∆Q̊Kh (x, a), is still lower bounded by the gap ∆h(x, a), justifying its use a surrogate for the gaps.
The main challenge in the proof of Theorem 8, beyond those from Theorem 9, is the fact that
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∆̂k changes as k increases (in fact, as shown in Lemma 20, ∆̂k is non-decreasing with k). Most
notably, this affects the proof of our bound on the number of episodes k for which σkh = 1 (Lemma
35; the analogous lemma for DeltaConst is Lemma 33). To prove Lemma 35, we partition [K]
into O(ι ·H) contiguous intervals so that inside each interval, ∆̂k increases by a factor of at most
1 + 1/H . For each such interval I ⊂ [K], we bound the number of k ∈ I so that σkh = 1; this leads
to an increase in our regret bounds by a factor of O(ιH).

Appendix C. Proofs for worst-case result

In this section we establish the robustness upper bounds of Theorems 8 and 9, giving a regret bound
for QLearningPreds when the user provides arbitrary predictions Q̃h.

C.1. Bounds on confidence intervals

We begin by establishing various basic guarantees on the bounds Qkh, Q
k
h
, V

k
h, V

k
h maintained by

QLearningPreds. The first such result is Lemma 13, which establishes that, with high proba-
bility, Qkh is an upper bound on Q?h, Qk

h
is a lower bound on Q?h, and similarly for V k

h, V
k
h (with

respect to V ?
h ). Before stating it, we introduce the following notation: for each k ∈ [K], let Hk

denote the σ-algebra generated by all random variables up to step H of episode k, andHk,h denote
the σ-algebra generated by all random variables up to (and including) step h of episode k + 1. For
each k ∈ [K] as well as (x, a, h) ∈ S ×A× [H], define the quantities Q?,k,bh (x, a) and Q?,k,rh (x, a)
(as in Xu et al. (2021)) as follows: suppose we start in state x at level h, and follow the optimal
policy π?, generating the (random) trajectory xh = x, xh+1, . . . , xH . Choose h′ ≥ h + 1 as small
as possible so that xh′ 6∈ Gkh′ , and write

Q?,k,bh (x, a) := E

[
h′−1∑
`=h

r`(x`, π
?
` (x`))|Hk−1,h

]
, Q?,k,rh (x, a) := E[V ?

h′(xh′)|Hk−1,h]. (21)

(Note that Gkh′ is Hk−1-measurable, and thus Hk−1,h′-measurable for all h′ and k.) It is immediate
that

Q?h(x, a) = Q?,k,bh (x, a) +Q?,k,rh (x, a).

As in Xu et al. (2021), we use the quantities r̂kh as an unbiased estimate ofQ?,k,bh (xkh, a
k
h). Recall that

for some constant C0 > 1, we use exploration bonuses bn = C0

√
H3ι/n, and recall the definition

of the aggregated bonuses βn in (11). Notice that item 1 of Lemma 46 gives that

2C0

√
H3ι/n ≤ βn ≤ 4C0

√
H3ι/n. (22)

For future reference, we will also define the constants

C2 = 8C0, C1 = 56e2C2
2 . (23)

Lemma 13 Set p = 1/(H2K). For a sufficiently large choice of the constant C0, there is an event
Ewc occurring with probability 1−p so that the following holds under the event Ewc, for all episodes
k ∈ [K]:
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1. For any (x, a, h) ∈ S × A × [H] so that x 6∈ Gkh and a ∈ Akh(x), suppose the episodes k′

in which (x, a) as previously taken at step h are denoted k1, . . . , kn ≤ k. Then the following
inequalities hold:

Q
k+1
h (x, a)−Qk+1

h
(x, a) ≤α0

n ·H +
n∑
i=1

αin ·
(

(V
ki

h′(ki,h) − V ki

h′(ki,h))(x
ki

h′(ki,h))
)

+ βn

(24)

Q
k+1
h (x, a) ≥Q?h(x, a) ≥ Qk+1

h
(x, a) (25)

V
k+1
h (x) ≥V ?

h (x) ≥ V k+1
h (x). (26)

2. Second, for all (x, h) ∈ S × [H] all optimal actions a (i.e., those a satisfying ∆h(x, a) = 0)
are in Ak+1

h (x). In particular, for all x ∈ Gk+1
h , Ak+1

h (x) contains the unique optimal action
at x.

Proof For k ∈ [K], we let Ewc
k denote the event that items 1 and 2 of the lemma statement hold for

all episodes j ≤ k. We wish to show that Pr[Ewc
K ] ≥ 1− p.

We use induction on k to show that for all k, Pr[Ewc
k ] ≥ 1 − pk/K. The base case k = 0 (i.e.,

k+ 1 = 1) follows from the fact that α0
0 = 1, Q1

h(x, a) = H,Q1
h
(x, a) = 0, and that for any choice

of (x, a, h) we necessarily have n = 0 (in particular, Pr[Ewc
0 ] = 1). So choose any k ≥ 1, and

assume that Pr[Ewc
k−1] ≥ 1− p(k − 1)/K.

By the algorithm’s update rule in steps 2(b)iv and 2(b)vi, it holds that, for all (x, a, h, k) ∈
S ×A× [H]× [K] so that x 6∈ Gkh , letting n = Nk+1

h (x, a),

qk+1
h (x, a) =

{
(1− αn) · qkh(x, a) + αn ·

(
r̂kh + V

k
h′(k,h)(x

k
h′(k,h)) + bn

)
: (x, a) = (xkh, a

k
h)

qkh(x, a) : otherwise

qk+1
h

(x, a) =

{
(1− αn) · qk

h
(x, a) + αn ·

(
r̂kh + V k

h′(k,h)(x
k
h′(k,h))− bn

)
: (x, a) = (xkh, a

k
h)

qk
h
(x, a) : otherwise.

By iterating the above, we obtain that

qk+1
h (x, a) =α0

n ·H +

n∑
i=1

αin ·
(
r̂k

i

h + V
ki

h′(ki,h)(x
ki

h′(ki,h)) + bn

)
(27)

qk+1
h

(x, a) =

n∑
i=1

αin ·
(
r̂k

i

h + V ki

h′(ki,h)(x
ki

h′(ki,h))− bn
)
, (28)

where k1, . . . , kn ≤ k denote all previous episodes during which (x, a, h) has been visited.
To see that (24) holds, we first take the difference of (27) and (28) and use the definition of βn

in (11) to get that

qk+1
h (x, a)− qk+1

h
(x, a) =α0

n ·H + βn +

n∑
i=1

αin ·
(

(V
ki

h′(ki,h) − V ki

h′(ki,h))(x
ki

h′(ki,h))
)
.
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Now (24) follows by noting that Qk+1
h (x, a) ≤ qk+1

h (x, a) and Qk+1
h

(x, a) ≥ qk+1
h

(x, a) (note in
particular that (24) holds with probability 1).

We proceed to analyze the event under which (25) and (26) hold. We may compute

qk+1
h (x, a)−Q?h(x, a)

=α0
n ·H +

n∑
i=1

αin ·
(
r̂k

i

h + V
ki

h′(ki,h)(x
ki

h′(ki,h)) + bn

)
−Q?h(x, a)

=α0
n · (H −Q?h(x, a)) +

n∑
i=1

αin ·
(
r̂k

i

h + V
ki

h′(ki,h)(x
ki

h′(ki,h))−Q
?
h(x, a)

)
+

n∑
i=1

αin · bn

(Using item 4 of Lemma 46 and b0 = 0)

=α0
n · (H −Q?h(x, a)) + βn/2 +

n∑
i=1

αin ·
(
r̂k

i

h −Q
?,ki,b
h (x, a)

)
+

n∑
i=1

αin ·
(
V
ki

h′(ki,h)(x
ki

h′(ki,h))− V
?
h′(ki,h)(x

ki

h′(ki,h))
)

+
n∑
i=1

αin ·
(
V ?
h′(ki,h)(x

ki

h′(ki,h))−Q
?,ki,r
h (x, a)

)
.

(29)

In a similar manner, we have

qk+1
h

(x, a)−Q?h(x, a)

=− α0
n ·Q?h(x, a)− βn/2 +

n∑
i=1

αin ·
(
r̂k

i

h −Q
?,ki,b
h (x, a)

)
+

n∑
i=1

αin ·
(
V ki

h′(ki,h)(x
ki

h′(ki,h))− V
?
h′(ki,h)(x

ki

h′(ki,h))
)

+
n∑
i=1

αin ·
(
V ?
h′(ki,h)(x

ki

h′(ki,h))−Q
?,ki,r
h (x, a)

)
.

(30)

Claim 14 There is an event Ek ⊂ Ewc
k−1 so that Pr[Ek] ≥ 1− pk/K and the following holds under

Ek: for all h ∈ [H], all x ∈ S\Gkh , and all a ∈ Akh(x), letting n = Nk+1
h (x, a) and k1, . . . , kn ≤ k

denote all the previous episodes in which (x, a, h) was previously visited,∣∣∣∣∣
n∑
i=1

αin ·
(
r̂k

i

h −Q
?,ki,b
h (x, a)

)∣∣∣∣∣ ≤
√
H3

n
· log

(
4SAHK

p

)
(31)∣∣∣∣∣

n∑
i=1

αin ·
(
V ?
h′(ki,h)(x

ki

h′(ki,h))−Q
?,ki,r
h (x, a)

)∣∣∣∣∣ ≤
√
H3

n
· log

(
4SAHK

p

)
. (32)

Proof [Proof of Claim 14] For 1 ≤ k′ ≤ k, we let Hk′ denote the σ-algebra generated by all
random variables up to (step H of) episode k′. It is evident that Ewc

k′ is Hk′-measurable for all
k′ ≤ k. Moreover let Hk′,h ⊃ Hk′ denote the σ-algebra generated by all random variables up to
(and including) step h of episode k′ + 1. Notice that k1 − 1, . . . , kn − 1 are all stopping times with
respect to the filtration (Hk′,h)k′≤k. For 1 ≤ i ≤ n, define the filtration Fi by Fi := Hki−1,h.
Moreover, for i ∈ [n], define

Mi := αin ·
(
r̂k

i

h −Q
?,ki,b
h (x, a)

)
· 1[Ewc

ki−1].
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Since ki+1 − 1 ≥ ki, Mi is Fi+1-measurable for each i (as a matter of convention we set kn+1 =
k + 1, so Mi is Fi+1-measurable even for i = n). Moreover, we claim that for each i,

E[Mi|Fi] = αin · E
[(
r̂k

i

h −Q
?,ki,b
h (x, a)

)
· 1[Ewc

ki−1]|Fi
]

= 0. (33)

To see that (33) holds, first note that conditioned on Fi, 1[Ewc
ki−1

] · r̂kih is distributed identically to

1[Ewc
ki−1

] ·
∑h′−1

`=h r`(x`, π
?
` (x`)) where x` is the sequence of states visited starting at xh = x and

following the optimal policy π? and h′ is as small as possible so that xh′ 6∈ Gk
i

h′ (this holds since
item 2 at episode ki−1 gives that under Ewc

ki−1
, the unique action in Ak

i

` (xk
i

` ), for h ≤ ` < h′(ki, h)

is the optimal action, namely π?` (x
ki

` )). Recall from (21) and the fact that ki − 1 is a stopping time

with respect to the filtration Hk′,h that E
[∑h′−1

`=h r`(x`, π
?
` (x`))−Q

?,ki,b
h (x, a)|Fi

]
= 0; then the

fact that Ewc
ki−1

is Fi-measurable gives (33).
Next, for i ∈ [n], define

Ni := αin ·
(
V ?
h′(ki,h)(x

ki

h′(ki,h))−Q
?,ki,r
h (x, a)

)
· 1[Ewc

ki−1].

Since ki+1 − 1 ≥ ki, Ni is Fi+1-measurable for each i. Moreover, we claim that for each i,

E[Ni|Fi] = αin · E
[(
V ?
h′(ki,h)(x

ki

h′(ki,h))−Q
?,ki,r
h (x, a)

)
· 1[Ewc

ki−1]|Fi
]

= 0. (34)

The validity of (34) is verified in the same way as that of (33): conditioned on Fi, 1[Ewc
ki−1

] ·
V ?
h′(ki,h)

(xk
i

h′(ki,h)
) is distributed identically to 1[Ewc

ki−1
] · V ?

h′(xh′), where xh, . . . , xh′ is defined as
above, namely it is the sequence of states visited starting at xh = x and following the optimal policy
π?, and h′ is as small as possible so that xh′ 6∈ Gk

i

h′ (again we use that item 2 holds at episode ki− 1

under Ewc
ki−1

). Now (21) gives that E[V ?
h′(xh′) −Q

?,ki,r
h (x, a)|Fi] = 0 and using this together with

the fact that Ewc
ki−1

is Fi-measurable gives (34).
Equations (33) and (34) give that Mi and Ni are martingales with respect to the filtration Fi+1.

The fact that
∑n

i=1(αin)2 ≤ 2H
n (item 2 of Lemma 46) together with the Azuma-Hoeffding inequal-

ity then gives that, for fixed x, a, h, with probability 1−p/(SAHK), both of the below inequalities
hold:

∣∣∣∣∣
n∑
i=1

αin ·
(
r̂k

i

h −Q
?,ki,b
h (x, a)

)
· 1[Ewc

ki−1]

∣∣∣∣∣ ≤
√√√√H3 · log

(
4SAHK

p

)
n

(35)

∣∣∣∣∣
n∑
i=1

αin ·
(
V ?
h′(ki,h)(x

ki

h′(ki,h))−Q
?,ki,r
h (x, a)

)
· 1[Ewc

ki−1]

∣∣∣∣∣ ≤
√√√√H3 · log

(
4SAHK

p

)
n

. (36)

Let Ek denote the intersection of the probability 1− p/K-event that both (35) and (36) hold for all
x, a, h and the event Ewc

k−1. Then using the inductive hypothesis that Pr[Ewc
k−1] ≥ 1 − p(k − 1)/K,
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we get that Pr[Ek] ≥ 1− pk/K. Thus, under the event Ek, we have that∣∣∣∣∣
n∑
i=1

αin ·
(
r̂k

i

h −Q
?,ki,b
h (x, a)

)∣∣∣∣∣ ≤
√
H3

n
· log

(
4SAHK

p

)
∣∣∣∣∣
n∑
i=1

αin ·
(
V ?
h′(ki,h)(x

ki

h′(ki,h))−Q
?,ki,r
h (x, a)

)∣∣∣∣∣ ≤
√
H3

n
· log

(
4SAHK

p

)
,

completing the proof of the claim.

Next we show that, on the event Ek, both (25) and (26) hold at episode k, for all x, a, h. Note that,
by (22), for all n,

βn/4 ≥
C0

2
·
√
H3ι

n
≥

√
H3

n
· log

(
4SAHK

p

)
as long as the constant C0 is chosen to be large enough. Thus, by (29) and Claim 14, under the
event Ek, we have that

qk+1
h (x, a)−Q?h(x, a)

≥βn/2− βn/4 +

n∑
i=1

αin ·
(
V
ki

h′(ki,h)(x
ki

h′(ki,h))− V
?
h′(ki,h)(x

ki

h′(ki,h))
)
− βn/4

=
n∑
i=1

αin ·
(
V
ki

h′(ki,h)(x
ki

h′(ki,h))− V
?
h′(ki,h)(x

ki

h′(ki,h))
)
≥ 0, (37)

where the final inequality follows from the fact that Ek ⊂ Ewc
k−1 and under Ewc

k−1, (26) holds (in partic-

ular, at step h′(ki, h) for state xk
i

h′(ki,h)
). Using the fact that Qk+1

h (x, a) = mink′≤k+1

{
qk
′
h (x, a)

}
(step 2(b)v of QLearningPreds) together with the fact thatQkh(x, a) ≥ Q?h(x, a) under Ewc

k−1, we

see from (37) thatQk+1
h (x, a) ≥ Q?h(x, a) under the event Ek (for all a ∈ Akh(x)). Since V k+1

h (x) =

maxa∈Akh(x)Q
k+1
h (x, a) (step 2(b)ix of QLearningPreds), it follows that V k+1

h (x) ≥ V ?
h (x) un-

der the event Ek.
Thus we have verified the first inequality in each of (25) and (26) at episode k. The proof

of the second inequality in each follows identically: (30) together with Claim 14 gives that un-
der the event Ek, we have that qk+1

h
(x, a) − Q?h(x, a) ≤ 0 for all x, a, h. Then it follows that

Qk+1
h

(x, a) ≤ Q?h(x, a), and using the fact that V k+1
h (x) = maxa∈Akh(x)Q

k+1
h

(x, a) (step 2(b)viii

of QLearningPreds), it follows that V k+1
h (x) ≤ V ?

h (x) under the event Ek. Thus we have veri-
fied that (24), (25), and (26) hold (for any choice of x, a, h with x 6∈ Gkh and a ∈ Akh(x)) at episode
k, under the event Ek.

Finally we verify that item 2 holds at episode k under the event Ek. Suppose, to the contrary, that
there were some optimal action a? for some state (x, h) so that a? 6∈ Ak+1

h (x). Since Ek ⊂ Ewc
k−1, we

have that a? ∈ Akh(x), meaning that by the definition ofAk+1
h (x) in step 2c of QLearningPreds,

we must have that Qk+1
h (x, a?) < V k+1

h (x). But we have just shown that under the event Ek, weh
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have that V k+1
h (x) ≤ V ?

h (x) andQk+1
h (x, a?) ≥ Q?h(x, a?), which implies thatQ?h(x, a?) < V ?

h (x),
contradicting the fact that a? is an optimal action at (x, h).

Thus we have shown that all statements in items 1 and 2 for episode k hold under the event Ek,
and Ek ⊂ Ewc

k−1 as well as Pr[Ek] ≥ 1−pk/K. Thus Ewc
k ⊃ Ek, meaning that Pr[Ewc

k ] ≥ 1−pk/K,
which completes the proof of the inductive step.

The following lemma shows that the upper and lower confidence bounds satisfy a monotonicity
property with respect to the number of episodes k that have elapsed: in particular, the upper con-
fidence bounds on V ?

h , Q
?
h maintained by QLearningPreds are non-increasing, and the lower

confidence bounds on V ?
h , Q

?
h are non-decreasing. Note that in many previous works studying Q-

learning algorithms (such as Jin et al. (2018); Xu et al. (2021)), these monotonicity properties do
not necessarily hold – it is necessary to modify the Q- and V -value updates in QLearningPreds
appropriately to ensure that Lemma 15 holds.

Lemma 15 For all k ∈ [K], the following inequalities hold for all (x, a, h) ∈ S ×A× [H]:

Q
k+1
h (x, a) ≤Qkh(x, a) (38)

Qk+1
h

(x, a) ≥Qk
h
(x, a) (39)

V
k+1
h (x) ≤V k

h(x) (40)

V k+1
h (x) ≥V k

h(x) (41)

Q̃k+1
h (x, a) ≤Q̃kh(x, a). (42)

Proof Fix any k ∈ [K] and h ∈ [H]. First note that step 2e of QLearningPreds verifies (38)
through (42) for all (x, a) 6= (xkh, a

k
h). So it remains to to consider the case that x = xkh and a = akh.

First note that (38) and (39) are directly verified by steps 2(b)v and 2(b)vii, respectively, of
QLearningPreds. To verify (40), note that Akh(xkh) ⊂ Ak−1

h (xkh), meaning that

V
k+1
h (xkh) = max

a′∈Akh(xkh)
{Qk+1

h (xkh, a
′)} ≤ max

a′∈Ak−1
h (xkh)

{Qk+1
h (xkh, a

′)} ≤ max
a′∈Ak−1

h (xkh)
{Qkh(xkh, a

′)} = V
k
h(xkh),

where the second inequality uses (38) and the last equality uses steps 2(b)viii and 2e of QLearningPreds
(in particular, note that V k

h(xkh) and Qkh(xkh, ·) remain unchanged from the previous episode before
k at which xkh was visited).

Next we verify (41); choose a ∈ Akh(xkh) so that V k+1
h (xkh) = Qk+1

h
(xkh, a), and a′ ∈ Ak−1

h (xkh)

so that V k
h = Qk

h
(xkh, a

′). If (41) did not hold, we would have that Qk+1
h

(xkh, a
′) ≥ Qk

h
(xkh, a

′) >

Qk+1
h

(xkh, a), which must mean that a′ 6∈ Akh(xkh). But this is impossible since Qk+1
h (xkh, a

′) ≥
Qk+1
h

(xkh, a
′) = V k+1

h (xkh), so by step 2c of QLearningPreds a′ must belong to Akh(xkh).
Finally, (42) is verified by step 2(d)ii of QLearningPreds.

C.2. Range functions and clipped range functions

Recall the definition of the range functions ∆V k
h ,∆Q

k
h in Definition 10, as well as the clipped range

functions ∆V̆ k
h ,∆Q̆

k
h in Definition 11. In this section we establish some basic guarantees of these

functions. The first such result, Lemma 16, shows that the range functions are upper bounds on the
gap between the upper and lower estimates for the Q- and V -value functions.
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Lemma 16 For all (x, h, k, a) ∈ S ×A× [H]× [K] for which x 6∈ Gkh and a ∈ Akh(x), the range
functions satisfy the following under the event Ewc:

∆Qkh(x, a) ≥Qkh(x, a)−Qk
h
(x, a)

∆V k
h (x) ≥V k

h(x)− V k
h(x).

Proof The proof closely follows that of (Xu et al., 2021, Lemma B.3). We use reverse induction
on h. The base case h = H + 1 is immediate since QkH+1, Q

k
H+1

, V
k
H+1, V

k
H+1 are defined to be

identically 0 for all k ∈ [K]. Next fix h ≤ H and suppose that the statement of the lemma holds for
all (x, h′, k, a) for which h′ > h. For any (x, k, a) for which x 6∈ Gkh and a ∈ Akh(x), note that, for
n = Nk

h (x, a) and kih = kih(x, a),

Q
k
h(x, a)−Qk

h
(x, a) ≤α0

n ·H +

n∑
i=1

αin · (V
kih
h′(kih,h)

− V kih
h′(kih,h)

)(x
kih
h′(kih,h)

) + βn (43)

≤α0
n ·H +

n∑
i=1

αin ·∆V
kih
h′(kih,h)

(x
kih
h′(kih,h)

) + βn (44)

=∆Qkh(x, a). (45)

where (43) follows from (24) of Lemma 13 (in particular, we use the validity of (24) for episode
k − 1) and (44) uses the inductive hypothesis (since h′(kih, h) > h). Thus the inductive step for
∆Qkh is verified. To lower bound ∆V k

h , we first note that by Definition 10 for any x 6∈ Gkh , there is

some k′ ≤ k so that ∆V k
h (x) = ∆Qk

′
h (x, a?) for a? = arg max

a′∈Ak′h (x)
{Qk

′

h (x, a′)−Qk′
h

(x, a′)}.
Then

V
k
h(x)− V k

h(x) ≤V k′

h (x)− V k′
h (x) (Using (40) of Lemma 15)

=

(
max

a′∈Ak′h (x)
Q
k′

h (x, a′)

)
−

(
max

a′∈Ak′h (x)
Qk
′

h
(x, a′)

)
(46)

≤ max
a′∈Ak′h (x)

{
Q
k′

h (x, a′)−Qk′
h

(x, a′)
}

≤Qk
′

h (x, a?)−Qk′
h

(x, a?)

(For a? = arg max
a′∈Ak′h (x)

{Qk
′

h (x, a′)−Qk′
h

(x, a′)})

≤∆Qk
′
h (x, a?) (Using (45))

=∆V k
h (x), (47)

where (46) follows from steps 2(b)viii and 2(b)ix of QLearningPreds and the final equality (47)
follows from the definition of k′.

Lemma 17 below shows that despite the clipping of the bonus βn in the definition of the clipped
range function (see (15)), the clipped range functions ∆Q̆kh,∆V̆

k
h remain approximate upper bounds

on the range functions ∆Qkh,∆V
k
h .
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Lemma 17 For all (x, h, k, a) ∈ S × A × [H] × [K] for which x 6∈ Gkh and a ∈ Akh(x), the
partially-clipped range functions satisfy the following:

∆Q̆kh(x, a) ≥∆Qkh(x, a)− ∆min

4H

∆V̆ k
h (x) ≥∆V k

h (x)− ∆min

4H
.

Proof The lemma follows in a similar manner to (Xu et al., 2021, Proposition B.5). We prove by
reverse induction on h and forward induction on k that

∆Q̆kh(x, a) ≥ ∆Qkh(x, a)− (H + 1− h)

H
· ∆min

4H
(48)

and

∆V̆ k
h (x) ≥ ∆V k

h (x)− (H + 1− h)

H
· ∆min

4H
. (49)

The base case h = H+1 is immediate since ∆Q̆kH+1,∆Q
k
H+1,∆V̆

k
H+1,∆V

k
H+1 are identically

0. The base case k = 0 is also immediate since ∆Q̆0
h(x, a) = ∆V̆ 0

h (x) = ∆Q0
h(x, a) = ∆V 0

h (x) =
H for all x, a, h ∈ S × A × [H]. To establish the inductive step, note that, for any (x, a, h, k) for
which x 6∈ Gkh and a ∈ Akh(x), letting n = Nk

h (x, a) and kih = kih(x, a) for i ∈ [n], we have

∆Q̆kh(x, a) = min

{
∆Q̆k−1

h (x, a), α0
nH + clip

[
βn|

∆min

4H2

]
+

n∑
i=1

αin ·∆V̆
kih
h′(kih,h)

(x
kih
h′(kih,h)

)

}

≥min

{
∆Qk−1

h (x, a)− (H + 1− h)∆min

4H2
,

α0
nH + βn +

n∑
i=1

αin ·∆V̆
kih
h′(kih,h)

(x
kih
h′(kih,h)

)− ∆min

4H2

}

≥min

{
∆Qk−1

h (x, a)− (H + 1− h)∆min

4H2
,

α0
nH + βn +

n∑
i=1

αin ·∆V
kih
h′(kih,h)

(x
kih
h′(kih,h)

)− (H − h)∆min

4H2
− ∆min

4H2

}
(50)

=∆Qkh(x, a)− (H + 1− h)∆min

4H2
,

where (50) used the inductive hypothesis (in particular, (49) at steps h′ > h). This establishes the
inductive step for (48).

We proceed to lower bound ∆V̆ k
h (x, a). For fixed x, a, set a? = arg maxa′∈Akh(x){Q

k
h(x, a′)−

Qk
h
(x, a′)}. Using Definition 11, the inductive hypothesis, and the validity of (48) for step h at

episode k, we have

∆V̆ k
h (x) = min{∆V̆ k−1

h (x),∆Q̆kh(x, a?)}

≥min{∆V k−1
h (x),∆Qkh(x, a?)} − (H + 1− h)∆min

4H2
,
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which completes the inductive step for (49).

The following straightforward lemma shows that the clipped range functions are smaller than
the range functions.

Lemma 18 For all (x, h, k, a) ∈ S × A × [H] × [K] for which x 6∈ Gkh and a ∈ Akh(x), it holds
that

∆Q̆kh(x, a) ≤ ∆Qkh(x, a) and ∆V̆ k
h (x) ≤ ∆V k

h (x).

Proof The lemma is a straightforward consequence of Definitions 10 and 11 and induction on h, k
(in particular, forward induction on k and reverse induction on h): in particular, for any h, k, having
established the statement for all (h′, k′) with either h′ > h or k′ < k, we have that ∆Q̆kh(x, a) ≤
∆Qkh(x, a) since

α0
nH + clip

[
βn|

∆min

4H2

]
+

n∑
i=1

αin ·∆V̆
kih(x,a)

h′(kih(x,a),h)
(x
kih(x,a)

h′(kih(x,a),h)
)

≤α0
nH + βn +

n∑
i=1

αin ·∆V̆
kih(x,a)

h′(kih(x,a),h)
(x
kih(x,a)

h′(kih(x,a),h)
).

It then follows immediately that ∆V̆ k
h (x) ≤ ∆V k

h (x).

Lemma 19 establishes some monotonicity (with respect to k) properties of the range functions,
analogously to Lemma 15.

Lemma 19 For all (x, a, h, k) so that x 6∈ Gk+1
h and a ∈ Ak+1

h (x), the following inequalities hold
true:

∆Q̆k+1
h (x, a) ≤∆Q̆kh(x, a) (51)

∆V̆ k+1
h (x) ≤∆V̆ k

h (x)

∆Qk+1
h (x, a) ≤∆Qkh(x, a)

∆V k+1
h (x) ≤∆V k

h (x). (52)

Moreover, for all (x, a, h, k) ∈ S ×A× [H]× [K], it holds that

∆Q̊k+1
h (x, a) ≤ ∆Q̊kh(x, a). (53)

Proof The first four inequalities are immediate from Definitions 10 and 11. The final inequality
follows from Definition 12 and (51).

Lemma 20 establishes some further monotonicity properties for QLearningPreds.

Lemma 20 The following statements hold true:

1. When QLearningPreds is run with either DeltaConst or DeltaIncr, for all k ∈
[K], it holds that ∆̂k+1 ≥ ∆̂k.
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2. For any h ∈ [H] and k < k′ for which xkh = xk
′
h , we have τk

′
h ≤ τkh .

Proof We begin with the first statement; it is immediate for DeltaConst. In the case of DeltaIncr,
we note that by (53) of Lemma 19, ∆Q̊kh(x, a) is non-increasing as a function of k for all x, a, h. It
is clear that the same is true of ∆̃Q̊kh(x, a) (defined in step 1 of Algorithm 4). Thus the expression
in (14) is non-decreasing as a function of k.

To see the second statement, note that if τkh = 0, then either |Akh(xkh)| = 1, in which case it
will hold that |Ak′h (xkh)| = 1 (and so τk

′
h = 0), or ∆V k

h (xkh) ≤ ϕh(∆̂k), in which case it holds that
∆V k′

n (xkh) ≤ ϕh(∆̂k) ≤ ϕh(∆̂k′) (and so τk
′

h = 0), by (52) and the first item of this lemma.

Recall that the clip function is defined as follows: for real numbers x, y, we have clip [x| y] =
x · 1[x ≥ y]. We next state some lemmas establishing useful properties of the clip function in
Lemmas 21, 22, and 23 below.

Lemma 21 (Claim A.8, Xu et al. (2021)) For any positive integers a, b, c so that a + b ≥ c and
any x ∈ (0, 1), it holds that

a+ b ≤ clip
[
a| xc

2

]
+ (1 + x)b.

Lemma 22 (Claim A.13, Xu et al. (2021)) For any c, ε > 0, it holds that

∞∑
n=1

clip

[
c√
n

∣∣∣∣ ε] ≤ 4c2

ε
.

Lemma 23 Fix some c > 0 and h ∈ [H]. For n ∈ N, write γn = c/
√
n. Then for any function

θ : S ×A → R≥0, and any subsetW ⊂ [K] of size M := |W|, it holds that

∑
k∈W

clip
[
γnkh

∣∣∣ θ(xkh, akh)
]
≤ min

2c
√
SAM,

∑
(x,a)∈S×A

4c2

θ(x, a)

 ,

where we recall that nkh = Nk
h (xkh, a

k
h).

Proof For (x, a) ∈ S × A, letWx,a := {k ∈ W : (xkh, a
k
h) = (x, a)}. Then, on the one hand, we

have

∑
k∈W

clip
[
γnkh

∣∣∣ θ(xkh, akh)
]

=
∑

(x,a)∈S×A

∑
k∈Wx,a

clip

 c√
nkh

∣∣∣∣∣∣ θ(x, a)


≤

∑
(x,a)∈S×A

4c2

θ(x, a)
,
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where the inequality uses Lemma 22. On the other hand, we have

∑
k∈W

clip
[
γnkh

∣∣∣ θ(xkh, akh)
]

=
∑

(x,a)∈S×A

∑
k∈Wx,a

clip

 c√
nkh

∣∣∣∣∣∣ θ(x, a)


≤

∑
(x,a)∈S×A

|Wx,a|∑
i=1

c√
i

≤
∑

(x,a)∈S×A

2c
√
|Wx,a|

≤2c
√
SAM,

where the final inequality follows since
∑

(x,a)∈S×A |Wx,a| = M .

C.3. Bounding the clipped range functions

For all (h, k) ∈ [H]× [K] so that xkh 6∈ Gkh (so that ∆V k
h (xkh) is defined), write

δ̆kh := ∆V̆ k
h (xkh).

Since akh ∈ Akh(xkh), ∆Q̆kh(xkh, a
k
h) is defined, and we may thus further write

θ̆kh := ∆Q̆kh(xkh, a
k
h).

Per the regret decomposition in Lemma 29, we will bound the regret E
[∑K

k=1(V ?
1 (x1)− V πk

1 (x1))
]

by the quantity
∑

(k,h):akh 6∈A
opt
h,0(xkh) δ̆

k
h (conditioned on the high-probability event Ewc). In this sec-

tion we prove an upper bound on this latter quantity. In fact, we prove a more general result which
upper bounds

∑
(k,h)∈W δ̆kh for various setsW ⊂ [K]× [H]; we will need this more general result

in order to establish improved regret bounds in the case when the predictions Q̃h are accurate.
We begin by defining the type of setW ⊂ [K]× [H] for which we obtain such an upper bound,

namely level-h sets.

Definition 24 Fix h ∈ [H]. We say that a subsetW ⊂ [K] × [H] is a level-h set if the following
conditions hold:

1. For each k ∈ [K], there is at most one element (k̃, h̃) ∈ W so that k̃ = k.

2. For all (k̃, h̃) ∈ W , it holds that both τ k̃
h̃

= 1 and h̃ ≥ h.

3. For each (k̃, h̃) ∈ W for which h̃ > h, for h ≤ h′ < h̃, it holds that xk̃h′ ∈ Gk̃h′ .

For a level-h set, W , we next define its reduction, which replaces each element (k̃, h̃) ∈ W
with h̃ = h with another element (k′, h), where k′ ≤ k̃ is as small as possible subject to (xk̃h, a

k̃
h) =

(xk
′
h , a

k′
h ), and to the constraint that all elements inW are distinct. The reason that we will want to
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perform this operation is that our bounds on confidence intervals (in particular, (24), which mani-
fests in Definitions 10 and 11) are given in terms of the first n times a particular state-action pair
(x, a, h) is visited. The reduction Rh(W) has the property that for any (x, a), if there are m ele-
ments (k̃, h) ∈ Rh(W) with (xk̃h, a

k̃
h) = (x, a), then those values k̃ represent the first m episodes at

which (x, a, h) is visited.

Definition 25 Fix h ∈ [H], and consider a level-h setW ⊂ [K] × [H]. The level-h reduction of
W , denotedRh(W), is defined as follows: starting withW , perform the following procedure:

• For each (x, a) ∈ S × A, let S(x, a) denote the set of elements (k̃, h) ∈ W for which
(xk̃h, a

k̃
h) = (x, a). Remove the elements of S(x, a) fromW , and insert the elements

(k1
h(x, a), h), (k2

h(x, a), h), . . . , (k
|S(x,a)|
h (x, a), h) (54)

intoW . (Recall that, for any s > 0, k1
h(x, a), . . . , ksh(x, a) are the smallest s positive integers

k̃ so that (xk̃h, a
k̃
h) = (x, a).)

Note that the level-h reduction satisfies the following inequality:

max
(k̃,h̃)∈W

{k̃} ≥ max
(k̃,h̃)∈Rh(W)

{k̃}. (55)

The following lemma shows that the level-h reduction of a level-h set is a level-h set.

Lemma 26 Suppose that W ⊂ [K] × [H] is a level-h set for some h ∈ [H]. Then the level-h
reductionRh(W) is also a level-h set.

Proof We first verify that Rh(W) satisfies property 1 of Definition 24. Using the notation of
Definition 25, we must check that, for each (x, a) ∈ S×A, for 1 ≤ i ≤ |S(x, a)|, there is no h̃ > h
so that (kih(x, a), h̃) ∈ W . However, if this were the case for some i and h̃, sinceW is a level-h set,

item 3 of Definition 24 gives us that x = x
kih(x,a)

h ∈ Gk
i
h(x,a)

h . But then we must have τk
i
h(x,a)

h = 0,
which contradicts the fact that for some k̃ ≥ kih(x, a) so that xk̃h = x, τ k̃h = 1 and Lemma 20.

That the conditions of item 2 of Definition 24 hold for Rh(W) follows directly from Lemma
20, andRh(W) satisfies the conditions of item 3 sinceW does.

We are now ready to state and prove Lemma 27, which is the main technical component of the
worst-case (i.e., robustness) regret bounds in item 1 of Theorem 8 and item 1 of Theorem 9. The
first part (item 1) of Lemma 27 bounds

∑
(k,h̃) δ̆

k
h̃

for any level-h set W (for any h ∈ [H]), via a
quantity (denoted by f below) that depends on |W|, the step index h, and the largest episode number
in W . The second part (item 2) of the lemma then extends this upper bound to a somewhat more
general family of subsetsW ⊂ [K]× [H].

Lemma 27 For all h ∈ [H], the following statements hold:
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1. For any level-h setW ⊂ [K]× [H] and any k? satisfying k? ≥ k for all (k, h̃) ∈ W , it holds
that

∑
(k,h̃)∈W δ̆k

h̃
≤ f(|W|, h, k?), where for M ∈ N, h ∈ [H],

f(M,h, k?) :=M ·
(

1 +
1

H

)2

· ϕh+1(∆̂k?)

+

H∑
h′=h

(
1 +

1

H

)2(H−h)

SAH + min

C2

√
H3SAMι,

∑
(x,a)∈S×A

C2
2H

3ι

max

{
∆Q̊k

?

h′ (x,a)

2H , ∆min
4H2

}



≤M · ϕh(∆̂k?) + e2SAH2 + min

e2C2

√
H5SAMι,

∑
(x,a,h′)∈S×A×[H]

e2C2
2H

3ι

max

{
∆Q̊k

?

h′ (x,a)

2H , ∆min
4H2

}
 .

(56)

for the constant C2 = 8C0.

2. Fix any setW ⊂ [K]× [H] (not necessarily a level-h set), so that for all (k, h̃) ∈ W , h̃ = h
and xkh 6∈ Gkh . For any k? so that k? ≥ k for all (k, h) ∈ W , it holds that

∑
(k,h̃)∈W δ̆k

h̃
≤

f(|W|, h̃, k?).

Proof In the proof of the lemma we will often use the following fact: for all (k, h) ∈ [K]× [H] for
which τkh = 1, by Definition 11 and the choice of akh, it holds that

δ̆kh = ∆V̆ k
h (xkh) ≤ ∆Q̆kh(xkh, a

k
h) = θ̆kh. (57)

We will use reverse induction on h to prove the statement of the lemma. The base case h = H+1
is immediate from the convention that δ̆kH+1 = 0 for all k ∈ [K].

Now we treat the inductive case. Fix h ≤ H , and suppose that the lemma statement holds for
all h′ > h. For (x, a) ∈ S × A, let Zh(x, a) denote the set of all episodes k ∈ [K] for which
(xkh, a

k
h) = (x, a) and τkh = 1. For a positive integer m, let Zmh (x, a) denote the set consisting of

the m smallest elements of Zh(x, a) (or all of Zh(x, a), if m > |Zh(x, a)|).
Fix any k, h so that τkh = 1, and write kih := kih(xkh, a

k
h). Then, by Definition 11 and (57),

δ̆kh ≤ θ̆kh =α0
nkh
·H +

nkh∑
i=1

αi
nkh
·
(

∆V
kih
h′(kih,h)

(x
kih
h′(kih,h)

)
)

+ clip

[
βn|

∆min

4H2

]
(58)

=α0
nkh
·H +

nkh∑
i=1

αi
nkh
·
(
δ̆
kih
h′(kih,h)

)
+ clip

[
βn|

∆min

4H2

]
. (59)

Fix any m ∈ N, as well as any (x, a) ∈ S × A. As before we abbreviate kih = kih(x, a). We
next work towards an upper bound on

∑
k∈Zmh (x,a) δ̆

k
h, using (59) for each k ∈ Zmh (x, a). We first

sum the first term of (59) over all k ∈ Zmh (x, a):∑
k∈Zmh (x,a)

H · α0
nkh
≤H

∑
k∈Zh(x,a)

1[nkh = 0] ≤ H, (60)
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where the first inequality follows since α0
0 = 1 and α0

t = 0 for t > 0, and the second inequality
follows since for all k ∈ Zh(x, a), we have (xkh, a

k
h) = (x, a) and there can only be a single episode

in Zh(x, a) during which we first visit (x, a).
The sum of the second and third terms of (59) may be bounded as follows: if nkh > 0,

nkh∑
i=1

αi
nkh
· δ̆k

i
h

h′(kih,h)
+ clip

[
βnkh

∣∣∣ ∆min

4H2

]

≤clip

[
clip

[
βnkh

∣∣∣ ∆min

4H2

]∣∣∣∣ θ̆kh2H

]
+

(
1 +

1

H

)
·
nkh∑
i=1

αi
nkh
· δ̆k

i
h

h′(kih,h)
(61)

≤clip

[
βnkh

∣∣∣max

{
∆min

4H2
,
θ̆kh
2H

}]
+

(
1 +

1

H

)
·
nkh∑
i=1

αi
nkh
· δ̆k

i
h

h′(kih,h)
, (62)

where (61) follows from Lemma 21 and (59) as well as the fact that α0
nkh

= 0 as nkh > 0. In the case

that nkh = 0, we have that
∑nkh

i=1 α
i
nkh
· δ̆k

i
h

h′(kih,h)
+ clip

[
βnkh

∣∣∣ ∆min
4H

]
= 0 since β0 = 0 by definition

(see (11)).
Next, summing (59) over all k ∈ Zmh (x, a), and using (60) and (62), we see that

∑
k∈Zmh (x,a)

δ̆kh ≤H +
∑

k∈Zmh (x,a)

clip

[
βnkh

∣∣∣max

{
∆min

4H2
,
θ̆kh
2H

}]
+

(
1 +

1

H

)
·
nkh∑
i=1

αi
nkh
· δ̆k

i
h

h′(kih,h)


≤H +

∑
k∈Zmh (x,a)

clip

[
βnkh

∣∣∣max

{
∆min

4H2
,
θ̆kh
2H

}]
+

(
1 +

1

H

)
·

∑
k′∈Zmh (x,a)

δ̆k
′

h′(k′,h)

∞∑
t=nk

′
h

α
nk
′
h
t

(63)

=H +
∑

k∈Zmh (x,a)

clip

[
βnkh

∣∣∣max

{
∆min

4H2
,
θ̆kh
2H

}]
+

(
1 +

1

H

)2

·
∑

k′∈Zmh (x,a)

δ̆k
′

h′(k′,h)

(64)

≤H +
∑

k∈Zmh (x,a)

clip

[
βnkh

∣∣∣max

{
∆min

4H2
,
θ̆kh
2H

}]

+

(
1 +

1

H

)2

·

 ∑
k′∈Zmh (x,a): τk

′
h′(k′,h)

=0

ϕh′(k′,h)(∆̂
k′) +

∑
k′∈Zmh (x,a): τk

′
h′(k′,h)

=1

δ̆k
′

h′(k′,h)

 ,

(65)

where (63) follows from exchanging the order of summation, (64) uses item 3 of Lemma 46, and
(65) uses the fact that for all k′ ∈ Zmh (x, a) for which τk

′

h′(k′,h) = 0, we have that δ̆k
′

h′(k′,h) ≤
∆V k′

h′(k′,h)(x
k′

h′(k′,h)) ≤ ϕh′(k′,h)(∆̂
k′) (by Lemma 18), since by definition of h′(k′, h), either h′(k′, h) =

H + 1 or else xk
′

h′(k′,h) 6∈ G
k′

h′(k′,h).
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Consider any level-h set W ⊂ [K] × [H], and consider any k? ≥ max(k̃,h̃)∈W{k̃}. For each

(x, a) ∈ S×A, letm(x, a) denote the number of elements (k̃, h) ∈ W for which (xk̃h, a
k̃
h) = (x, a).

Let M1 be the number of (k̃, h̃) ∈ W so that either h̃ > h or h̃ = h and τ k̃
h′(k̃,h)

= 1, M0 be the

number of (k̃, h̃) ∈ W so that h̃ = h and τ k̃
h′(k̃,h)

= 0, and M := M0 +M1 = |W|. Then

∑
(k̃,h̃)∈W

δ̆k̃
h̃
≤

∑
(k̃,h̃)∈Rh(W)

δ̆k̃
h̃

(By Lemma 19)

=
∑

(x,a)∈S×A

m(x,a)∑
i=1

δ̆
kih(x,a)

h +
∑

(k̃,h̃)∈Rh(W):h̃>h

δ̆k̃
h̃

≤SAH +
∑

(x,a)∈S×A

∑
k∈Zm(x,a)

h (x,a)

clip

[
βnkh

∣∣∣max

{
∆min

4H2
,
θ̆kh
2H

}]
+

∑
(k̃,h̃)∈Rh(W):h̃>h

δ̆k̃
h̃

+

(
1 +

1

H

)2

·

M0 · ϕh+1(∆̂k?) +
∑

(x,a)∈S×A

∑
k′∈Zm(x,a)

h (x,a):τk
′

h′(k′,h)
=1

δ̆k
′

h′(k′,h)


(By (65))

≤SAH +
∑

(x,a)∈S×A

∑
k∈Zm(x,a)

h (x,a)

clip

[
βnkh

∣∣∣max

{
∆min

4H2
,
∆Q̊k

?

h (x, a)

2H

}]

+

(
1 +

1

H

)2

·M0 · ϕh+1(∆̂k?) +

(
1 +

1

H

)2

·
∑

(k̃,h̃)∈W ′
δ̆k̃
h̃
, (66)

where

W ′ :=
{

(k̃, h̃) ∈ Rh(W) : h̃ > h
}
∪
{

(k̃, h′(k̃, h)) : (k̃, h) ∈ Rh(W), τ k̃
h′(k̃,h)

= 1
}
,

so that |W ′| = M1 and max(k̃,h̃)∈W ′{k̃} ≤ k
?. Moreover, in (66), we have used that by Lemma 19,

θ̆kh = ∆Q̆kh(xkh, a
k
h) ≥ ∆Q̊k

?

h (xkh, a
k
h) for all k ∈ Zm(x,a)

h (since τkh = 1 for all k ∈ Zm(x,a)
h (x, a)).

We claim thatW ′ is a level-(h+ 1) set. For any k ∈ [K], if (k, h̃) ∈ Rh(W) for some h̃ > h, then
since Rh(W) is a level-h set (Lemma 26), it must hold that xkh ∈ Gkh , meaning that τkh = 0, and
thus (k, h) 6∈ Rh(W). This verifies thatW ′ satisfies condition 1 of Definition 24. It is immediate
that for all (k̃, h̃) ∈ W ′, we have τ k̃

h̃
= 1 and h̃ ≥ h+ 1 (condition 2), and condition 3 follows from

the corresponding condition for Rh(W) as well as the fact that for all (k̃, h) ∈ Rh(W), for all h′

satisfying h+ 1 ≤ h′ < h′(k̃, h), we have xk̃h′ ∈ Gk̃h′ .
Thus, we may apply the inductive hypothesis for the set W ′, which gives, together with (66)

and Lemma 23, with θ(x, a) = max

{
∆Q̊k

?

h (x,a)
2H , ∆min

4H2

}
and the set W in Lemma 23 set to {k :
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∃(x, a) ∈ S ×A s.t. k ∈ Zm(x,a)
h (x, a)},

∑
(k̃,h̃)∈W

δ̆k̃
h̃
≤SAH + min

8C0

√
H3SAMι,

∑
(x,a)∈S×A

64C2
0H

3ι

max

{
∆Q̊k

?
h (x,a)

2H , ∆min
4H2

}


+M0 ·
(

1 +
1

H

)2

· ϕh+1(∆̂k?) +

(
1 +

1

H

)2

· f(M1, h+ 1, k?)

≤M ·
(

1 +
1

H

)2

· ϕh+1(∆̂k?)

+
H∑

h′=h

(
1 +

1

H

)2(H−h)

·

SAH + min

C2

√
H3SAMι,

∑
(x,a)∈S×A

C2
2H

3ι

∆Q̊k
?

h′ (x, a)




=f(M,h, k?),

thus establishing item 1 of the lemma.
Next we establish item 2 of the lemma. Fix any setW ⊂ [K]× [H] so that for all (k, h̃) ∈ W ,

h̃ = h and xkh 6∈ Gkh . Suppose further that k? satisfies k? ≥ k for all (k, h) ∈ W . Thus, for all
(k, h) ∈ W , either τkh = 1 or δ̆kh = ∆V̆ k

h (xkh) ≤ ϕh(∆̂k). Note also that W ′ := {(k, h) ∈ W :
τkh = 1} is a level-h set. Then, using item 1 on the setW ′,∑

(k,h)∈W

δ̆kh ≤
∑

(k,h)∈W: τkh=0

ϕh(∆̂k) +
∑

(k,h)∈W ′
δ̆kh

≤|W\W ′| · ϕh(∆̂k?) + f(|W ′|, h, k?)
≤f(|W|, h, k?),

as desired.

C.4. Establishing the robustness regret bounds

In this section we prove a regret decomposition in Lemma 29 and combine it with Lemma 27,
which will suffice for proving the robustness regret bounds in Theorems 8 and 9. Lemma 28 below
is needed to prove the regret decomposition bound. It states that the loss incurred by choosing any
non-optimal action akh at a state xkh may be bounded by the clipped value function δ̆kh; the statement
(and proof) is similar to that of in Lemma 4.4 of Xu et al. (2021).

Lemma 28 For all (h, k) ∈ [H]× [K] for which xkh 6∈ Gkh and akh 6∈ A
opt
h,0(xkh), it holds, under the

event Ewc, that

V ?
h (xkh)−Q?h(xkh, a

k
h) ≤ 4 · δ̆kh.

Proof We assume throughout the proof that the event Ewc holds (in particular, this allows us to
apply Lemma 16). Since akh ∈ Akh(xkh), we have Qkh(xkh, a

k
h) ≥ V k

h(xkh), and so

V ?
h (xkh)−Q?h(xkh, a

k
h) ≤ V k

h(xkh)− V k
h(xkh) +Q

k
h(xkh, a

k
h)−Qk

h
(xkh, a

k
h).
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We may bound V k
h(xkh)− V k

h(xkh) as follows:

V
k
h(xkh)− V k

h(xkh)

≤∆V k
h (xkh) (By Lemma 16 and since xkh 6∈ Gkh)

≤∆V̆ k
h (xkh) +

∆min

4
= δ̆kh +

∆min

4
. (By Lemma 17)

By Definition 11, there is some k′ ≤ k so that δ̆kh = ∆V̆ k
h (xkh) = ∆Q̆k

′
h (xk

′
h , a

?) for a? =

arg max
a′∈Ak′h (xkh)

Q
k′

h (x, a′)−Qk′
h

(x, a′). Now we have

Q
k
h(xkh, a

k
h)−Qk

h
(xkh, a

k
h)

≤Qk
′

h (xkh, a
k
h)−Qk′

h
(xkh, a

k
h) (By Lemma 15)

≤Qk
′

h (xkh, a
?)−Qk′

h
(xkh, a

?) (Since akh ∈ Akh(xkh) ⊆ Ak′h (xkh))

≤∆Qk
′
h (xkh, a

?) (By Lemma 16 and since xkh 6∈ Gk
′
h )

≤∆Q̆k
′
h (xkh, a

?) +
∆min

4
(By Lemma 17)

=δ̆kh +
∆min

4
.

Since akh 6∈ A
opt
h,0(xkh), we have that V ?

h (xkh) − Q?h(xkh, a
k
h) ≥ ∆min. Thus ∆min/2 ≤ (V ?

h (xkh) −
Q?h(xkh, a

k
h))/2, meaning that V ?

h (xkh)−Q?h(xkh, a
k
h) ≤ 4 · δ̆kh, as desired.

Next we state and prove the regret decomposition bound which is used to bound the worst-case
regret.

Lemma 29 (Regret decomposition for worst-case bound) For the choice p = 1/(H2K), the
regret of QLearningPreds may be bounded as follows:

K∑
k=1

E
[
V ?

1 (xk1)− V πk

1 (xk1)
]
≤ 1 + 4 · E

 ∑
(k,h):akh 6∈A

opt
h,0(xkh)

δ̆kh

∣∣∣∣∣∣∣ Ewc

 .
Proof Note that

K∑
k=1

E
[
(V ?

1 − V πk

1 )(xk1)
]

=

K∑
k=1

Eπk

[
H∑
h=1

V ?
h (xkh)−Q?h(xkh, a

k
h)

]

≤
K∑
k=1

Eπk

[
H∑
h=1

1[akh 6∈ A
opt
h,0(xkh)] · (V ?

h (xkh)−Q?h(xkh, a
k
h))

]

≤
K∑
k=1

Eπk

[
H∑
h=1

1[akh 6∈ A
opt
h,0(xkh)] · (V ?

h (xkh)−Q?h(xkh, a
k
h)) | Ewc

]
+KH2 · Pr[Ewc].
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Note that Pr[Ewc] ≤ p, which may be bounded above by 1/(H2K) if we choose p = 1/(H2K).
Now let us condition on the event Ewc. Since akh ∈ Akh(xkh) for all h, k, and in the event that

|Akh(xkh)| = 1 it must be the case that Akh(xkh) contains the optimal action at xkh (Lemma 13, item
2) under the event Ewc, akh 6∈ A

opt
h,0(xkh) implies that xkh 6∈ Gkh under Ewc. Thus, conditioned on Ewc,

using Lemma 28, we have that
K∑
k=1

H∑
h=1

1[akh 6∈ A
opt
h,0(xkh)] · (V ?

h (xkh)−Q?h(xkh, a
k
h)) ≤ 4 ·

∑
(k,h):akh 6∈A

opt
h,0(xkh)

δ̆kh.

This completes the proof of the lemma.

To combine Lemma 27 with the regret decomposition result of Lemma 29, we need a way of
upper bounding the left-hand side of (56) from Lemma 27, which looks much like the gap-based
bound quantity in (7) used in Theorems 8 and 9, but with the actual gaps ∆h(x, a) replaced by
the proxies ∆Q̊k

?

h (x, a) ≥ ∆Q̊Kh (x, a). Lemma 30 below shows that the proxies ∆Q̊Kh (x, a) are
indeed upper bounds on the true gaps ∆h(x, a).

Lemma 30 Consider any (x, a, h) ∈ S ×A× [H], and suppose the event Ewc holds. Then

max

{
∆Q̊Kh (x, a)

2H
,
∆min

4H2

}
≥ max

{
∆h(x, a)

8H
,1[Aopt

h,0(x) = {a}] ·
∆min,h(x)

8H
,
∆min

4H2

}
. (67)

Further, for any ∆̃min ≤ ∆min, recalling the definition of ∆̃Q̊kh in step 1 of Algorithm 4, it holds
that

max

{
∆̃Q̊Kh (x, a)

2H
,
∆̃min

4H2

}
≥ max

{
∆h(x, a)

8H
,1[Aopt

h,0(x) = {a}] ·
∆min,h(x)

8H
,
∆̃min

4H2

}
. (68)

Proof Suppose the event Ewc holds (this allows us to apply Lemmas 16 and 28). By definition,
there is some k ∈ [K] so that ∆Q̊Kh (x, a) = ∆Q̆kh(x, a) and either (xkh, a

k
h) = (x, a) and τkh = 1 or

else k = 1. In the case k = 1, we have ∆Q̊Kh (x, a) = H ≥ ∆h(x, a). Otherwise, we consider two
cases:

• Suppose a 6∈ Aopt
h,0(x). Then

∆Q̊Kh (x, a) = ∆Q̆kh(xkh, a
k
h) ≥ δ̆kh ≥

1

4
·∆h(xkh, a

k
h) =

1

4
·∆h(x, a),

where the first inequality follows from (57) and the second inequality follows from Lemma
28.

• Suppose that a is the unique action in Aopt
h,0(x), i.e., that Aopt

h,0(x) = {a}. Since τkh = 1, we
have that x 6∈ Gkh , meaning that there is some sub-optimal action remaining in Akh(x), which
we denote by a′. Then

Q
k
h(xkh, a

′)−Qk
h
(xkh, a

′) ≤Qkh(xkh, a
k
h)−Qk

h
(xkh, a

k
h)

(Since akh maximizes the confidence interval)

≤∆Qkh(xkh, a
k
h) (By Lemma 16)

≤∆Q̆kh(xkh, a
k
h) +

∆min

4
. (By Lemma 17)
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Moreover, as in the proof of Lemma 28, we have, by Lemmas 16 and 17 as well as (57),

V
k
h(xkh)− V k

h(xkh) ≤ ∆V k
h (xkh) ≤ ∆V̆ k

h (xkh) +
∆min

4
≤ ∆Q̆kh(xkh, a

k
h) +

∆min

4
.

Combining the above displays, we obtain

∆min,h(x) ≤∆h(x, a′)

≤(V
k
h(xkh)− V k

h(xkh)) + (Q
k
h(xkh, a

′)−Qk
h
(xkh, a

′))

≤2 ·∆Q̆kh(xkh, a
k
h) +

∆min

2
,

which implies that ∆Q̊Kh (x, a) = ∆Q̆kh(xkh, a
k
h) ≥ ∆min,h(x)

4 .

The above two cases imply that ∆Q̊Kh (x,a)
2H ≥ max

{
∆h(x,a)

8H ,1[Aopt
h,0(x) = {a}] · ∆min,h(x)

8H

}
. The

first inequality, (67), follows immediately.

To establish the second inequality, (68), of the lemma, we simply note that all arguments of this
lemma (including Lemmas 17 and 28) go through without modification if ∆min is replaced with any
lower bound ∆̃min of ∆min in the definitions of ∆V̆ k

h ,∆Q̆
k
h,∆Q̊

k
h.

The following lemma presents the worst-case regret bound for QLearningPreds with the
sub-procedure DeltaConst used to choose ∆̂k.

Lemma 31 Suppose T ≥ SAH3. When given as input any prediction function Q̃, the regret
of QLearningPreds (with DeltaConst and input parameter R ≥ max{SAH3,CM,T,1})
satisfies:

E

[
K∑
k=1

(V ?
1 − V πk

1 )(xk1)

]
≤ O(R).

Proof We first note that the regret decomposition of Lemma 29 gives

K∑
k=1

E
[
V ?

1 (xk1)− V πk

1 (xk1)
]
≤1 + 4 · E

 ∑
(k,h):akh 6∈A

opt
h,0(xkh)

δ̆kh

∣∣∣∣∣∣∣ Ewc

 .
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Recall that under the event Ewc, akh 6∈ A
opt
h,0(xkh) implies that xkh 6∈ Gkh . Thus, conditioned on Ewc,

we may bound 4
∑

(k,h):akh 6∈A
opt
h,0(xkh) δ̆

k
h as follows:

4 ·
∑

(k,h):akh 6∈A
opt
h,0(xkh)

δ̆kh

≤4H ·

K · ϕ1(∆̂K) + e2SAH2 + min

e2C2

√
H5SAKι,

∑
(x,a,h)∈S×A×[H]

e2C2
2H

3ι

max

{
∆Q̊Kh (x,a)

2H , ∆min
4H2

}



(Using item 2 of Lemma 27)

≤O(R) +O(SAH3) +O

min


√
H7SAKι,H6ι ·

 ∑
(x,a,h):a6∈Aopt

h,0(x)

1

∆h(x, a)
+
|Amul|
∆min





(By the definition of ∆̂K in DeltaConst, Algorithm 3, and Lemma 30)

≤O(R) +O (CM,T,1) ≤ O(R),

where the second-to-last inequality follows from the fact that R ≥ SAH3.

The following lemma presents the worst-case regret bound for QLearningPreds with the
sub-procedure DeltaIncr used to choose ∆̂k.

Lemma 32 Suppose T ≥ SAH3. When given as input any prediction function Q̃, the regret
of the QLearningPreds with input parameter λ (used with DeltaIncr and input parameter
∆̃min ≤ ∆min) satisfies:

E

[
K∑
k=1

(V ?
1 − V πk

1 )(xk1)

]
≤ O

min


√
SAH9Tι2

λ
,
H8ι2

λ
·

 ∑
(x,a,h):a6∈Aopt

h,0(x)

1

∆h(x, a)
+
|Amul|
∆̃min



 .

Proof We first note that the regret decomposition of Lemma 29 gives

K∑
k=1

E
[
V ?

1 (xk1)− V πk

1 (xk1)
]
≤1 + 4 · E

 ∑
(k,h):akh 6∈A

opt
h,0(xkh)

δ̆kh

∣∣∣∣∣∣∣ Ewc

 .

The guarantee that ∆̃min ≤ ∆min gives that ∆̃Q̊Kh (x, a) ≤ ∆Q̊Kh (x, a) for all x, a, h. Recall that
under the event Ewc, akh 6∈ A

opt
h,0(xkh) implies that xkh 6∈ Gkh . Thus, conditioned on Ewc, we may
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bound 4
∑

(k,h):akh 6∈A
opt
h,0(xkh) δ̆

k
h as follows:

4 ·
∑

(k,h):akh 6∈A
opt
h,0(xkh)

δ̆kh

≤4H ·

K · ϕ1(∆̂K) + e2SAH2 + min

e2C2

√
H5SAKι,

∑
(x,a,h)∈S×A×[H]

e2C2
2H

3ι

max

{
∆Q̊Kh (x,a)

2H , ∆min
4H2

}



(Using item 2 of Lemma 27)

≤O

SAH3 +KH ·min


H5ι2

λK
·
∑

(x,a,h)

1

max

{
∆̃Q̊Kh (x,a)

2H , ∆̃min
4H2

} ,√SAH8ι2

λK


 .

(By the definition of ∆̂K in DeltaIncr, Algorithm 4 and ∆̃Q̊Kh ≤ ∆Q̊kh)

By Lemma 30 (in particular, (68)), we conclude that

E

[
K∑
k=1

(V ?
1 − V πk

1 )(xk1)

]

≤O

SAH3 + min


√
SAH10Kι2

λ
,
H8ι2

λ
·

 ∑
(x,a,h):a6∈Aopt

h,0(x)

1

∆h(x, a)

+
∑

(x,h):|Aopt
h,0(x)|=1

1

∆min,h(x)
+

∑
(x,a,h)∈Amul

1

∆̃min



 (69)

≤O

SAH3 + min


√
SAH9Tι2

λ
,
H8ι2

λ
·

 ∑
(x,a,h):a6∈Aopt

h,0(x)

1

∆h(x, a)
+
|Amul|
∆̃min



 .

Finally, the fact that T ≥ SAH3 implies that the term SAH3 in the above expression is dominated
by the second term (see also Lemma 47).

We remark that in the proof of Lemma 32, if ∆̃min = |Amul| = 0, then the term |Amul|
∆̃min

can be
interepreted as 0. This follows from the fact that in the inequality (69), the summation in the third
term

∑
(x,a,h)∈Amul

1

∆̃min
is over an empty set.

Appendix D. Proofs for approximate distillation bound

In this section we establish the upper bounds in item 2 of Theorem 8 and item 2 of Theorem 9,
which give a regret bound for QLearningPreds when the predictions Q̃h are an ε-approximate
distillation of Q?h.
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D.1. Bounding the number of exploration episodes

A key challenge in establishing these bounds is to show that QLearningPreds does not spend
too many episodes ignoring the predictions Q̃h as part of the exploration phase. To this end, we
bound the number of episodes k for which σkh = 1 (for each h ∈ [H]). Note that this is not exactly
the same as the number of episodes k for which τkh = 1, and that it is the parameters τkh (not σkh)
which correspond to whether the policy πkh (defined in (12)) engages in exploration or constrained
exploitation. We will show, however (in Claim 42), that those episodes k for which σkh = 0 but
τkh = 1 only contribute a small amount to the overall regret; this is in turn a consequence of Lemma
39, which shows that if there is a non-optimal action in Akh(x), then ∆V k

h (x) (which is used to
define τkh ) and ∆Q̆kh(x) (which is used to define σkh) must be close.

Recall the definition of λ̂ in Theorem 9. Lemma 33 treats the case where DeltaConst is
used to choose ∆̂k; it bounds, for each h ∈ [H], the number of episodes k for which σkh = 1, as a
function of λ̂. The main tool in the proof is Lemma 27, which is used to show that the parameters
δ̆kh = ∆V̆ k

h (xkh) decrease sufficiently fast to ∆V̆ k
h (xkh) ≤ 1

1+ 1
H

· ϕh(∆̂k), i.e., σkh = 0, for most

episodes k.

Lemma 33 Suppose QLearningPreds is run with DeltaConst to choose the values ∆̂k.
Then for all h ∈ [H], the number of episodes k ∈ [K] for which σkh = 1 is at most max{SAH3, λ̂ ·
K}.
Proof Per DeltaConst, we have that ∆̂k = R/(KH) for all k ∈ [K]. Therefore, throughout
the proof of this lemma we will drop the superscript k and write ∆̂ := ∆̂k (which holds for all
k ∈ [K]).

For any (h, k) ∈ [H] × [K], note that σkh = 1 implies that ϕh(∆̂) < (1 + 1/H) ·∆V̆ k
h (xkh) =

(1 + 1/H) · δ̆kh. Write Yh := {k : σkh = 1}. Then for each h, we have that∑
k∈Yh

δ̆kh ≥
1

1 + 1/H
· ϕh(∆̂) · |Yh|.

Using the above inequality and item 2 of Lemma 27 with the setW = {(k, h) : σkh = 1} (which
satisfies the requirement that each (k, h) ∈ W satisfies xkh 6∈ Gkh), we get that

ϕh(∆̂) · |Yh|
1 + 1/H

≤
∑
k∈Yh

δ̆kh

≤|Yh| · (1 + 1/H)2 · ϕh+1(∆̂) + e2SAH2 + min

e2C2

√
H5SA|Yh|ι,

∑
(x,a,h′)∈S×A×[H]

e2C2
2H

3ι

max

{
∆Q̊K

h′ (x,a)

2H , ∆min
4H2

}
 .

Rearranging and using the fact that ϕh( ∆̂
1+1/H )− (1 + 1/H)2 ·ϕh+1(∆̂) ≥ ϕh+1(∆̂)

H , we obtain that

|Yh| · ϕh+1(∆̂)

H
≤ e2SAH2 + min

e2C2

√
H5SA|Yh|ι,

∑
(x,a,h′)∈S×A×[H]

e2C2
2H

3ι

max

{
∆Q̊K

h′ (x,a)

2H , ∆min
4H2

}
 .
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By Lemma 30, it follows that

|Yh| · ϕh+1(∆̂)

H

≤e2SAH2 + min

e2C2

√
H5SA|Yh|ι, 16e2C2

2H
5ι ·

 ∑
(x,a,h′)∈S×A×[H]:a6∈Aopt

h′,0(x)

1

∆h(x, a)
+
|Amul|
∆min




≤min

2e2C2

√
H5SA|Yh|ι, 32e2C2

2H
5ι ·

 ∑
(x,a,h′)∈S×A×[H]:a6∈Aopt

h′,0(x)

1

∆h(x, a)
+
|Amul|
∆min


 ,

(70)

where the second inequality above follows from the fact that, assuming |Yh| ≥ SAH3, both terms
in the minimum are bounded below by e2SAH2. Recall that λ̂ ≥ SAH3/K is defined to be as
small as possible so that

R ≥ min


√
H9SAKι

λ̂
,

1

λ̂
·H7ι ·

 ∑
(x,a,h′)∈S×A×[H]:a6∈Aopt

h′,0(x)

1

∆h(x, a)
+
|Amul|
∆min


 ,

and that ∆̂ = R/(KH) (per DeltaConst). We next consider two cases:

1. R ≥
√

H9SAKι

λ̂
. Then from (70),

|Yh| ≤
2e2C2

√
H7SA|Yh|ι

ϕh+1(∆̂)
≤ 2e2C2

C1
·
√
H7SA|Yh|ι√

H7SAι/(λ̂ ·K)
,

which implies that

√
|Yh| ≤

2e2C2

C1
·
√
λ̂ ·K,

and in turn we get that |Yh| ≤ λ̂ ·K since C1 is chosen so that 2e2C2 ≤ C1.

2. R ≥ 1

λ̂
·H7ι ·

(∑
(x,a,h′)∈S×A×[H]:a6∈Aopt

h′,0(x)
1

∆h(x,a) + |Amul|
∆min

)
. Then from (70),

|Yh| ≤
32e2C2

2H
6ι

ϕh+1(∆̂)
·

 ∑
(x,a,h′)∈S×A×[H]:a6∈Aopt

h′,0(x)

1

∆h(x, a)
+
|Amul|
∆min


≤32e2C2

2

C1
·K · λ̂ ≤ K · λ̂,

where the final inequality follows since C1 is chosen so that 32e2C2
2 ≤ C1.

50



CAN Q-LEARNING BE IMPROVED WITH ADVICE?

For all h ∈ [H], k ∈ [K], let ∆̃V̆ k
h (·), ∆̃Q̆kh(·), ∆̃Q̊kh(·) be defined identically to ∆V̆ k

h (·),∆Q̆kh(·),∆Q̊kh(·)
(Definitions 11 and 12), except the parameter ∆min in the definition of these parameters is replaced
with ∆̃min (note that ∆̃Q̊kh was already defined in this manner in Algorithm 4).

Lemma 34 Suppose QLearningPreds is run with DeltaIncr (Algorithm 4) to choose the
values ∆̂k. As long as ∆̃min ≤ ∆min, then for all h ∈ [H], k ∈ [K], x ∈ S, a ∈ A, we have

max

{
∆̃Q̆kh(x, a),

∆̃min

4H2

}
≤ ∆Q̆kh(x, a) +

∆min

4H
, max

{
∆̃V̆ k

h (x),
∆̃min

4H2

}
≤ ∆V̆ k

h (x) +
∆min

4H
.

Furthermore, the first of the above inequalities holds with ∆̃Q̆kh,∆Q̆
k
h replaced by ∆̃Q̊kh,∆Q̊

k
h,

respectively.

Proof We prove the result by forward induction on k and reverse induction on h, noting that the base
cases k = 1 and h = H + 1 are immediate. To prove the inductive step, fix any (h, k) ∈ [H]× [K],
and suppose that for all h′ > h, k′ < k, it holds that, for all x, a,

max

{
∆̃Q̆k

′
h′(x, a),

∆̃min

4H2

}
≤∆Q̆k

′
h′(x, a) + (H + 1− h) · ∆min

4H2
, (71)

max

{
∆̃V̆ k′

h′ (x),
∆̃min

4H2

}
≤∆V̆ k′

h′ (x) + (H + 1− h) · ∆min

4H2
. (72)

Note that for any non-negative real numbers z, y, ỹ so that y ≥ ỹ, we have max{clip [z| y] , y} ≥
max{clip [z| ỹ] , ỹ}. Fixing some pair (x, a) and letting n = Nk

h (x, a), kih = kih(x, a) for all
i ∈ [n], we note that

max

{
α0
nH + clip

[
βn|

∆̃min

4H2

]
+

n∑
i=1

αin · ∆̃V̆
kih
h′(kih,h)

(x
kih
h′(kih,h)

),
∆̃min

4H2

}

≤α0
nH + max

{
clip

[
βn|

∆̃min

4H2

]
,
∆̃min

4H2

}
+

n∑
i=1

αin · ∆̃V̆
kih
h′(kih,h)

(x
kih
h′(kih,h)

)

≤α0
nH + max

{
clip

[
βn|

∆min

4H2

]
,
∆min

4H2

}
+

n∑
i=1

αin ·
(

∆V̆
kih
h′(kih,h)

(x
kih
h′(kih,h)

) + (H − h) · ∆min

4H2

)

≤α0
nH + clip

[
βn|

∆min

4H2

]
+

n∑
i=1

αin ·∆V̆
kih
h′(kih,h)

(x
kih
h′(kih,h)

) + (H + 1− h) · ∆min

4H2
.

Then (71) for (h′, k′) = (h, k) follows from the definition of ∆Q̆kh, and (72) for (h′, k′) = (h, k)

follows similarly from the definition of ∆V̆ k
h .

The final statement of the lemma follows since (by Definition 12) for all (x, a, h, k), there is
some k′ so that ∆Q̊kh(x, a) = ∆Q̆k

′
h (x, a) and ∆̃Q̊kh(x, a) = ∆̃Q̆k

′
h (x, a).

Lemma 35 establishes the same result as Lemma 33, except for the choice of DeltaIncr in
QLearningPreds. The proof is more subtle, though, because of the more complex nature of the
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parameters ∆̂k in DeltaIncr. In particular, to establish Lemma 35, we need to divide the set of
episodes into different phases, so that within each phase the value of ∆̂k only changes by a small
multiplicative factor.

Lemma 35 Suppose QLearningPreds is run with DeltaIncr (Algorithm 4) to choose the
values ∆̂k. Then for all h ∈ [H], the number of episodes k ∈ [K] for which σkh = 1 is at most
max{SAH3, λ ·K}.

Proof Since ∆Q̆1
h(x, a) = H for all (x, a, h), it holds that ∆̂1 ≥ SAH

λK . Also note that by definition

we have ∆̂k ≤
√

SAH8ι2

λK for all k. Note that
√

SAH8ι2

λK · λK
SAH ≤

√
λKH6ι2. For 0 ≤ i ≤⌈

log1+ 1
H

(
√
λKH6ι2)

⌉
, set ωi :=

(
1 + 1

H

)i · SAHλK .

For (h, k) ∈ [H] × [K], note that σkh = 1 implies that ϕh(∆̂k) < (1 + 1/H) · ∆V̆ k
h (xkh) =

(1 + 1/H) · δ̆kh. For each 1 ≤ i ≤ dlog1+1/H(
√
λKH6ι2)e and h ∈ [H] set Y ih := {k ∈ [K] :

σkh = 1, ωi−1 ≤ ∆̂k ≤ ωi}.
Then for each h ∈ [H] and 0 ≤ i ≤ dlog1+ 1

H
(
√
λKH6ι2)e,

∑
k∈Yih

δ̆kh ≥ |Y ih| ·
ϕh(ωi−1)

1 + 1
H

. (73)

Set Yh :=
⋃
i Y ih. Fix any h ∈ [H] and i satisfying 1 ≤ i ≤ dlog1+ 1

H
(
√
λKH6ι2)e. Using

(73) and the statement of item 2 of Lemma 27 for W = {(k, h) : k ∈ Y ih}, noting that for
k? = maxk∈Yih

{k}, we have ∆̂k? ≤ ωi, we see that

|Y ih| · ϕh(ωi−1)

1 + 1/H

≤
∑
k∈Yih

δ̆kh

≤|Y ih| ·
(

1 +
1

H

)2

· ϕh+1(ωi) + e2SAH2 + min

e2C2

√
H5SA|Y ih|ι,

∑
(x,a,h′)∈S×A×[H]

e2C2
2H

3ι

max

{
∆Q̊k

?

h′ (x,a)

2H , ∆min
4H2

}
 .

Rearranging and using the fact that ϕh(ωi−1)
1+1/H −

(
1 + 1

H

)2 ·ϕh+1(ωi−1) ≥ ϕh+1(ωi−1)/H , we obtain
that

|Y ih|
H
· ϕh+1(ωi−1) ≤e2SAH2 + min

e2C2

√
H5SA|Y ih|ι,

∑
(x,a,h′)∈S×A×[H]

e2C2
2H

3ι

max

{
∆Q̊k

?

h′ (x,a)

2H , ∆min
4H2

}


≤e2SAH2 + min

e2C2

√
H5SA|Y ih|ι,

∑
(x,a,h′)∈S×A×[H]

2e2C2
2H

4ι

max

{
∆̃Q̊k

?

h′ (x,a)

2H , ∆̃min
4H2

}
 ,

(74)
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where the second inequality above follows from ∆̃min ≤ ∆min and therefore, from Lemma 34,

max

{
∆̃Q̊k

?

h′ (x, a)

2H
,
∆̃min

4H2

}
≤ 2H ·max

{
∆Q̊k

?

h′ (x, a)

2H
,
∆min

4H2

}

for all x, a, h′. We now consider two cases, based on the value of ∆̂k? (depending on which of the
two terms in the minimum in (14) in the algorithm DeltaIncr is smaller):

1. Suppose ∆̂k? = H6ι2

λK ·
∑

(x,a,h)
1

max

{
∆̃Q̊k

?
h

(x,a)

2H
,
∆̃min
4H2

} . Note that

ϕh+1(ωi−1) ≥ C1 · ωi−1 ≥ C1/(1 + 1/H) · ωi ≥ C1/(1 + 1/H) · ∆̂k? ≥ C1/2 · ∆̂k? ,
(75)

as well as dlog1+1/H(
√
λKH6ι2)e ≤ 8Hι. Then using (74), we get that

|Y ih| ≤
1

ϕh+1(ωi−1)
·

e2SAH3 +
∑

(x,a,h′)

2e2C2
2H

5ι

max

{
∆̃Q̊k

?

h′ (x,a)

2H , ∆̃min
4H2

}


≤ 1

ϕh+1(ωi−1)
·
∑

(x,a,h′)

4e2C2
2H

5ι

max

{
∆̃Q̊k

?

h′ (x,a)

2H , ∆̃min
4H2

} (76)

≤ 2 · 7Hι
C1 · ∆̂k? · dlog1+1/H(

√
λKH6ι2)e

·
∑

(x,a,h′)

4e2C2
2H

5ι

max

{
∆̃Q̊k

?

h′ (x,a)

2H , ∆̃min
4H2

}
=

56e2C2
2 · λK

C1 · dlog1+1/H(
√
λKH6ι2)e

≤ λK

dlog1+1/H(
√
λKH6ι2)e

, (77)

where (76) follows since max

{
∆̃Q̊k

?

h′ (x,a)

2H , ∆̃min
4H2

}
≤ H for all (x, a, h′), and (77) follows

sinceC1 is chosen so thatC1 ≥ 56e2C2
2 (see (23)). Therefore, |Yh| ≤

∑dlog1+1/H(
√
λKH6ι2)e

i=1 |Y ih| ≤
λK.

2. Otherwise, by the definition of ∆̂k in (14), we have ∆̂k? =
√

SAH8ι2

λK = ∆̂K . Note that (75)
still holds, and so, using (74), we get that, for each i,

|Y ih| ≤
1

ϕh+1(ωi−1)
·
(
e2SAH3 + e2C2

√
H7SA|Y ih|ι

)
≤ 1

ϕh+1(ωi−1)
· 2e2C2

√
H7SA|Y ih|ι (78)

≤
√

8Hι

C1 · ∆̂k? ·
√
dlog1+1/H(

√
λKH7ι2)e

· 2e2C2

√
H7SA|Y ih|ι,
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which implies that√
|Y ih| ≤

6e2C2

C1
· 1√
dlog1+1/H(

√
λKH7ι2)e

·
√
λK,

and since C1 is chosen so that C1 ≥ 6e2C2, we get that |Yh| ≤ λK, as desired.

Thus, in both cases, we obtain that |Zh| ≤ max{SAH3, λK}, completing the proof of the lemma.

D.2. Bounding the value functions Rkh, Q̃kh, Ṽ
k
h

In this section we establish some basic bounds on the value functions Rkh, Q̃
k
h, Ṽ

k
h maintained by

QLearningPreds to refine the predictions Q̃h. Many of the results are analogous to the bounds
onQkh, Q

k
h
, V

k
h, V

k
h proven in Section C.1. However, since the updating procedures are distinct from

those used to update the upper and lower Q- and V -value functions (in particular, we do not use
the multi-step bootstrap of Xu et al. (2021) to update Q̃kh, Ṽ

k
h ), we cannot derive the results in this

section directly from those in Section C.1.
The first result, Lemma 36, is a straightforward consequence of the updates toRkh in QLearningPreds.

Lemma 36 For any (x, a, h, k) ∈ S × A × [H] × [K], suppose the episodes in which (x, a)
was previously taken at step h are denoted k1, . . . , kn < k (in particular, ki = kih(x, a) and
n = Nk

h (x, a)). Then the following identity holds:

(R
k
h −Q?h)(x, a) =α0

n(H −Q?h(x, a)) +
n∑
i=1

αin ·
(

(Ṽ ki

h+1 − V ?
h+1)(xk

i

h+1) +
(

(P̂k
i

h − Ph)V ?
h+1

)
(x, a) + bi

)
.

Proof Note that Rkh(x, a) is updated as follows:

R
k+1
h (x, a) =

{
(1− αn) ·Rkh(x, a) + αn · [rh(x, a) + Ṽ k

h+1(xkh+1) + bn] : (x, a) = (xkh, a
k
h),

R
k
h(x, a) : else,

where n = Nk+1
h (x, a) in the first case above. Iterating the above, we obtain that for any (x, a, h, k),

letting n = Nk
h (x, a),

R
k
h(x, a) = α0

n ·H +
n∑
i=1

αin ·
(
rh(x, a) + Ṽ ki

h+1(xk
i

h+1) + bi

)
. (79)

Using the Bellman optimality equation Q?h(x, a) = rh(x, a) + PhV ?
h+1(x, a) together with the fact

that
∑n

i=0 α
i
n = 1 and the notation (P̂kih Vh+1)(x, a) = Vh+1(xk

i

h+1) for (x, a) = (xk
i

h , a
ki

h ), we see
that, for n = Nk

h (x, a),

Q?h(x, a) = α0
n ·Q?h(x, a) +

n∑
i=1

αin ·
(
rh(x, a) + (Ph − P̂k

i

h )V ?
h+1(x, a) + V ?

h+1(xk
i

h+1)
)
. (80)
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Subtracting (80) from (79) gives the desired result.

The following straightforward lemma, which generalizes item 2 of Lemma 13, shows that any
approximately optimal action a at any state (x, h) either remains in Akh(x) at each episode k or else
there is some other action in Akh(x) with smaller sub-optimality than a.

Lemma 37 Under the event Ewc, for any ε > 0 and every (x, a, h) ∈ S ×A× [H], if it holds that
∆h(x, a) ≤ ε, then for each k ∈ [K], at least one of the following must hold true:

• a ∈ Akh(x); or

• For some a? ∈ Akh(x) (in particular, we may choose a? ∈ Akh(x) maximizing Qk
h
(x, a?)),

∆h(x, a?) ≤ V ?
h (x)−Qk

h
(x, a?) < ε.

Proof If a 6∈ Akh(x), then it must be the case that for some k′ ≤ k, Qk
′

h (x, a) < V k′
h (x); by

Lemma 15, we have V k
h(x) ≥ V k′

h (x), and so some action a? ∈ Akh(x) must satisfy Q?h(x, a?) ≥
Qk
h
(x, a?) = V k

h(x) > Q
k′

h (x, a) ≥ Q?h(x, a). Hence ∆h(x, a?) = V ?
h (x)−Q?h(x, a?) ≤ V ?

h (x)−
Qk
h
(x, a?) < V ?

h (x)−Q?h(x, a) = ∆h(x, a) ≤ ε.

The next lemma, Lemma 38, uses Lemmas 36 and 37 above together with a martingale con-
centration inequality to show bounds on Q̃kh, Ṽ

k
h that hold with high probability. We note that an

additional necessary ingredient is the assumption that the input predictions Q̃h are an ε-approximate
distillation of Q?h; this is used to show that for all k ∈ [K], Q̃kh is also an approximate distillation
with high probability (item 3), which in turn is used to show that Ṽ k

h is approximately lower bounded
by V ?

h (item 4).

Lemma 38 Set p = 1/(H2K). Suppose that Q̃ is an ε-approximate distillation on the optimal
value function Q?h. Then, there is an event Epred with Pr[Epred] ≥ 1− p so that the following hold
under Epred ∩ Ewc:

1. For n ∈ N, recall that βn = 2
∑n

i=1 α
i
nbi. Then for any (x, a, h, k) ∈ S ×A× [H]× [K], it

holds that, for n = Nk
h (x, a),

(R
k
h −Q?h)(x, a) ≤ α0

nH +
n∑
i=1

αin · (Ṽ
kih(x,a)

h+1 − V ?
h+1)(x

kih(x,a)

h+1 ) + βn.

2. For all (x, a, h, k) ∈ S×A× [H]× [K], it holds that Rkh(x, a) ≥ Q?h(x, a)− ε · (H+1−h).

3. For all (x, h, k) ∈ S × [H]× [K], there is some ā ∈ A so that ∆h(x, ā) ≤ ε and Q̃kh(x, ā) ≥
Q?h(x, ā)− ε · (H + 1− h). In particular, Q̃k is an ε · (H + 2− h)-approximate distillation
on Q?.

4. For all (x, h, k) ∈ S × [H]× [K], it holds that Ṽ k
h (x) ≥ V ?

h (x)− ε · (H + 2− h).
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5. For any (h, k) ∈ S ×A× [H]× [K] so that τkh = 0, it holds that, for n = Nk
h (xkh, a

k
h),

(R
k
h −Q?h)(xkh, a

k
h) ≤α0

nH + clip

[
βn|

[∆h(xkh, a
k
h)− 2ε · (H + 1)]+

2H

]
+

(
1 +

1

H

)
·
n∑
i=1

αin · (Ṽ
kih(xkh,a

k
h)

h+1 − V ?
h+1)(x

kih(xkh,a
k
h)

h+1 ).

6. For any (h, k) ∈ [H]× [K] so that τkh = 0, it holds that Ṽ k
h (xkh) ≤ Rkh(xkh, a

k
h) + ε ·H .

Proof Fix any (x, a, h) ∈ S ×A× [H]. Set k0 = 0 and for i ≥ 1,

ki := min
({
k ∈ [K] : k > ki−1 and (xkh, a

k
h) = (x, a)

}
∪ {K + 1}

)
.

LetHk denote the σ-field generated by all random variables up to and including episode k, step H;
the random variable ki is a stopping time of the filtration (Hk)k≥0. Let Fi, i ≥ 0 be the filtration

given by Fi = Hki . Then
(
1[ki ≤ K] · [(P̂kih − Ph)V ?

h+1](x, a)
)K
i=1

is a martingale difference
sequence adapted to the filtration Fi. By the Azuma-Hoeffding inequality and a union bound over
all m ∈ [K], it holds that, for some constant C0 > 0, with probability at least 1− p/(SAH),

∀m ∈ [K] :

∣∣∣∣∣
m∑
i=1

αim · 1[ki ≤ K] · [(P̂kih − Ph)V ?
h+1](x, a)

∣∣∣∣∣ ≤ C0H

4

√√√√ m∑
i=1

(αim)2 · ι ≤ C0

2

√
H3ι

m
,

(81)

where the final inequality follows from item 2 of Lemma 46. Taking a union bound over all
(x, a, h) ∈ S×A× [H], we get that with probability 1−p, for all (x, a, h, k) ∈ S×A× [H]× [K],∣∣∣∣∣

n∑
i=1

αin

[
(P̂k

i
h(x,a)

h − Ph)V ?
h+1

]
(x, a)

∣∣∣∣∣ ≤ C0

2

√
H3ι

n
where n = Nk

h (x, a). (82)

(Here we have applied (81) with m = Nk
h (x, a) ≤ K, and used the fact that 1[kih(x, a) ≤ K] = 1

for i ≤ Nk
h (x, a).) Let Epred denote the probability 1− p event under which (82) holds. From (22)

we have that βn/2 ≥ C0

√
H3ι/n. Then item 1 of the lemma follows from Lemma 36 and (82).

To establish the remaining items of the lemma statement, we use reverse induction on h. The
base case h = H+1 is immediate since as a matter of convention, all ofRkH+1, Q

?
H+1, Q̃

k
H+1Ṽ

k
H+1, V

?
H+1

are identically 0. Assuming that items 2, 3, and 4 hold for step h+ 1, (82) and Lemma 36 give that,
under the event Epred, for each (x, a, h, k) ∈ S ×A× [H]× [K], for n = Ñk

h (x, a),

(R
k
h −Q?h)(x, a) ≥

n∑
i=1

αin ·
(

(Ṽ
k̃ih(x,a)

h+1 − V ?
h+1)(x

k̃ih(x,a)

h+1 ) +

(
(P̂k̃

i
h(x,a)

h − Ph)V ?
h+1

)
(x, a) + bi

)
≥− ε · (H + 1− h) + βn/2−

C0

2

√
H3ι/n

≥− ε · (H + 1− h),

thus establishing item 2 of the lemma at step h.
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To establish item 3 at step h, we use increasing induction on k. The base case k = 1 follows
from the fact that, by assumption, Q̃1 is an ε-approximate distillation on Q?. To establish the
inductive step, we note that by construction, Q̃kh(x, a) = min{Rkh(x, a), Q̃k−1

h (x, a), Q
k
h(x, a)} for

all (x, a) ∈ S ×A. By the inductive hypothesis (on k), for each x ∈ S, there is some ā ∈ A so that
∆h(x, ā) ≤ ε and Q̃k−1

h (x, ā) ≥ Q?h(x, ā)−ε·(H+1−h). Under the event Ewc have thatQkh(x, ā) ≥
Q?h(x, ā), and we have already established (item 2) that Rkh(x, ā) ≥ Q?h(x, ā) − ε · (H + 1 − h),
which implies that Q̃kh(x, ā) ≥ Q?h(x, ā)− ε · (H + 1− h).

Finally we establish item 4 at step h. Again we use increasing induction on k, noting that the
base case k = 1 follows from the fact that, for all x ∈ S, Ṽ 1

h (x) = maxa∈A Q̃
1
h(x, a) ≥ V ?

h (x)− ε,
using that Q̃k is an ε-approximate distillation on Q?. To establish the inductive step (i.e., at episode
k, assuming that item 4 holds at episode k − 1 and step h), note that for any x ∈ S,

Ṽ k
h (x) = max

a′∈Akh(x)

{
max{Q̃kh(x, a′), Qk

h
(x, a′)}

}
(83)

Moreover, since Q̃kh is an ε · (H + 2− h)-approximate distillation on Q?h (item 3 at step h), for any
x, there is some ā ∈ A so that ∆h(x, ā) + [Q?h(x, ā)− Q̃kh(x, ā)]+ ≤ ε · (H + 2− h). By Lemma
37 with (x, a, h) = (x, ā, h), since ∆h(x, ā) ≤ ε · (H + 2 − h), it holds that either ā ∈ Akh(x) or
else there is some a? ∈ Akh(x) so that V ?

h (x)−Qk
h
(x, a?) < ε. If ā ∈ Akh(x), then

max
a′∈Akh(x)

{
max{Q̃kh(x, a′), Qk

h
(x, a′)}

}
≥ Q̃kh(x, ā) ≥ V ?

h (x)− ε · (H + 2− h).

Otherwise, we have

max
a′∈Akh(x)

{
max{Q̃kh(x, akh), Qk

h
(x, akh)}

}
≥ Qk

h
(x, a?) > V ?

h (x)− ε · (H + 2− h).

Thus, by (83) and the inductive hypothesis (on k), it holds that Ṽ k
h (x) ≥ V ?

h (x)− ε · (H + 2− h),
as desired.

Next we establish items 5 and 6 of the lemma. By item 2 of the lemma, under the event Ewc, we
have, for all (h, k) ∈ [H]× [K],

R
k
h(xkh, a

k
h) ≥ Q?h(xkh, a

k
h)− ε ·H ≥ Qk

h
(xkh, a

k
h)− ε ·H.

Further, note that Q̃kh(xkh, a
k
h) ≤ R

k
h(xkh, a

k
h) by the definition of Q̃kh (step 2(d)ii of the algorithm).

Then by (83) and the definition of akh (using that τkh = 0), we have that

R
k
h(xkh, a

k
h) ≥ max{Qk

h
(xkh, a

k
h), Q̃kh(xkh, a

k
h)} − ε ·H

= max
a′∈Akh(xkh)

{
max{Qk

h
(xkh, a

′), Q̃kh(xkh, a
′)}
}
− ε ·H

= Ṽ k
h (xkh)− ε ·H,

establishing item 6. Further, by item 4 of the lemma, we have that Rkh(xkh, a
k
h) ≥ V ?

h (xkh) − 2ε ·
(H + 1). Hence

R
k
h(xkh, a

k
h)−Q?h(xkh, a

k
h) ≥ V ?

h (xkh)−Q?h(xkh, a
k
h)− 2ε · (H + 1) ≥ ∆h(xkh, a

k
h)− 2ε · (H + 1).

The statement of item 5 then follows from item 1 and Lemma 21.
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D.3. Additional bounds on Q- and V -value functions

In this section we prove some additional bounds on V k
h, V

k
h,∆V

k
h ,∆V̆

k
h .

Recall from Lemma 18 that for any (x, h, k, a) for which x 6∈ Gkh , we have ∆V̆ k
h (x) ≤ ∆V k

h (x).
The next lemma (in particular, (85)) shows that a reverse inequality holds up to a factor of 1 + 1/H ,
if there is a non-optimal action in Akh(x). This fact formalizes the intuition that the purpose of
defining the clipped value functions ∆V̆ k

h ,∆Q̆
k
h is to avoid paying for the case when only optimal

actions remain in Akh(x) (in which case one should not suffer any regret no matter which action is
taken at x).

Lemma 39 For any (x, h, k) ∈ S × [H] × [K], if there is a non-optimal action in Akh(x), then,
under the event Ewc, it holds that

∆V̆ k
h (x) ≥

∆min,h(x)

4
(84)

V
k
h(x)− V k

h(x) ≤∆V k
h (x) ≤

(
1 +

1

H

)
·∆V̆ k

h (x). (85)

Proof We begin by verifying (84). Fix x, h, k and set a? = arg maxa∈Akh(x){Q
k
h(x, a)−Qk

h
(x, a)}.

Then by Definition 11, we have that ∆V̆ k
h (x) = min

{
∆V̆ k−1

h (x), ∆Q̆kh(x, a?)
}

. If ∆V̆ k
h (x) =

∆V̆ k−1
h (x), then we may replace k with k−1, noting the existence of a non-optimal action inAkh(x)

implies the existence of a non-optimal action in Ak−1
h (x) (continuing this process may eventually

lead to the case k = 0, for which (84) and (85) hold by the definition ∆V̆ 0
h (x) = H). So we may

assume that ∆V̆ k
h (x) = ∆Q̆kh(x, a?).

Let a′ denote some sub-optimal action in Akh(x). Then under the event Ewc, we must have that
x 6∈ Gkh , meaning that

Q
k
h(x, a′)−Qk

h
(x, a′) ≤Qkh(x, a?)−Qk

h
(x, a?) (Since a? maximizes the confidence interval)

≤∆Qkh(x, a?) (By Lemma 16)

≤∆Q̆kh(x, a?) +
∆min

4
. (By Lemma 17)

Moreover, as in the proof of Lemma 28, we have, by Lemmas 16 and 17,

V
k
h(x)− V k

h(x) ≤ ∆V k
h (x) ≤ ∆V̆ k

h (x) +
∆min

4H
= ∆Q̆kh(x, a?) +

∆min

4H
. (86)

Combining the above displays, we obtain that under the event Ewc,

∆min,h(x) ≤∆h(x, a′)

≤(V
k
h(x)− V k

h(x)) + (Q
k
h(x, a′)−Qk

h
(x, a′))

≤2 ·∆Q̆kh(x, a?) +
∆min

2
,

which implies that ∆V̆ k
h (x) = ∆Q̆kh(x, a?) ≥ ∆min,h(x)

4 . This verifies (84).
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To verify (85), we use the first two inequalities in (86) to get

V
k
h(x)− V k

h(x) ≤ ∆V k
h (x) ≤ ∆V̆ k

h (x) +
∆min

4H
≤ ∆V̆ k

h (x) +
∆min,h(x)

4H
≤
(

1 +
1

H

)
·∆V̆ k

h (x),

where the final inequality follows from (84).

The following simple lemma shows that Ṽ k
h is bounded above by V k

h, which is an immediate
consequence of the definition of Ṽ k

h in QLearningPreds.

Lemma 40 For all x, a, h, k ∈ S ×A× [H]× [K], it holds that Ṽ k
h (x) ≤ V k

h(x).

Proof The definition of Q̃kh at step 2(d)ii ensures that for all x, a, j, k, we have that Q̃kh(x, a) ≤
Q
k
h(x, a). The conclusion of the lemma follows from the fact that V k

h(x) = maxa′∈Akh(x){Q
k
h(x, a′)}

and Ṽ k
h (x) ≤ maxa′∈Akh(x){Q̃kh(x, a′)}.

D.4. Regret bounds for approximate distillation

The below lemma, the main result of this section, shows that in the case that the provided predictions
Q̃ are an ε-approximate distillation of the true value function Q?, then we may bound the regret of
QLearningPreds by a quantity that in general will be smaller than generic worst-case regret
bounds. In particular, the set of states and actions S × A × [H] is replaced with the fooling set
F(ε′/2, ε′), which will be significantly smaller if the predictions Q̃h are very accurate.

Lemma 41 Suppose the event Ewc∩Epred holds, and set ε′ := 4ε·(H+1). If Q̃ is an ε-approximate
distillation on Q? and either Q̃ lacks ε′-fooling optimal actions (Definition 7). Then the following
regret bounds hold:

K∑
k=1

(V ?
1 − V πk

1 )(xk1)

≤O((εH + ε′) · TH) +O

(
H ·

H∑
h=1

K∑
k=1

σkhδ̆
k
h

)

+O

min

√H6Kι · |F(ε(H + 1), ε′)|,
∑

(x,a,h)∈F(ε(H+1),ε′)

H4ι

[∆h(x, a)− 2ε · (H + 1)]+


 .

(87)

Proof Recall from QLearningPreds that the values τkh ∈ {0, 1} are defined as follows: τkh = 0

if xkh ∈ Gkh or ∆V k
h (xkh) ≤ ϕh(∆̂k), and τkh = 1 otherwise. Also recall that we defined values

σkh ∈ {0, 1} for all (h, k) ∈ [H]×[K] as follows: σkh = 0 if xkh ∈ Gkh or ∆V̆ k
h (xkh) ≤ 1

1+ 1
H

·ϕh(∆̂k),

and σkh = 1 otherwise.
For any h ∈ [H], letWσ

h ⊂ [K] denote the set of episodes k for which σkh = 1. Similarly, let
Wτ
h ⊂ [K] denote the set of episodes k for which τkh = 1.
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Set ε′ = 4ε · (H + 1), and for each (x, h) ∈ S × [H], let Aopt
h,ε′(x) denote the set of actions

a′ ∈ A so that V ?
h (x)−Q?h(x, a′) ≤ ε′. Next, for any k ∈ [K], we have that, under the event Ewc,

H∑
h=1

V ?
h (xkh)−Q?h(xkh, a

k
h)

≤ε′H +

H∑
h=1

1[akh 6∈ A
opt
h,ε′(x

k
h)] · (V ?

h (xkh)−Q?h(xkh, a
k
h))

≤(ε · (H + 1) + ε′)H +
H∑
h=1

(1− σkh) · 1[akh 6∈ A
opt
h,ε′(x

k
h)] · (Ṽ k

h (xkh)−Q?h(xkh, a
k
h)) + 4σkh · δ̆kh

(88)

≤(2ε · (H + 1) + 2ε′)H +

H∑
h=1

(1− τkh ) · 1[akh 6∈ A
opt
h,ε′(x

k
h)] · (Rkh(xkh, a

k
h)−Q?h(xkh, a

k
h)) + 4σkh · δ̆kh,

(89)

where (88) follows from item 4 of Lemma 38 and Lemma 28, and (89) follows from item 6 of
Lemma 38 and Claim 42 below.

Claim 42 For any (h, k) ∈ [H]× [K] so that τkh = 1, at least one of the following statements holds
true under the event Ewc:

• Ṽ k
h (xkh) ≤ Q?h(xkh, a

k
h) + ε′.

• ∆V k
h (xkh) ≤

(
1 + 1

H

)
·∆V̆ k

h (xkh) and σkh = 1.

Proof Suppose that the second statement does not hold true. Then either ∆V k
h (xkh) > (1 + 1/H) ·

∆V̆ k
h (xkh) or σkh = 0. First suppose that σkh = 0. Since τkh = 1, we have xkh 6∈ Gkh , meaning that

∆V̆ k
h (xkh) ≤ 1

1+1/H · ϕh(∆̂k). But τkh = 1 also implies that ∆V k
h (xkh) > ϕh(∆̂k), which implies

that ∆V k
h (xkh) > (1 + 1/H) ·∆V̆ k

h (xkh).
Thus we may assume from here on that ∆V k

h (xkh) > (1 + 1/H) · ∆V̆ k
h (xkh). By Lemma 39,

under the event Ewc, Akh(xkh) must consist of only optimal actions. By definition of Ṽ k
h , there is

some a ∈ Akh(xkh) so that Ṽ k
h (xkh) = max{Q̃kh(xkh, a), Qk

h
(xkh, a)}. We know that a must be an

optimal action, i.e., ∆h(xkh, a) = 0. Since the input predictions Q̃ lack ε′-fooling optimal actions
(Definition 7),13 it holds that Q̃h(xkh, a) ≤ V ?

h (xkh) + ε′. Therefore,

Ṽ k
h (xkh) = Q̃kh(xkh, a) ≤ Q̃h(xkh, a) ≤ V ?

h (xkh) + ε′.

Moreover, since akh ∈ Akh(xkh) (and therefore is an optimal action), we have that V ?
h (xkh) =

Q?h(xkh, a
k
h), meaning that Ṽ k

h (xkh)−Q?h(xkh, a
k
h) ≤ ε′, as desired.

We next need the following claim:

Claim 43 For any (k, h) satisfying τkh = 0, if either

13. We remark that this is the only place in the proof where we use that the predictions Q̃ lack ε′-fooling optimal actions.
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1. akh 6∈ A
opt
h,ε′(x

k
h); or

2. (Ṽ k
h − V ?

h )(xkh) > ε′,

then we have that, under the event Ewc, (xkh, a
k
h, h) ∈ F(ε · (H + 1), ε′).

Proof [Proof of Claim 43] For the entirety of the proof of the claim we assume that Ewc holds. We
first suppose that akh 6∈ A

opt
h,ε′(x

k
h). Notice that ∆h(xkh, a

k
h) > ε′ since akh 6∈ A

opt
h,ε′(x

k
h). By item 4 of

Lemma 38 and the choice of akh when τkh = 0,

max{Q̃kh(xkh, a
k
h), Qk

h
(xkh, a

k
h)} = max

a′∈Akh(xkh)

{
max{Q̃kh(xkh, a

′), Qk
h
(xkh, a

′)}
}

= Ṽ k
h (xkh) ≥ V ?

h (xkh)− ε · (H + 1)

(90)

If Qk
h
(xkh, a

k
h) ≥ V ?

h (xkh) − ε · (H + 1), then it holds that Q?h(xkh, a
k
h) ≥ V ?

h (xkh) − ε · (H + 1) >

V ?
h (xkh) − ε′ (since ε′ > ε · (H + 1)), which contradicts akh 6∈ A

opt
h,ε′(x

k
h). Hence Q̃kh(xkh, a

k
h) ≥

V ?
h (xkh)− ε · (H + 1), meaning that Q̃kh(xkh, a

k
h)−Q?h(xkh, a

k
h) ≥ ∆h(xkh, a

k
h)− ε · (H + 1). Since

Q̃h(xkh, a
k
h) = Q̃1

h(xkh, a
k
h) ≥ Q̃kh(xkh, a

k
h), we get that (xkh, a

k
h, h) ∈ F(ε · (H + 1), ε′).

Next suppose that (Ṽ k
h − V ?

h )(xkh) > ε′. Then, again using the choice of akh when τkh = 0,

max{Q̃kh(xkh, a
k
h), Qk

h
(xkh, a

k
h)} ≥ Ṽ k

h (xkh) > V ?
h (xkh) + ε′.

Since Qk
h
(xkh, a

k
h) ≤ Q?h(xkh, a

k
h) ≤ V ?

h (xkh) under the event Ewc, we must have Q̃kh(xkh, a
k
h) >

V ?
h (xkh)+ε′, which implies that Q̃1

h(xkh, a
k
h) > V ?

h (xkh)+ε′, meaning that (xkh, a
k
h, h) ∈ F(ε · (H + 1), ε′).
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Next for any h ∈ [H], we compute∑
k 6∈Wτ

h

1[akh 6∈ A
opt
h,ε′(x

k
h)] · (Rkh(xkh, a

k
h)−Q?h(xkh, a

k
h))

≤
∑

(x,a,h)∈Fh(ε·(H+1),ε′)

∑
i∈[NK+1

h (x,a)]:

kih(x,a)6∈Wτ
h

(R
kih(x,a)

h (x, a)−Q?h(x, a)) (91)

≤H · |Fh(ε(H + 1), ε′)|+
∑

(x,a,h)∈Fh(ε(H+1),ε)

NK+1
h (x,a)∑
i=1

(
1 +

1

H

) i∑
t=1

αti · (Ṽ
kth(x,a)

h+1 − V ?
h+1)(x

kth(x,a)

h+1 )

+clip

[
βi|

[∆h(x, a)− 2ε · (H + 1)]+
4H

])
(92)

≤H · |Fh(ε(H + 1), ε′)|+
∑

(x,a,h)∈Fh(ε(H+1),ε′)

(1 +
1

H

)NK+1
h (x,a)∑
t=1

(Ṽ
kth(x,a)

h+1 − V ?
h+1)(x

kth(x,a)

h+1 ) ·
∞∑
i=t

αti

+

NK+1
h (x,a)∑
i=1

clip

[
βi|

[∆h(x, a)− 2ε · (H + 1)]+
4H

]
≤H · |Fh(ε(H + 1), ε′)|+

∑
(x,a,h)∈Fh(ε(H+1),ε′)

min

{
8C0

√
H3ι ·NK+1

h (x, a),
64C2

0H
4ι

[∆h(x, a)− 2ε · (H + 1)]+

}
(1 + 1/H)2 ·

∑
k∈[K]

(Ṽ k
h+1 − V ?

h+1)(xkh+1), (93)

where (91) uses Claim 43, (92) uses item 5 of Lemma 38 and the fact that (x
kih(x,a)

h , a
kih(x,a)

h ) =
(x, a), and the final inequality (93) uses item 3 of Lemma 46 and Lemma 22. Moreover, we have
that∑
k∈[K]

(Ṽ k
h+1 − V ?

h+1)(xkh+1)

≤K · ε′ +
∑
k∈[K]

1[σkh+1 = 1 and ∆V k
h+1(xkh+1) ≤ (1 + 1/H)δ̆kh+1] · (V k

h+1 − V k
h+1)(xkh+1)

+
∑

k 6∈Wτ
h+1

(Ṽ k
h+1 − V ?

h+1)(xkh+1) (Using Claim 42 and Lemma 40)

≤(2ε′ + ε ·H) ·K +

K∑
k=1

2σkh+1 · δ̆kh+1 +
∑

k 6∈Wτ
h+1

1[(Ṽ k
h+1 − V ?

h+1)(xkh+1) > ε′] ·
(

(R
k
h+1 −Q?h+1)(xkh+1, a

k
h+1)

)
(Using item 6 of Lemma 38 and Lemma 16)

≤(2ε′ + εH) ·K + 2
K∑
k=1

σkh+1δ̆
k
h+1 +

∑
(x,a,h+1)∈Fh+1(ε(H+1),ε′)

NK+1
h+1 (x,a)∑
i=1

(R
kih+1(x,a)

h+1 (x, a)−Q?h+1(x, a)),

(94)
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where (94) follows from Claim 43 (in particular, if τkh+1 = 0 and (Ṽ k
h+1 − V ?

h+1)(xkh+1) > ε′, then
(xkh+1, a

k
h+1, h+ 1) ∈ Fh+1(ε(H + 1), ε′)).

Combining (93) and (94), and iterating for h, h+ 1, . . . ,H , we see that

∑
(x,a,h)∈Fh(ε(H+1),ε′)

NK+1
h (x,a)∑
i=1

(R
kih(x,a)

h −Q?h(xkh, a
k
h))

≤e2KH · (2ε′ + εH) + e2H · |F(ε(H + 1), ε′)|+ 2e2
H∑

h′=h+1

K∑
k=1

σkh′ δ̆
k
h′

+ e2
H∑

h′=h

∑
(x,a,h′)∈Fh′ (ε(H+1),ε′)

min

{
8C0

√
H3ι ·NK+1

h′ (x, a),
64C2

0H
4ι

[∆h′(x, a)− 2ε · (H + 1)]+

}

≤e2KH · (2ε′ + εH) + e2H · |F(ε(H + 1), ε′)|+ 2e2
H∑

h′=h+1

K∑
k=1

σkh′ δ̆
k
h′

+ e2
H∑

h′=h

min

8C0

√
H3Kι · |Fh′(ε(H + 1), ε′)|,

∑
(x,a,h′)∈Fh′ (ε(H+1),ε′)

64C2
0H

4ι

[∆h′(x, a)− 2ε · (H + 1)]+


≤e2KH · (2ε′ + εH) + e2H · |F(ε(H + 1), ε′)|+ 2e2

H∑
h′=h+1

K∑
k=1

σkh′ δ̆
k
h′

+ min

8C0e
2
√
H4Kι · |F(ε(H + 1), ε′)|,

∑
(x,a,h)∈F(ε(H+1),ε′)

64e2C2
0H

4ι

[∆h(x, a)− 2ε · (H + 1)]+

 .

Combining this with (89) and (91) gives that∑
k∈[K]

(V ?
1 − V πk

1 )(x1)

≤HK(2ε(H + 1) + 2ε′) +HK · Pr[Ewc ∩ Epred] + e2KH2 · (2ε′ + εH) + e2H2 · |F(ε(H + 1), ε′)|

+ min

8C0e
2
√
H6Kι · |F(ε(H + 1), ε′)|,

∑
(x,a,h)∈F(ε(H+1),ε′)

64e2C2
0H

5ι

[∆h(x, a)− 2ε · (H + 1)]+


+ 2e2H

H∑
h=1

K∑
k=1

σkhδ̆
k
h

≤O((εH + ε′) · TH) +O

min

√H6Kι · |F(ε(H + 1), ε′)|,
∑

(x,a,h)∈F(ε(H+1),ε′)

H4ι

[∆h(x, a)− 2ε · (H + 1)]+




+ 2e2H

H∑
h=1

K∑
k=1

σkhδ̆
k
h,

where in the final inequality we use that H2 · |F(ε(H + 1), ε′)| ≤
√
H6Kι · |F(ε(H + 1), ε′)|

as long as K ≥ |F(ε(H + 1), ε′)|. (For K < |F(ε(H + 1), ε′)| the trivial regret bound of KH is
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bounded above by
√
H6Kι · |F(ε(H + 1), ε′)|.) Moreover, we also use thatH2·|F(ε(H + 1), ε′)| ≤∑

(x,a,h)∈F(ε(H+1),ε′)
H4ι

[∆h(x,a)−2ε·(H+1)]+
in the final line. This verifies the statement (87) of the the-

orem.

Note that Lemma 41 does not quite establish the guarantee of the improved regret bounds of
Theorems 8 or 9 when the predictions Q̃ are an approximate distillation of Q?. In particular, we
have not yet shown how to bound the term

∑H
h=1

∑K
k=1 σ

k
hδ̆
k
h. We do so in Lemmas 44 and 45

below; the first treats the case where QLearningPreds uses DeltaConst, and the second
treats the case where QLearningPreds uses DeltaIncr.

Lemma 44 For any prediction function Q̃, the algorithm QLearningPreds (with DeltaConst)
has the following guarantee under the event Ewc:

H∑
h=1

K∑
k=1

σkh · δ̆kh ≤ O

min


√
λ̂ ·H8SATι,H7ι ·

 ∑
(x,a,h)∈S×A×[H]:a6∈Aopt

h,0(x)

1

∆h(x, a)
+
|Amul|
∆min



 .

Proof Suppose that Ewc holds. Recall that δ̆kh is only defined for h, k so that xkh 6∈ Gkh; but if
xkh ∈ Gkh , then σkh = 0, meaning that the sum

∑H
h=1

∑K
k=1 σ

k
h · δ̆kh is well-defined.

Further, recall that λ̂ is chosen so that 1

λ̂
· C

M,T,λ̂
= R. We claim that λ̂ ≥ SAH3/K; to see

this, note that 1
λ · CM,T,λ is a decreasing function of λ, and that for the choice λ0 = SAH3/K =

SAH4/T ,

1

λ0
CM,T,λ0 ≥ min

{
TH2,

H7T

SAH4
· SAH

2H

}
≥ T/2 ≥ R.

Finally note that ∆̂K = R
KH =

C
M,T,λ̂

λ̂·KH
.
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For each h ∈ H, set Yh := {k : σkh = 1}. Lemma 33 gives that |Yh| ≤ max{SAH3, λ̂ ·K} ≤
λ̂ ·K, where we use that λ̂ is chosen so that λ̂K ≥ SAH3. By item 2 of Lemma 27,

H∑
h=1

K∑
k=1

σkhδ̆
k
h

=
H∑
h=1

∑
k∈Yh

δ̆kh

≤
H∑
h=1

|Yh| · ϕh(∆̂) + e2SAH2 + min

e2C2

√
H5SA|Yh|ι,

∑
(x,a,h′)∈S×A×[H]

e2C2
2H

3ι

max

{
∆Q̊K

h′ (x,a)

2H , ∆min
4H2

}



≤e2SAH3 + min

e2C2

√
H7SAλ̂Kι,

∑
(x,a,h)∈S×A×[H]

e2C2
2H

4ι

max

{
∆Q̊Kh (x,a)

2H , ∆min
4H2

}


+O(λ̂ ·K) ·min


√
H7SAι

λ̂ ·K
,

1

λ̂ ·K
·H6ι ·

 ∑
(x,a,h′)∈S×A×[H]:a6∈Aopt

h′,0(x)

1

∆h(x, a)
+
|Amul|
∆min


 .

By Lemma 30 (which we can use since Ewc holds) and Lemma 47 (together with λ̂ ≥ SAH3/K),
it therefore follows that

H∑
h=1

K∑
k=1

σkhδ̆
k
h

≤O

min


√
λ̂ ·H8SATι,H7ι ·

 ∑
(x,a,h)∈S×A×[H]:a6∈Aopt

h,0(x)

1

∆h(x, a)
+
|Amul|
∆min



 .

Lemma 45 For any prediction function Q̃, the algorithm QLearningPreds given some param-
eter λ ≥ SAH3/K (with DeltaIncr and some input parameter ∆̃min ≤ ∆min) has the following
guarantee under the event Ewc:

H∑
h=1

K∑
k=1

σkhδ̆
k
h ≤O

min


√
λ · SAH9Tι2, H9ι2 ·

 ∑
(x,a,h):a6∈Aopt

h,0(x)

1

∆h(x, a)
+
|Amul|
∆̃min



 .

Proof For each h ∈ H, set Yh := {k : σkh = 1}. Lemma 35 gives that |Yh| ≤ max{SAH3, λ ·K}.
Recall that the input parameter λ was assumed to satisfy λ ≥ SAH3/K, meaning that |Yh| ≤ λK.
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By item 2 of Lemma 27,
H∑
h=1

K∑
k=1

σkhδ̆
k
h

=

H∑
h=1

∑
k∈Yh

δ̆kh

≤
H∑
h=1

|Yh| · ϕh(∆̂K) + e2SAH2 + min

e2C2

√
H5SA|Yh|ι,

∑
(x,a,h′)∈S×A×[H]

e2C2
2H

3ι

max

{
∆Q̊K

h′ (x,a)

2H , ∆min
4H2

}



≤e2SAH3 + min

e2C2

√
H7SAλKι,

∑
(x,a,h)∈S×A×[H]

e2C2
2H

4ι

max

{
∆Q̊Kh (x,a)

2H , ∆min
4H2

}


+O(1) ·H · λK ·min


H6ι2

λ ·K
·
∑

(x,a,h)

1

max

{
∆̃Q̊Kh (x,a)

2H , ∆̃min
4H2

} ,√SAH8ι2

λ ·K

 .

By Lemma 30 (which we can apply since Ewc holds) and Lemma 47 (using that λ ≥ SAH3/K), it
follows that

H∑
h=1

K∑
k=1

σkhδ̆
k
h ≤O

min


√
λ · SAH9Tι2, H9ι2 ·

 ∑
(x,a,h):a6∈Aopt

h,0(x)

1

∆h(x, a)
+
|Amul|
∆̃min



 .

Appendix E. Proofs of main theorems

We begin by proving Theorem 9, restated below for convenience.

Theorem 9 (Restated) The algorithm QLearningPredswith the DeltaConst subroutine sat-
isfies the following two guarantees, when given as input a parameter R ∈ [SAH3, T

SA ] and predic-
tions Q̃:

1. If R ≥ CM,T,1, then for an arbitrary choice of input predictions Q̃, the regret of QLearningPreds
is O(R).

2. Fix any ε > 0, and set ε′ = 4ε · (H + 1). When the input predictions Q̃ are an ε-approximate
distillation of Q? (Definition 5) and lack ε′-fooling optimal actions (Definition 7), the regret
of QLearningPreds is

O

C
M,T,λ̂

+ ε′TH + min

√H5Tι · |F(ε′/2, ε′)|,
∑

(x,a,h)∈F(ε′/2,ε′)

H4ι

[∆h(x, a)− ε′/2]+


 ,

(95)
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where λ̂ ∈ (0, 1) is chosen so that 1

λ̂
· C

M,T,λ̂
= R.

Proof We begin with the proof of item 1. It is without loss to assume T ≥ SAH3; otherwise,
by similar reasoning to that in Lemma 47, the trivial regret bound of T suffices. Now, item 1 is an
immediate consequence of Lemma 31.

We next prove item 2. The event Ewc ∩ Epred does not hold with probability at most 2p =
2/(H2K), which adds at most T · 2p = O(1) to the regret bound. Thus it suffices to bound the
regret conditioned on Ewc ∩ Epred. Then item 2 is an immediate consequence of Lemmas 41 and
44.

We next prove Theorem 8; below we present the version of the theorem which does not require
that each state has a unique optimal action. In this more general setting, the subroutine DeltaIncr
of QLearningPreds requires as input a parameter ∆̃min which is guaranteed to be a lower bound
on ∆min. The resulting regret bounds will depend on a modified version of the λ-complexity CM,T,λ

(see (7)) with the parameter ∆̃min replacing ∆min; more precisely, we define

C
M,T,λ,∆̃min

:= min


√
λ · TSAH8ι, H7ι ·

 ∑
(x,a,h)∈S×A×[H]:a6∈Aopt

h,0(x)

1

∆h(x, a)
+
|Amul|
∆̃min




(96)

In the special case that |Amul| = 0 (i.e., each state has a unique optimal action) and ∆̃min = 0, the
quantity 0

0 in (96) is to be interpreted as 0.

Theorem 8 (Full version) Suppose we run algorithm QLearningPreds (Algorithm 1) with in-
put parameter λ ∈ [0, 1], together with the DeltaIncr subroutine (Algorithm 4) with parameter
∆̃min which is guaranteed to satisfy ∆̃min ≤ ∆min. Then, when given predictions Q̃, the algorithms
satisfy the following guarantees:

1. Suppose λ ≥ SAH4

T . Then for an arbitrary choice of input predictions Q̃, the regret of
QLearningPreds is

O
( ι
λ
· C

M,T,λ,∆̃min

)
.

2. Fix any ε > 0, and set ε′ = 4ε · (H + 1). When the input predictions Q̃ are an ε-
approximate distillation of Q? (Definition 5) and lack ε′-fooling actions (Definition 7), the
regret of QLearningPreds is

O

H2ι · C
M,T,λ,∆̃min

+ ε′TH + min

√H5Tι · |F(ε′/2, ε′)|,
∑

(x,a,h)∈F(ε′/2,ε′)

H4ι

[∆h(x, a)− ε′/2]+


 .

(97)

Proof We begin with the proof of item 1. As in the proof of Theorem 9, it is without loss to assume
that T ≥ SAH3, as otherwise the trivial regret bound of T suffices. Now, item 1 is an immediate
consequence of Lemma 32.

67



GOLOWICH MOITRA

We next prove item 2. The event Ewc ∩ Epred does not hold with probability at most 2p =
2/(H2K), which adds at most T · 2p = O(1) to the regret bound. Thus it suffices to bound the
regret conditioned on Ewc ∩ Epred. Then item 2 is an immediate consequence of Lemmas 41 and
45.

Appendix F. Miscellaneous lemmas

The following simple lemma establishes some properties of the parameters αin (defined in (10)).

Lemma 46 (Lemma 4.1, Jin et al. (2018)) The real numbers αin satisfy the following properties:

1. For every n ≥ 1, 1√
n
≤
∑n

i=1
αin√
i
≤ 2√

n
.

2. For every n ≥ 1, maxi∈[n] α
i
n ≤ 2H

n and
∑n

i=1(αin)2 ≤ 2H
n .

3. For every i ≥ 1,
∑∞

n=i α
i
n = 1 + 1

H .

4. For every n ≥ 1, it holds that
∑n

i=1 α
i
n = 1.

Recall the definition of CM,T,λ in (7)

Lemma 47 For any λ ≥ SAH3

K , it holds that

CM,T,λ ≥ SAH6/2.

Proof Since λ ≥ SAH3/K = SAH4/T , it holds that
√
λ · TSAH8ι ≥ SAH6.

Next, it is evident that ∑
(x,a,h):a6∈Aopt

h,0(x)

1

∆h(x, a)
+
|Amul|
∆min

≥ SAH

2H
≥ SA/2,

since for each (x, h), all but one of the actions a in A are either counted in the form of 1
∆h(x,a) ≥

1/H or 1/∆min ≥ 1/H .
Putting the above statements together gives the desired bound.

Appendix G. Proof for bandit case

In this section we prove Proposition 4, which specializes our main results to the case of multi-
armed bandits. Though our bounds for multi-armed bandits are superseded by our regret bounds
for online learning in MDPs, we present a separate proof for the bandit case to provide intuition
about our techniques. Following Definition 5, we say that a prediction function Q̃ : A → R is an
ε-approximate distillation (in the bandit setting) if there is some arm ã ∈ A so that

(Q?(a?)−Q?(ã)) + [Q?(ã)− Q̃(ã)]+ ≤ ε, (98)

where a? denotes the optimal arm (assumed to be unique).

68



CAN Q-LEARNING BE IMPROVED WITH ADVICE?

Algorithm 5: BanditPreds
Input: Action space A, number of time steps T , predictions Q̃ : A → [0, 1], parameter λ ∈ [0, 1]

and δ > 0.

1. For each a ∈ A, initialize Q1
(a) =∞, Q1(a) = −∞, N1(a) = 0, and Q̃1(a) = Q̃(a).

2. For 1 ≤ t ≤ T :

(a) If t ≤ λ · T :

i. Select action at := arg maxa∈A{Q
t
(a)}.

(b) Else (i.e., if t > λ · T ):

i. Select action at := arg maxa∈A

{
Q̃t(a)

}
.

(c) For each action a ∈ A, letN t+1(a) denote the number of times a was taken up to (and
including) step t.

(d) For each action a ∈ A, let µ̂t+1(a) denote the mean of all rewards received when
taking a up to step t (if N t+1(a) = 0, set µ̂t+1(a) = 0).

(e) Update the Q-value functions as follows: for each a ∈ A, set

Q
t+1

(a) :=µ̂t+1(a) +

√
2 log 1/δ

N t+1(a)

Qt+1(a) :=µ̂t+1(a)−

√
2 log 1/δ

N t+1(a)

Q̃t+1(a) := max
{
Qt+1(a),min

{
Q
t+1

(a), Q̃(a)
}}

.
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Proposition 4 There is an algorithm (BanditPreds, Algorithm 5) which satisfies the following
two guarantees, when given as input a parameter λ ∈

(
A
T , 1

)
and predictions Q̃:

1. Fix any ε > 0. If the predictions Q̃ are an ε-approximate distillation of Q?, then the regret is
Õ(εT +

√
|G| · T +

√
λ ·AT ), where

G :=
{
a ∈ A\{a?} : Q̃(a) ≥ Q?(a?)− ε

}
.

2. For an arbitrary choice of Q̃, the regret is Õ
(√

TA
λ

)
.

For convenience, for each t ≤ T , we define

Ṽ t := max
a∈A

{
Q̃t(a)

}
(99)

By construction of the algorithm BanditPreds, note that Q̃t(at) = Ṽ t. We define the following
“good event” E0:

E0 =

{
∀t ≤ T, ∀a ∈ A,

∣∣Q?(a)− µ̂t(a)
∣∣ ≤√2 log 1/δ

N t(a)

}
.

Note that under the event E0, Q?(a) ∈ [Qt(a), Q
t
(a)] for all a ∈ A.

Lemma 48 Suppose the event E0 holds. Then for any sub-optimal action a 6= a?:

1. If a is taken at step t ≤ λT , then N t(a) ≤ 8 log 1/δ
∆(a)2 .

2. If a is taken at step t > λT and Q̃ is an ε-approximate distillation of Q?, and if ∆(a) > ε,
then Q̃(a) ≥ Q?(a?)− ε. In such a case, we have N t(a) ≤ 8 log 1/δ

(∆(a)−ε)2 .

Proof If a is taken when t ≤ λT , we must have that Qt(a) ≥ Qt(a?) ≥ Q?(a?), meaning that

Q?(a) ≥ Qt(a)−

√
8 log 1/δ

N t(a)
≥ Q?(a?)−

√
8 log 1/δ

N t(a)
,

from which the first point follows.
Choose ã satisfying (98). Then for any t, under the event E0,

Q̃t(ã) ≥ min{Q?(ã), Q̃(ã)} ≥ Q?(a?)− ε,

where the final inequality follows from (98).
If a is taken when t > λT , then we must have that Q̃t(a) ≥ Q̃t(ã) ≥ Q?(a?) − ε. Since

∆(a) > ε, we have that Qt(a) ≤ Q?(a) < Q?(a?) − ε, meaning that Q̃t(a) ≤ Q̃(a), and hence

Q̃(a) ≥ Q?(a?)− ε. In such a case, we have Qt(a) ≥ Q̃t(a) ≥ Q?(a?)− ε, meaning that

Q?(a) ≥ Qt(a)−

√
8 log 1/δ

N t(a)
≥ Q?(a?)−

√
8 log 1/δ

N t(a)
− ε,

from which the desired inequality follows.
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Lemma 49 Suppose the event E0 holds. Then if ∆ > 0 satisfies 16A log 1/δ
∆2 ≤ λT , in the first

16A log 1/δ
∆2 steps, some action a with ∆(a) ≤ ∆ has been taken at least 8 log 1/δ

∆2 times.

Proof By item 1 of Lemma 48, under the event E0, each action a ∈ A is taken at most 8 log 1/δ
∆(a)2 time

steps in time steps t ≤ λT − 1. Let A∆ denote the number of actions a with ∆(a) ≤ ∆. Then by
the pigeonhole principle, in the first∑

a∈A:∆(a)>∆

8 log 1/δ

∆(a)2
+

8A∆ log 1/δ

∆2
≤ 8A log 1/δ

∆2
≤ λT − 1

steps, some action a with ∆(a) ≤ ∆ has been taken at least 8 log 1/δ
∆2 times.

Proof [Proof of Proposition 4] We set δ = 1/(AT 2) in BanditPreds (Algorithm 5). It is straight-
forward from a Chernoff bound and union bound that Pr(E0) ≥ 1− δ ·TA. Therefore, the expected
regret is bounded above by

E

[∑
a∈A

∆(a) ·NT+1(a)

]
≤δTA · T + E

[
1[E0] ·

∑
a∈A

∆(a) ·NT+1(a)

]

≤1 + E

[∑
a∈A

∆(a) ·NT+1(a)|E0

]
,

where the second inequality uses δ ≤ 1/(AT 2).
We begin by bounding the regret in the event that Q̃ is an ε-approximate distillation of Q? (i.e.,

item 1 of Proposition 4). By item 2 of Lemma 48, any arm a with ∆(a) ≥ 2ε that is pulled at some
step t > λT must satisfy Q̃(a) ≥ Q?(a?)− ε, i.e., a ∈ G. Moreover, for such arms a, we have that
NT+1(a) ≤ 32 log 1/δ

∆(a)2 . Therefore, under the event E0, we have∑
a∈A

∆(a) ·NT+1(a) ≤2εT +
∑
a∈G

∆(a) ·NT+1(a) +
∑
a∈A\G

∆(a) ·NλT+1(a)

≤2εT +
√
λTA log 1/δ +

∑
a∈A\G:∆(a)>

√
A log 1/δ/(λT )

8 log 1/δ

∆(a)

+ 1[|G| > 0] ·

√T |G| log 1/δ +
∑

a∈G:∆(a)>
√
|G| log 1/δ/T

32 log 1/δ

∆(a)


≤O

(
εT +

√
λTA log 1/δ +

√
T |G| log 1/δ

)
.

Next we prove item 2 (the robustness claim) of the proposition. Set ∆λ :=

√
16A log 1/δ

Tλ . Then
by Lemma 49, in the first λT steps of BanditPreds, some action ā with ∆(ā) ≤ ∆λ has been
taken at least 8 log 1/δ

∆2
λ

= Tλ
2A times. Hence

QλT+1(ā) ≥ Q?(a?)−∆(ā)−
√

16A log 1/δ

Tλ
≥ Q?(a?)− 2∆λ.
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Therefore, for all t > λT , maxa∈A{Q̃t(a)} ≥ maxa∈A{Qt(a)} ≥ Q?(a?) − 2∆λ. Hence, for

any action a ∈ A that is taken at step t > λT and satisfies ∆(a) > 2∆λ, we have that Qt(a) ≥
Q?(a?)− 2∆λ, meaning that

Q?(a) ≥ Qt(a)−

√
8 log 1/δ

N t(a)
≥ Q?(a?)−

√
8 log 1/δ

N t(a)
− 2∆λ,

meaning that N t(a) ≤ 8 log 1/δ
(∆(a)−2∆λ)2 . Hence, under the event E0, we have

∑
a∈A

∆(a) ·NT+1(a) ≤4∆λ · T +
∑

a∈A:∆(a)>4∆λ

32 log 1/δ

∆(a)
≤ O

(√
TA log 1/δ

λ

)
.
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