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Abstract

The recently released Python package crepes can be used to generate both conformal
regressors, which transform point predictions into prediction intervals for specified levels
of confidence, and conformal predictive systems, which transform the point predictions
into cumulative distribution functions (conformal predictive distributions). The crepes
package implements standard, normalized and Mondrian conformal regressors and predic-
tive systems, and is completely model-agnostic, using only the residuals for the calibration
instances, possibly together with difficulty estimates and Mondrian categories as input,
when forming the conformal regressors and predictive systems. This allows the user to
easily incorporate and evaluate novel difficulty estimates and ways of forming Mondrian
categories, as well as combinations thereof. Examples from using the package are given,
illustrating how to incorporate some standard options for difficulty estimation, forming
Mondrian categories and the use of out-of-bag predictions for calibration, through helper
functions defined in a separate module, called crepes.fillings. The relation to other
software packages for conformal regression is also pointed out.

Keywords: Conformal regressors, Conformal predictive systems, Mondrian conformal re-
gressors, Mondrian conformal predictive systems, Python

1. Introduction

Conformal prediction is a framework for turning point predictions into set predictions,
providing finite-sample validity guarantees (Vovk et al., 2005). Conformal regressors extend
standard regressors, by forming prediction regions, such that the true regression values fall
within the regions with a user-specified probability (the confidence level, ¢). The inductive
(or split) approach to forming conformal regressors (Papadopoulos et al., 2002), uses one
set of instances (the proper training instances) to train an underlying regression model
and another (the calibration set) to calculate absolute residuals (differences of actual and
predicted values) of the underlying model. From these scores, the cth percentile is used
to form prediction intervals for the test instances; the lower and upper bounds of the
intervals are obtained from subtracting and adding, respectively, this score from the point
prediction of the underlying model. The intervals produced by such a (standard) conformal
regressor will all have the same size and hence do not provide instance-specific uncertainty
quantification. The procedure can however be extended to produce so-called normalized
conformal regressors, by dividing the scores with difficulty (or quality) estimates and using
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such also for the test instances; the lower and upper bounds are obtained by multiplying the
score obtained from the calibration set with the difficulty estimate. This modified procedure
now clearly provides instance-specific interval sizes.

As observed in (Bostrom and Johansson, 2020), the normalized conformal regressors suffer
from two potential problems; i) the size of the produced intervals can be many times larger
(or smaller) than anything previously observed, and ii) non-informative difficulty estimators
result in larger variance of the interval sizes compared to more informative estimators, while
the opposite is desired; if the estimator provides no information on the expected error, this
should be reflected by intervals of uniform size. In (Bostrom and Johansson, 2020), the
Mondrian conformal regressor was proposed as a remedy, by which the calibration instances
are partitioned and a (standard) conformal regressor is formed from each category. By using
binning of the difficulty estimates to form the categories, it was shown that the two problems
can be handled without sacrificing efficiency (interval size).

Conformal predictive systems extend conformal regressors, by producing cumulative proba-
bility distributions (conformal predictive distributions) over the possible target values (Vovk
et al., 2020). One may from such a distribution obtain the probability that the true target
is below (or above) a certain threshold. Conversely, one may obtain the threshold value
which is associated with a certain cumulative probability. The inductive (split) procedure
for forming conformal predictive systems is very similar to that of conformal regressors; the
main difference is that all residuals from the calibration set are used when making predic-
tions, rather than the absolute value of a single residual; the residuals are added to the point
prediction of a test instance, and the resulting values are used to estimate the cumulative
probabilities. Similarly to conformal regressors, one may distinguish between standard and
normalized conformal predictive systems, where the latter employ instance-specific difficulty
(quality) estimates, while the former just uses the residuals without modification. Distri-
butions output by a standard conformal predictive system may hence differ only in their
location and not in their shape, while distributions of a normalized conformal predictive
system may differ also in shape; the latter can be stretched out along the value dimension
based on the difficulty.

Conformal predictive systems generalize both standard and conformal regressors, as they
can still produce point predictions and prediction intervals, respectively. The latter can
be obtained from a conformal predictive distribution through the threshold values that
correspond to the lower and upper percentiles of interest, while a point prediction can
be obtained, e.g., from the median or the mean of the distribution, instead of using the
prediction of the underlying model. However, as observed in (Bostrom et al., 2021), for
heteroscedastic residuals, neither standard nor normalized predictive distributions are very
effective for calibrating the predictions, since they can be adjusted in one direction only. To
overcome this problem, the idea of forming multiple conformal predictive systems through
partitioning the instances was proposed and implemented through so-called Mondrian con-
formal predictive systems (Bostrom et al., 2021).
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Table 1: Software packages for conformal regressors and predictive systems

Software package Lang | Ind | Trans | Agg | OOB | Mond | CPS
nonconformist' Python | v/ X v v X X
Orange3-Conformal® | Python | v/ X 4 X X X
MAPIE? Python | X X v v X X
conformallnference® R v v X X X X
crepes’ Python | v/ X X v v v

There is a hence a range of possibilities for generating (split) conformal regressors or pre-
dictive systems, concerning the choice of:

e learning algorithm

e calibration instances, including whether or not to use out-of-bag predictions
e difficulty (quality) estimator

e Mondrian categories

To allow for efficiently exploring the space of possibilities, software packages are needed
that allow for experimenting with different algorithms for generating the underlying mod-
els, etc. In Table 1, we provide pointers to some software packages for conformal regressors
and predictive systems that are publicly available, together with some of their distinguish-
ing features, namely: programming language (Lang), whether inductive/split (Ind) and
transductive (Trans) conformal regressors or predictive systems may be generated, whether
aggregated/cross-conformal predictors (Agg) may be generated, including the use of ap-
proaches such as jackknife+ (Barber et al., 2021), whether out-of-bag (OOB) predictions
may be used for calibration, whether Mondrian conformal regressors or predictive systems
can be generated, and finally whether conformal predictive systems (CPS) can be generated.
As seen from the table, crepes is the only package from the selection that allows for gen-
erating conformal predictive systems as well as Mondrian conformal regressors/predictive
systems, hence filling an important niche.

In this paper, we provide an overview of the crepes package, and illustrate how it may be
used for generating conformal regressors and predictive systems. Examples are provided
from using the package in conjunction with a separate module, called crepes.fillings,
which implements some standard options for defining difficulty estimates and Mondrian
categories.

In the next section, we describe how to install and set everything up for working with
crepes. Then we show how to generate conformal regressors in section 3 and conformal

. https://github.com/donlnz/nonconformist
https://github.com/biolab/orange3-conformal
https://github.com/scikit-learn-contrib/MAPIE
https://github.com/ryantibs/conformal

. https://github.com/henrikbostrom/crepes
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predictive systems in section 4. Finally, in section 5, we summarize the main conclusions
from the current implementation and outline some directions for further developments.

2. Installing and importing crepes

The source code of the Python package crepes, which is licensed under the permissive
BSD-3-Clause license, together with extensive documentation, example Jupyter notebooks
and references, can be found at: https://github.com/henrikbostrom/crepes

To install the package from the Python Package Index (PyPI)°, you may type the following

at a command prompt for your operating system, assuming that you already have installed

pip’:

pip install crepes

This will install the most recent version of crepes® and allow you to import the package
to your Python programs, Jupyter notebooks, etc. Below, we show how this may be done,
directly after importing the standard package NumPy” and classes from scikit-learn'® that
we will use in the examples. From the main package crepes, we below import the two
classes ConformalRegressor and ConformalPredictiveSystem that will be explained be-
low, together with some useful functions from the separate package crepes.fillings, that
also will be explained below.

import numpy as np

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.datasets import fetch_openml

from crepes import ConformalRegressor, ConformalPredictiveSystem

from crepes.fillings import (sigma_variance,
sigma_variance_oob,
sigma_knn,
binning)

3. Generating Conformal Regressors
3.1. Splitting data and training an underlying model

Let us first import a dataset, e.g., from www.openml.org, and normalize the targets; the
latter is not really necessary, but useful, e.g., when evaluating the efficiency.

6. https://pypi.org/

7. https://pip.pypa.io/en/stable/
8. https://pypi.org/project/crepes/
9. https://numpy.org/

0

10. https://scikit-learn.org
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dataset = fetch_openml(name="house_sales",version=3)

X = dataset.data.values.astype(float)
y = dataset.target.values.astype(float)

y = np.array([(y[i]l-y.min())/(y.max()-y.min()) for i in range(len(y))])

Now let us split the dataset into a training and a test set, the former into a proper training
and a calibration set, and fit a random forest with 500 trees on the proper training set.

X_training, X_test, y_training, y_test = \
train_test_split(X, y, test_size=0.5)

X_proper_training, X_calibration, y_proper_training, y_calibration = \
train_test_split(X_training, y_training, test_size=0.25)

learner_proper = RandomForestRegressor(n_jobs=-1, n_estimators=500)

learner_proper.fit(X_proper_training, y_proper_training)

3.2. Standard conformal regressors

In this section, we will see how to create, fit and make predictions with a standard (induc-
tive/split) conformal regressor. We start out by creating a ConformalRegressor object.

cr_standard = ConformalRegressor()

We may display the object, e.g., to see whether it has been fitted or not; this particular
information is stored in cr_standard.fitted.

display(cr_standard)

ConformalRegressor (fitted=False)

To fit the conformal regressor, we need the residuals from the calibration set.

residuals_calibration = y_calibration - learner_proper.predict(
X_calibration)

Now let us actually fit the conformal regressor.

cr_standard.fit(residuals=residuals_calibration)

ConformalRegressor(fitted=True, normalized=False, mondrian=False)

We may now obtain prediction intervals, from the point predictions for the test set; here
using a confidence level of 99%. The output is a NumPy array, where the two columns
correspond to the lower and upper bounds of the intervals.
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y_hat_proper = learner_proper.predict(X_test)
intervals = cr_standard.predict(y_hat=y_hat_proper, confidence=0.99)

display(intervals)

array([[-0.03033002, 0.11264116],

[-0.04366944, 0.09930174],
[-0.04747455, 0.09549663],
[-0.03782214, 0.1051490411)

We may request that the intervals are cut to exclude impossible values, in this case below
0 and above 1; below we also use the default confidence level (95%), which further tightens
the intervals.

intervals_standard = cr_standard.predict(y_hat=y_hat_proper,
y_min=0, y_max=1)

display(intervals_standard)

array([[0.01107024, 0.07124089],
[o. , 0.05790147],
(0. , 0.05409637],
[0.00357813, 0.06374878]11])

3.3. Normalized conformal regressors

The above intervals are not normalized, i.e., they are all of the same size (at least before
they are cut). We could make the intervals more informative through normalization using
difficulty estimates; more difficult instances will be assigned wider intervals. K-nearest
neighbors have been frequently used for this purpose, see e.g., (Papadopoulos et al., 2011;
Johansson et al., 2014). crepes.fillings implements one such procedure through the
helper function sigma knn, which estimates the difficulty by the mean absolute errors of
the k-nearest neighbors to each instance in the calibration set'!. A small value (beta) is
added to the estimates, which may be given through a (named) parameter to the function;
in the call to the function below, we just use the default, i.e., beta=0.01, together with the
default for k, i.e., k=5.

sigmas_calibration_knn = sigma_knn(X=X_calibration,
residuals=residuals_calibration)

After having obtained the difficulty estimates, we create and fit the normalized (induc-
tive/split) conformal regressor in just one step.

11. The scikit-learn implementation of the nearest neighbor algorithm is employed, after first having trans-
formed the features using min-max normalization.
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cr_normalized_knn = ConformalRegressor().fit(
residuals=residuals_calibration, sigmas=sigmas_ca1ibration_knn)

To generate prediction intervals for the test set, we need difficulty estimates for the latter
too, which we get using the calibration objects and residuals.

sigmas_test_knn = sigma_knn(
X=X_calibration, residuals=residuals_calibration, X_test=X_test)

intervals_normalized_knn = cr_normalized_knn.predict(
y_hat=y_hat_proper, sigmas=sigmas_test_knn, y_min=0, y_max=1)

In case we have trained an ensemble model, like a RandomForestRegressor, we may al-
ternatively use the helper function sigma variance, which estimates the difficulty by the
variance of the predictions of the constituent models, as investigated in (Bostrom et al.,
2017). The function requires the trained model learner to be provided as input, assuming
that learner.estimators_ is a collection of base models, each implementing the predict
method; this holds e.g., for RandomForestRegressor. Note that in contrast to sigma knn,
the residuals are not used here for difficulty estimation.

sigmas_calibration_var = sigma_variance(X=X_calibration,
learner=learner_proper)

cr_normalized_var = ConformalRegressor().fit(
residuals=residuals_calibration, sigmas=sigmas_calibration_var)

The difficulty estimates for the test set are generated in the same way; they are again needed
to generate the normalized prediction intervals.

sigmas_test_var = sigma_variance(X=X_test, learner=learner_proper)

intervals_normalized_var = cr_normalized_var.predict(
y_hat=y_hat_proper, sigmas=sigmas_test_var, y_min=0, y_max=1)

3.4. Mondrian Conformal Regressors

An alternative way of generating prediction intervals of varying size is to divide the object
space into non-overlapping so-called Mondrian categories. A Mondrian conformal regressor
(Bostrom and Johansson, 2020) is formed by providing the names of the categories as an
additional parameter, named bins, for the fit method.

Here we employ the helper function binning, imported from crepes.fillings, which given
a list/array of values assigns the values into named bins. If the optional parameter bins
is an integer, the function will divide the values into equal-sized bins and return both the
assigned bins and the bin boundaries. If bins instead is a set of bin boundaries, the function
will just return the assigned bins.
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We can form the Mondrian categories in almost any way we like (as long as we do not use
the labels), and here we will use binning of the difficulty estimates.

bins_calibration, bin_borders = binning(values=sigmas_calibration_knn,
bins=20)

cr_mondrian = ConformalRegressor().fit(residuals=residuals_calibration,
bins=bins_calibration)

Let us now obtain the categories for the test instances using the same Mondrian categoriza-
tion, i.e., bin borders.

bins_test = binning(values=sigmas_test_knn, bins=bin_borders)
Now we can form prediction intervals for the test instances.

intervals_mondrian = cr_mondrian.predict(
y_hat=y_hat_proper,bins=bins_test, y_min=0, y_max=1)

3.5. Standard conformal regressors with out-of-bag calibration

For learners that employ bagging, like random forests, we may, alternatively to dividing the
original training set into a proper training and calibration set, use the out-of-bag (OOB)
predictions, which allow us to use the full training set for both model building and calibra-
tion (Johansson et al., 2014). Since the full training set can be used, the underlying model
tends to be stronger, compared to a model trained on the proper training set only. On the
other hand, since approximately 63.2% of the ensemble members are left out for each OOB
prediction, the observed absolute residuals tend to be larger than what would be expected
from the full model on an independent test set, which hence leads to conservative prediction
intervals.

Let us first generate a model from the full training set and then get the residuals using
the OOB predictions, assuming that the learner has an attribute oob_prediction_, which
e.g. is the case for a RandomForestRegressor if oob_score is set to True when created.

learner_full = RandomForestRegressor(n_jobs=—1, n_estimators=500,
oob_score=True)

learner_full.fit(X_training, y_training)

residuals_oob = y_training - learner_full.oob_prediction_

We may now obtain a standard conformal regressor from these OOB residuals.
cr_standard_oob = ConformalRegressor().fit(residuals=residuals_oob)

The regressor now allows for applying it using the point predictions of the full model.
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y_hat_full = learner_full.predict(X_test)

intervals_standard_oob = cr_standard_oob.predict(y_hat=y_hat_full,
y_min=0, y_max=1)

3.6. Normalized conformal regressors with out-of-bag calibration
We may also generate normalized conformal regressors from the OOB predictions. The
helper function sigma knn can just as well be used together with the OOB residuals.

sigmas_oob_knn = sigma_knn(X=X_training, residuals=residuals_oob)

cr_normalized_knn_oob = ConformalRegressor().fit(
residuals=residuals_oob, sigmas=sigmas_oob_knn)

If we want to use variance as a difficulty estimate, we may use the helper func-
tion sigma variance_oob, which as before requires that learner.oob_prediction_ and
learner.estimators_ have been defined. The default value for beta (= 0.01) is used
again.

sigmas_oob_var = sigma_variance_oob(X=X_training, learner=learner_full)

cr_normalized_var_oob = ConformalRegressor().fit(
residuals=residuals_oob, sigmas=sigmas_oob_var)

In order to apply the normalized OOB regressors to the test set, we need to generate
difficulty estimates for the latter in the same way.

sigmas_test_knn_oob = sigma_knn(X=X_training, residuals=residuals_oob,
X_test=X_test)

intervals_normalized_knn_oob = cr_normalized_knn_oob.predict(
y_hat=y_hat_full, sigmas=sigmas_test_knn_oob, y_min=0, y_max=1)

sigmas_test_var_oob = sigma_variance_oob(X=X_test,
learner=learner_full)

intervals_normalized_var_oob = cr_normalized_var_oob.predict(
y_hat=y_hat_full, sigmas=sigmas_test_var_oob, y_min=0, y_max=1)

3.7. Mondrian conformal regressors with out-of-bag calibration

We may form the categories using the difficulty estimates obtained from the OOB predic-
tions, find the categories for the test instances and finally, generate the prediction intervals:
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Table 2: Coverage and size of prediction intervals

Coverage | Mean size | Median size
Standard CR 0.9483 0.0589 0.0602
Standard OOB CR 0.9471 0.0584 0.0597
Norm. CR knn 0.9487 0.0522 0.0467
Norm. OOB CR knn 0.9486 0.0514 0.0454
Norm. CR var 0.9475 0.0555 0.0546
Norm. OOB CR var 0.9469 0.0551 0.0542
Mondrian CR 0.9529 0.0586 0.0436
Mondrian OOB CR 0.9521 0.0566 0.0451
Mean 0.9490 0.0558 0.0512

bins_oob, bin_borders_oob = binning(values=sigmas_oob_knn, bins=20)

cr_mondrian_oob = ConformalRegressor().fit(residuals_oob,
bins=bins_oob)

bins_test_oob = binning(values=sigmas_test_knn_oob,
bins=bin_borders_oob)

intervals_mondrian_oob = cr_mondrian_oob.predict(
y_hat_full, bins=bins_test_oob, y_min=0, y_max=1)

3.8. Investigating the prediction intervals

We may now take a look at the coverage of the prediction intervals for the test instances,
i.e., the fraction of the intervals containing the true target, as output by the eight conformal
regressors. In Table 2, the coverage as well as the mean and median interval sizes are shown.

For a more detailed view of the distribution of the interval sizes, Fig. 1 plots the cumulative
probability for various interval sizes for the eight different regressors.'?

Fig. 2 shows how the prediction intervals vary with the value predicted by the underlying
model, for the four OOB variants, where the red lines indicate the lower and upper bounds of
the prediction intervals, the blue dots indicate the true targets and the yellow dots indicate
the predicted values, the latter in all cases located at the center of the prediction intervals.

12. Code for generating the tables and plots are provided in Jupyter notebooks at https://github.com/
henrikbostrom/crepes.
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Table 3: Result of evaluating the Mondrian OOB conformal regressor on all metrics and
three confidence levels

Metric/Conf. level | 0.90 | 0.95 | 0.99

error 0.0993 | 0.0479 | 0.0093
efficiency 0.0419 | 0.0566 | 0.0955
time_fit 0.0010 | 0.0010 | 0.0010

time_evaluate 0.0011 | 0.0007 | 0.0006

3.9. Evaluating the conformal regressors

The class ConformalRegressor includes a method evaluate, which has the following pa-
rameters:

evaluate(y_hat, y, sigmas, bins, confidence, y_min, y_max, metrics)

The first two parameters, which correspond to the predicted and actual targets, re-
spectively, are mandatory for all conformal regressors, while sigmas and bins are
required only for normalized and Mondrian conformal regressors, respectively. The
confidence level to use is determined by the optional parameter confidence, which
defaults to 0.95. The parameter metrics should include a subset of the values
["error","efficiency","time_fit","time_evaluate"], and defaults to the full set.
The first two metrics correspond to the fraction of true targets that are not included in
the prediction intervals, which should be close to the chosen confidence level, and the mean
size of the prediction intervals. The last two correspond to the wall clock time in seconds'?
for fitting and making predictions with the conformal regressor. The output of the method is
a dictionary, with one key for each value metrics, together with the corresponding measure-
ment. Using this method on the previously generated Mondrian OOB conformal regressor,
using three confidence levels, gives the output that are summarized in Table 4. It can be
noted that the computation times are practically negligible even in this case when more
than 10 000 instances are used for fitting and testing, respectively. This is mainly due to
the use of the highly optimized NumPy library in the crepes package, together with the
fact that all the training and application of the underlying model are done prior to calling
the methods of the package.

4. Generating Conformal Predictive Systems

The methods of the class ConformalPredictiveSystem are named identically as for the
class ConformalRegressor, and they mainly share also the same set of parameters, with a
few notable differences for the predict and evaluate methods. The creation of conformal
predictive systems is hence very similar to that of conformal regressors. Below, we first
illustrate the generation of standard and normalized conformal predictive systems, using
the same residuals and difficulty estimates that were introduced in the previous section.

13. as measured using the function time() in the standard library time; the measurements have been
obtained using a machine equipped with a 19-11950H processor, 32 GB RAM and Ubuntu 20.04.

12
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cps_standard = ConformalPredictiveSystem()
cps_standard.fit(residuals=residuals_calibration)

cps_normalized = ConformalPredictiveSystem()
cps_normalized.fit(residuals=residuals_calibration,
sigmas=sigmas_calibration_knn)

cps_standard_oob = ConformalPredictiveSystem()
cps_standard_oob.fit(residuals=residuals_oob)

cps_normalized_oob = ConformalPredictiveSystem()
cps_normalized_oob.fit(residuals=residuals_oob, sigmas=sigmas_oob_knn)

The generation of Mondrian conformal predictive systems is again very similar to that of
Mondrian conformal regressors. Below, we generate Mondrian normalized conformal predic-
tive systems, where the categories are formed by binning the predictions of the underlying
model, as investigated in (Bostrom et al., 2021).

cps_bins_calibration, cps_bin_borders = binning(
values=learner_proper.predict(X_calibration), bins=5)

cps_mondrian = ConformalPredictiveSystem().fit(
residuals=residuals_calibration, sigmas=sigmas_calibration_knn,
bins=cps_bins_calibration)

cps_bins_oob, cps_bin_borders_oob = binning(
values=learner_full.oob_prediction_, bins=5)

cps_mondrian_oob = ConformalPredictiveSystem().fit(
residuals=residuals_oob, sigmas=sigmas_oob_knn,
bins=cps_bins_oob)

The predict method includes the following parameters:

predict(y_hat, sigmas, bins, y, lower_percentiles, higher_percentiles,
y_min, y_max, return_cpds, cpds_by_bins)

The method can be used to obtain both cumulative probabilities for given values or per-
centiles from the conformal predictive distributions (or both at the same time). The pa-
rameter y specifies zero (the default), a single value or a list/array of values of the same
length as y_hat, for which cumulative probabilities should be output. The parameters
lower_percentiles and higher_percentiles specify what percentiles should be returned
from the conformal predictive distributions. Each of the two may be an empty list (the
default), which means that no percentile should be returned, a single value or a list/array
of values. For the former, in case a percentile lies between two values, the lower value will
be returned, similar to the option interpolation="lower" in numpy.percentile, while
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the latter instead results in that the higher of the two values is returned, corresponding to
the option interpolation="higher" in the same package.

The parameter setting return_cpds=True, will make the method output the actual con-
formal predictive distributions (the default is return_cpds=False). The format of the
distributions vary with the type of conformal predictive system; for a standard and normal-
ized CPS, the output is an array with a row for each test instance and a column for each
calibration instance (residual), while for a Mondrian CPS, the default output is a vector
containing one CPD per test instance (since the number of values may vary between cat-
egories). If the desired output instead is an array of distributions per category, where all
distributions in a category have the same number of columns, which in turn depends on the
number of calibration instances in the corresponding category, then cpds_by_bins=True
may be specified (the default is cpds_by_bins=False). In case return_cpds=True is spec-
ified together with y, lower_percentiles or higher_percentiles, the output of predict
will be a pair, with the first element holding the results of the above type and the second
element will contain the CPDs.

The remaining parameters are exactly the same as for conformal regressors. For example, to
obtain (conservative) prediction intervals from a conformal predictive system, here without
having specified any bins and bounds of the intervals, the method may be called in the
following way:

predict(y_hat, sigmas, lower_percentiles=2.5, higher_percentiles=97.5)

If we instead are interested in obtaining p-values for a set of target values, e.g., the true
target values in a test set, we may call the method in this way:

predict(y_hat, sigmas, y=y_test)

We may also combine the above two usages in one call, as here illustrated for the normalized
OOB conformal predictive system:

cps_normalized_oob.predict(y_hat=y_hat_full, sigmas=sigmas_test_knn_oob,
y=y_test,
lower_percentiles=2.5, higher_percentiles=97.5,
y_min=0, y_max=1)

array([[0.96631909, 0.02006038, 0.06364274],
[0.75770344, 0.00562086, 0.05369188],
[0.30226483, 0.03387309, 0.10665441],

o
o

*

[0.02202959, 0.07538331, 0.11967962],
[0.18542882, 0.00578612, 0.04518795],
[0.19365324, 0.01722526, 0.0543357711)

The output array has three columns in this case; the first contains the p-values, while the
second and third contain the lower and higher percentiles, for each test instance. If we
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are interested in plotting the conformal predictive distributions, we may obtain the full
distributions from the predict method by specifying setting return_cpds=True.

We may also plot the conformal predictive distribution for some test object. In case the
calibration set is very large, one may consider plotting an approximation of the full distribu-
tion by using a grid of values for lower_percentiles or higher_percentiles, instead of
setting return_cpds=True. For the Mondrian CPS, the size of the calibration set for each
bin is reasonable in this case, so we may just plot the distributions directly. In Fig. 3, we
show the result of plotting the full conformal predictive distribution for a randomly selected
test instance, using the Mondrian normalized OOB conformal predictive system.
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Figure 3: Conformal predictive distribution for a randomly selected test instance

Fig. 4 shows how the interval sizes are distributed for the above six conformal predictive
systems, when applied to the test set with the lower and higher percentiles of 2.5 and 97.5,
respectively. Since normalization is performed within each Mondrian category, the resulting
curves are smoother than the ones we saw earlier for the Mondrian conformal regressors.
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Table 4: Result of evaluating the Mondrian normalized OOB conformal predictive system
on all metrics and three confidence levels

Metric/Conf. level | 0.90 | 0.95 | 0.99

error 0.0944 | 0.0476 | 0.0094
efficiency 0.0417 | 0.0532 | 0.0895
CRPS 0.0068 | 0.0068 | 0.0068
time_fit 0.0009 | 0.0009 | 0.0009

time_evaluate 0.3553 | 0.3503 | 0.3460
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Figure 4: Interval sizes for six conformal predictive systems

The evaluate method for a ConformalPredictiveSystem behaves similarly to the corre-
sponding method of conformal regressors, with the difference that the set of metrics now
also includes "CRPS", i.e., continuous-ranked probability score (Vovk et al., 2020).

Compared to when evaluating conformal regressors, the evaluation time is no longer negli-
gible; the cost of calculating CRPS grows linearly with the size of the calibration set and
can become quite costly, in particular for the OOB approaches which use the full training
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set to obtain calibration scores. This is partly remedied by the Mondrian approaches, since
they partition the calibration set according to the categories.

5. Concluding remarks

It has been demonstrated how the recently released Python package crepes can be used
to generate, apply and evaluate standard, normalized and Mondrian conformal regressors
and predictive systems. It has been shown how functions from the accompanying package
crepes.fillings can be utilized for estimating difficulty and forming Mondrian categories.
The main package is completely model-agnostic, while some functionality of the latter pack-
age is tailored for models that follow conventions of the scikit-learn package. Since the train-
ing and application of the underlying regression models are kept separate from generating
the conformal regressors and predictive systems, the latter can be generated and applied
at very low computational cost. The only major cost comes from evaluating conformal
predictive systems using continuous-ranked probability score (CRPS), which still can be
done efficiently, thanks to the extensive use of the highly optimized NumPy library, allow-
ing 10 000 test instances to be evaluated with respect to CRPS using conformal predictive
distributions formed from 10 000 calibration instances within a second on a modern laptop.

There are several directions for future developments of the package. One direction concerns
targeting transductive conformal regressors and predictive systems, which would avoid the
need for setting aside a separate calibration set, even for models for which forming out-of-
bag predictions is not an option, at the cost of substantially increased computation time.
Related approaches here are also the jackknife+ (Barber et al., 2021) and jackknife+-after-
bootstrap (Kim et al., 2020), which have been implemented in the MAPIE package. These
in turn also relate to other approaches to form conformal predictors through aggregation
(Linusson et al., 2017), something which is currently not included in the crepes package.
Another main direction for extending the package concerns including a wider set of helper
functions with more options for difficulty estimation and forming Mondrian categories.
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