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Abstract

An important issue that appears when using Conformal Martingales (CM) for detecting
Concept Drift (CD), is that martingale values get very close to zero when the data gen-
erating mechanism remains the same for a large number of instances. In such cases, the
martingale takes a long time to recover, resulting in detection delays or even totally failing
to detect the occurrence of a CD. To address this issue we propose a new betting function
we call Cautious, that avoids betting when there is no evidence that any change is taking
place, therefore preventing the continuous reduction of the martingale value. The proposed
betting function can be built on top of any existing betting function to mitigate the afore-
mentioned problem. In this work, we combine it with the kernel and histogram betting
functions and compare its performance with that of the two original betting functions as
well as that of existing methods for addressing CD on five datasets.

Keywords: Conformal, Martingales, Exchangeability,Drift

1. Introduction

In this study we are interested in detecting the point at which CD occurs while performing
data stream classification. CD corresponds to a change in the underlying data generating
mechanism and therefore results in loss of classification performance. Our approach detects
when the data observed so far violates the exchangeability assumption (EA) for a pre-
specified significance level and retrains the classifier to regain performance.

Formally a CD can be defined as follows: Given a data stream S = {(xo,%0), (1,¥1),---, },
where z; is a feature vector and y; a label; if S can be divided in two sets Sy ; = {(x0, ¥0), - - -
(xt,ye)} and Siq1,... = {(@441,Yt41), ... }, such that Sp; and Siyq, . are generated by two
different distributions, then a CD occurred at time stamp ¢ + 1. This can be extended to
any number of CDs with any number of different distributions.

CD can be produced from three sources. Recall that fxy: = fx|v; - frt and fxy41 =
Ix|ve41° fris1, where fx )y, is the joint probability density function of a pair (z,y) at time
t . To have a change in the joint distribution of (X,Y") one of the following might have
happened: (a) fx,y;: = fx|v; and fy; # fys41 in this case we have a change in the labels
distribution while the decision boundaries remain unchanged, this has also been considered
as label shift (Vovk, 2020) and virtual drift (Bagui and Jin, 2020) (b) fx|yv;¢ # fx|y4+1 and
fvt = fyvit+1 here the decision boundaries change and lead to decrease in accuracy, it has
also been considered as actual drift (Bagui and Jin, 2020) or concept shift (Vovk, 2020)
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and (¢) fx|v;¢ # fx|vu+1 and fyy # fyu+1 which is a combination of the two previously
mentioned sources.

CD types can be classified in four categories: (a) sudden drift where the data generating
mechanism changes instantly (b) gradual drift where the data distribution is replaced with
a new one over time (i.e. over time we experience fewer examples belonging to the initial
distribution and more belonging to the new distribution), (c¢) incremental where a new data
generating mechanism incrementally replaces the existing mechanism (i.e. each example is
generated by a mixture of distributions but over time the impact of the initial distribution
disappears) d) reoccurring drift when a previously seen data distribution reappears (Lu
et al., 2019),(Bagui and Jin, 2020) .

The CD detection algorithms can be classified in three categories based on the statis-
tics they apply (Lu et al., 2019). The first category is the ‘Error rate-based algorithms’,
which monitor increases or decreases of the online error rate, if these changes are statis-
tically significant a drift alarm is raised. The second and biggest category is the ‘Data
Distribution-based’, here the algorithms quantify the dissimilarity between the historical
data and the new data. A distance function is used to measure the dissimilarity between
the two distributions and a statistical hypothesis test with respect to a significance level
determines if a CD occurs. The last category ‘Multiple Hypothesis Test’, applies similar
techniques with the ones mentioned above, but employ the use of multiple hypothesis tests
to determine the presence of a CD. They can be divided in two groups: parallel hypothesis
tests and hierarchical multiple hypothesis tests for more information refer to (Lu et al.,
2019). In this study our CD detection algorithm belongs to the second category.

In our previous study (Eliades and Papadopoulos, 2021) we examined the use of In-
ductive Conformal Martingales (ICM) combined with the histogram betting function for
detecting violation of the EA and therefore CD. A problem we faced was that if the sequen-
tial data distribution remained the same for a large number of instances, then the ICM often
got a value close to zero and this increased the chances of a failure to reject the EA when a
CD occurred. We tried to address this by not allowing the martingale value decrease below
a very small threshold, however this solution resulted in loss of validity. In this work we
successfully tackle this problem without violating validity, by proposing a new betting func-
tion that avoids betting when there is no evidence that any change is taking place therefore
preventing very low martingale values. The proposed betting function, called Cautious, is
very flexible in the sense that it can be built on top of any existing betting function to deal
with the aforementioned issue. Here we combine it with the histogram betting function
proposed in (Eliades and Papadopoulos, 2021) and the Gaussian kernel estimator used in
(Fedorova et al., 2012) and (Volkhonskiy et al., 2017).

The rest of the paper starts with an overview of related work on CD in Section 2. Section
3 gives a brief overview of the ideas behind ICM. Section 4 describes the proposed approach
and defines the proposed betting function. Section 5 presents the experimental setting and
performance measures used in our evaluation and reports the obtained experimental results.
Finally, Section 6 gives our conclusions and plans for future work.



A BETTING FUNCTION FOR ADDRESSING CONCEPT DRIFT WITH CONFORMAL MARTINGALES

2. Related Work

In the literature there are many papers dealing with CD. Due to the large volume of research,
we will present only a few works related with the method we follow.

Lu et al. (2019) give an overview of over 130 high quality publications in CD related
research areas, they list and discuss 10 popular synthetic datasets and 14 publicly available
benchmark datasets used for evaluating the performance of learning algorithms dealing with
CD.

Bagui and Jin (2020) surveyed works dealing with CD, they presented a comprehensive
study of public synthetic and real datasets that can be used to benchmark such a problem.
They review the different types of drifts and approaches that are used to handle such changes
in the data.

Wang et al. (2003) proposed a new method called Accuracy Weighted Ensemble (AWE).
This ensemble based method assigns weights to the base classifiers based on the classification
€rror.

Kolter and Maloof (2007) presented an ensemble method for CD that creates, weights or
removes online learners based on their performance. The authors call their method Dynamic
Weighted Majority (DWM) and combine it with Naive Bayes (DWM-NB).

Elwell and Polikar (2011) introduced an ensemble based approach for incremental learn-
ing of CD where the underlying data distributions change over time. The proposed al-
gorithm learns from consecutive batches of data without making any assumptions on the
nature or rate of drift, a new classifier is trained for each batch of data it receives and
combines these classifiers using a dynamically weighted majority voting.

Li et al. (2015) implemented a classification algorithm based on Ensemble Decision
Trees for Concept-drifting data streams (EDTC). Extensive studies on synthetic and on
real streaming databases demonstrate that the EDTC performs very well compared to
several known online algorithms based on single models and ensemble models.

Bu et al. (2017) proposed an incremental least squares density difference (LSDD) change
detection method, their method is based on examining the difference between two distribu-
tions using two non overlapping windows. They tested their method on 6 synthetic datasets
and on one real world dataset.

Fok et al. (2017) used a particle filter-based learning method (PF-LR), for training
logistic regression models from evolving data streams. Here the step particles are sampled
from the ones that maximize the classification accuracy on the current data batch. Their
experiments show that this method gives good performance, even with relatively small batch
sizes. They tested the proposed methods on both synthetic and real data sets and find that
PF-LR outperforms some other state-of-the-art stream mining algorithms on most of the
data sets tested.

Vovk et al. (2003) proposed a way of testing exchangeability in an online manner based
on Conformal Prediction (CP) and CM. This technique consists of calculating a sequence
of p-values by applying conformal prediction. The p-values are calculated in an online
manner where the p-value of each new example is calculated from the new example and the
previously seen examples. After the p-values are calculated a betting function is applied on
each p-value and the product of the betting function outputs is the value of the Martingale.
When the value M of the Martingale, becomes large enough we can reject the exchangeability
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assumption at significance level 1/M. This method can be used as a tool for testing if a set
of data satisfies the EA and for change point detection in time series and consequently for
CD. Some related techniques are presented below.

Ho (2005) implemented a CM based on a simple betting mixture function extending
the idea of detecting exchangeability online to detect concept changes in time-varying data
streams. Two martingale tests were implemented based on: (i) martingale values and (ii) the
martingale difference. The Martingale was calculated using the mixture betting function.

Fedorova et al. (2012) tested the exchangeability of data on two data-sets, USPS and
Statlog Satellite data. The data is tested in an online manner i.e. the examples arrive one
by one and then the value of the CM is calculated which is a valid measure indicating if the
EA should be rejected. In this article the authors used a density estimator of the observed
p-values as a betting function. The kernel density estimation has been employed and it has
been shown to outperform the simple mixture betting function.

Volkhonskiy et al. (2017) implemented an Inductive version of CM to detect when
a change occurs in a time series. In this study the underlying model is trained on the
first observations of the time sequence. All the nonconformity scores are calculated via
the underlying model. The authors used several betting functions and showed that the
pre-computed kernel betting function provides the most efficient results (i.e. lowest mean
delay). They tested their methods on synthetic datasets and showed that their results
are comparable with those of many other methods such as CUSUM, Shiryaev-Roberts and
Posterior Probability statistics.

Ho et al. (2019) proposed a real time novel martingale-based approach driven by Gaus-
sian process regression (GPR) to predict and detect anomalous flight behavior as observa-
tions arrive one by one. The authors here use multiple CM tests allowing them to reduce
the number of false alarms and also the delay time required for anomaly detection. Here
again the Martingale was calculated using the mixture betting function.

3. Inductive Conformal Martingales

In this section we describe the basic concepts of ICM and how our nonconformity scores
and p-values are calculated.

3.1. Data Exchangeability

Let (Z1,Zs,...) be an infinite sequence of random variables. Then the joint probability
distribution P(Z1, Zs, ..., Zn) (where N is natural number) is exchangeable if it is invariant
under any permutation of these random variables. The joint distribution of the infinite
sequence (Z1,Zs,...) is exchangeable if the marginal distribution of (21, Zs,...,ZN) is
exchangeable for every N. Testing if the data is exchangeable is equivalent to testing if it is
independent and identically distributed (i.i.d.); this is an outcome of de Finetti’s theorem
(Schervish, 1995): any exchangeable distribution on the data is a mixture of distributions
under which the data is i.i.d.



A BETTING FUNCTION FOR ADDRESSING CONCEPT DRIFT WITH CONFORMAL MARTINGALES

3.2. Exchangeability Martingale

A test exchangeability Martingale is a sequence of random variables (S, S2, Ss,...) being
equal to or greater than zero that keep the conditional expectation E(S, 41|51, ...,S5,) = Sh.

To understand how a martingale works consider a fair game where a gambler with
infinite wealth follows a strategy that is based on the distribution of the events in the game.
The gain acquired by the gambler can be described by the value of a Martingale. Le. Ville’s
inequality (Ville, 1939) indicates that the probability to have high profit (C') would be small,
P{3In:S,>C} <1/C.

According to Ville’s inequality (Ville, 1939) for the case of the EA a large final value
of the Martingale suggests rejection of the assumption with a significance level equal to
the inverse of the Martingale value. I.e. a Martingale value such as 10 or 100 rejects the
hypothesis of exchangeability at 10% or 1% significance level, respectively.

3.3. Calculating Non-conformity scores and p-values

Let {z1,22,...} be a sequence of examples, where z; = (z;,y;) with z; an object given in
the form of an input vector, and y; the label of the corresponding input vector. The CM
approach generates a sequence of p-values corresponding to the given sequence of examples
and then calculates the martingale as a function of these p-values. As mentioned in Section
1, this work employs the computationally efficient inductive version of CM. ICM uses the
first k& examples {z1, 22, ..., 2k} in the sequence to train a classification algorithm, which it
then uses to generate the p-values for the next examples. Consequently, it starts checking
for violations of the EA from example zx1 on, i.e. the sequence {zxi1, zk12,- .-}

Our aim is to examine how strange or unusual a new example z; € {zp11, 212,... } is
compared to the training examples. To make this possible we define a function A(z;, {z1, ...,
zk}), where i € {k+1 ...}, called a nonconformity measure (NCM) that assigns a numerical
value o; to each example z;, called nonconformity score (NCS). The NCM is based on the
trained underlying classification algorithm and the bigger the NCS value of an example, the
less nonconforming it is with {z1,..., zx} with respect to the underlying algorithm.

For every new example z; we generate the sequence H; = {1, hyo,..., 051,05}
to calculate its p-value. Note that the NCSs in H; are calculated when the underlying
algorithm is trained on {21, 22,..., zx}. Given the sequence H; we can calculate the corre-
sponding p-value (p;) of the new example z; with the function:

~ Hai € Hjloi > oy} +Uj - {ou € Hyjlay = oy}
,j — . b
J—k

(1)

where «; is the NCS of the new example and «; is the NCS of the ith element in the
example sequence set and Uj is a random number from the uniform distribution (0,1). For
more information refer to Vovk et al. (2003).

3.4. Inductive Conformal Martingales

An ICM is an exchangeability test Martingale (see Subsection 3.2) which is calculated as a
function of p-values such as the ones described in Subsection 3.3.
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Given a sequence of p-values (p1,p2,...) the martingale S, is calculated as:
n
S =[] fi(p:) (2)
i=1

where f;(p;) = fi(pilp1,p2,--.,pi—1) is the betting function (Vovk et al., 2003).

The betting function should satisfy the constraint: fol filp)dp = 1, fi(p) > 0 and also
the S, must keep the conditional expectation: E(Sy+1|So, S1,...,S0) = Sn.

The integral fol fi(p)dp equals to 1 because f;(p) is the p-values (p1,p2,...,pi—1) density
estimator. We also need to prove that E(Sy,+1|50, 51, ..., 5,) = S, under any exchangeable
distribution.

Proof E(Sn—l—l’SOySl? cee fO i= 1 fl pz fn-i—l(p)dp = Hz 1 fz pz fo fn+1
[T fi(pi) = Sn .

Using equation (2) it is easy to show that S, = Sp—1 - fn(pn) which allows us to update
the martingale online. Let’s say that the value of S,, is equal to M then Ville’s inequality
(Ville, 1939) suggests that we can reject the EA with a significance level equal to 1/M.

Note that to deal with precision issues we can perform the calculation of equation (2)
in the logarithmic scale.

4. Proposed Approach

In this section we describe the proposed approach, which combines ICM with the proposed
Cautious betting function. We start by describing the kernel and histogram density esti-
mator before defining the Cautious betting function, which here is built on top of the first
two. Finally we explain the process of detecting CD with ICM.

4.1. Previously proposed Betting Functions
4.1.1. KERNEL ESTIMATOR

This betting function is based on the kernel density estimate (KDE), which is a non para-
metric method, for approximating the p-value distribution. One drawback of the kernel
density estimator is that it is computational expensive. Another drawback is that in some
cases the estimation of the optimum bandwidth is a very time consuming task, for this rea-
son we have used Silverman’s “rule of thumb” (Silverman, 1986) for bandwidth selection.
The KDE will be equal to:

> w2 ®)

i=n—L+1
where h is a bandwidth parameter and k is the simple Gaussian:

1
V2T

Note that while calculating the KDE we have used the reflection method as in (Fedorova
et al., 2012) to improve performance for points that are near the bounds [0,1]. Also to

k(z) =

exp(—%z2). (4)
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eliminate the risk of having an zq with fn (z9) = 0 and leading to martingale values equal
to zero we add a negligible constant to the f,(x). Because this constant is set to be
extremely small (10719) it does not disturb the performance of KDE. The integral of A =
fo (fn(z —|— 10~10)dx & 1 thus practically there is no need to multiply the integral with any
constant to force equality to 1.

4.1.2. HISTOGRAM ESTIMATOR

Compared to KDE this estimator is faster (Eliades and Papadopoulos, 2021) and needs
less computational effort to tune. The p-values p; € [0,1], so we partition [0,1] into a
predefined number of bins £ and calculate the frequency of the observations that lie in each
bin. Dividing these frequencies by the total number of observations and multiplying it by
the number of bins gives us the histogram estimator.

Let us take a fixed number of bins x this will partition [0, 1] into By = [0,1/k), By =
1/k,2/K),..., By—1 = [(k —2)/K,(k — 1)/k) and B, = [(k — 1)/k,1]. Then for a p-value
pn € Bj the density estimator will be equal to:

nj./a;

fn(pn) - > (5)

n—1
where n —1 is the number of p-values seen so far and n; is the number of p-values belonging
to Bj. Note that when n is small it is possible that 3z : f,(z) = 0, in that case until a
sufficient number of observations arrives we reduce the number of bins s by 1, the reduction
of K is repeated until Az : f,,(z) = 0.

4.2. Improving the betting functions

As we mention in Section 1 an issue of the CM and ICM is that they might need a lot of
time to recover from a value very close to zero (Volkhonskiy et al., 2017).

Theorem 1 When the distribution of the p-values is uniform. for any betting function
other than f =1 then Sy = 0.

Proof [Proof of Theorem 1]
Let P ~ U(0,1), we will show that the lim,,_,o, S, = 0 if the betting function f # 1.
Sn=1T21 fpi) < In(Sp) = [Ty f(pi) = 327 In(f (pi))

By LLN and Jensen’s inequality for a concave function we have that that:
limy, o0 3=y P — B(in(f(P))) < mE(f(P)) < 0
P(Sn > €) = P(Zz:ll n(f(pi)) > In(e))
iMoo Py In(£(pi)) > In(e)) = limy, oo P(Zimt0Ued) 5 @y g — g B
But S, ¥ S, = S, ﬂ Soo because of the Martingale convergence theorem
By Uniqueness of limit Sy, =0
|

For this reason we propose a new betting function h,, called Cautious which avoids
betting (i.e. h, = 1) when not enough evidence is available to reject the EA, thus managing
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to keep the value of S,, from getting close to zero and reducing the time needed to detect
a CD. The proposed betting function h,, is defined as follows:

1 Sl /minSl, < e

T () =
@=9 if51,1 /minS1, > ¢

(6)

with S1, = [[i; filpi), k€ 1,..., W, e>0and W € {1,...,n — 1}. Here ¢ and W are
parameters of the proposed betting function and f,, is a betting function.

Theorem 2 h, is a betting function iff f,, is a betting function or equivalently a probability
distribution function.

Proof [Proof of Theorem 2]
hy, is obviously always non negative. We also have to show that it integrates to 1:

1 Ji1dp=1 if S1,_1/minS1,_j, < e
/0 n(p)dp = k (7)

f[)l fn(P|P17p27 cee 7pn—1) =1 ifSln—l/mlgnS:ln—k > €
|

As mentioned in Section 3.2 the way a CM works can be parallelized with a gambler
whose decisions are based on the distributions of the events in a game. To understand
how this betting function works consider two players: The strategy of the first player is
based on the density estimator f,,, which in this study is the histogram or kernel estimator.
The second player observes how the first player performs in the game at a time window
[n — k,n — 1], specifically in this time window he calculates the maximum profit that the
first player could make if he started playing when S1; was at its minimum, in other words
he calculates S1,_1/ mkinS 1,_. If the first player has losses or very small profit then player

two will not bet i.e. he will set h, = 1, if player one could make profit greater than a
threshold then player two will bet i.e. he will set h,, = f,,. Note that the proposed betting
function can be combined with any statistical test of uniformity i.e. Kolmogorov Smirnoff
test (KST), or be extended to more than one players.

4.3. Detecting CD using ICM

To reject the EA and thus detecting CD for a pre-specified significance level § the value
of the Martingale must exceed 1/§. In Algorithm 1 we summarize this process. Therefore
if the value of the Martingale Si at point k exceeds 100 then a CD is detected with a
significance level of 1%. Note that in this work when we use only one player strategy the
betting function is equal to a density estimator B, = fn (betting functions mentioned at
Section 4.1), while when we use two players the betting function B,, = h,, and is calculated
according to formula (6).
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Data: Training set {z1, 22, ..., 2k}, Test set{zx+1,..., 2}, significance level &
Initialize S1 =1
for i=1,...,n-k do
a; = A(zgi, {21, ..., 2k})
P = #{jiaj>ai}+§fj#{jiaj=0<i}
Calculate betting function B; = B(p1,...,pi—1)
Si = Si—1 - Bi(pi)
if S; > % then
| Raise an Alarm
end

end
Algorithm 1: Detect CD using ICM

5. Experiments and Results

This section evaluates experimentally the performance of the proposed approach and com-
pares it to that of existing approaches. In the first set of experiments we examine in detail
the performance improvement of the Cautious betting function using a synthetic dataset
generated for this purpose. Specifically we compare the Cautious betting function recovery
time with that of the gaussian kernel and histogram betting functions.

In the second set of experiments we compare the performance of the Cautious betting
function with the histogram and the kernel ones using two publicly available synthetic
datasets (STAGGER,SEA), while in our third set of experiments we compare the three
betting functions on two publicly available real datasets (ELEC,AIRLINES).

For the four publicly available datasets we compare the proposed approach with two
state-of-the-art methods from the literature: the DWM method (Kolter and Maloof, 2007)
and the AWE method (Wang et al., 2003). Note that our main aim in this study is to
improve the recovery time of existing betting functions.

5.1. Datasets
5.1.1. RECOVERY TIME DATASET

This dataset was constructed it in a way that responds to the needs of our first set of
experiments, i.e. examining the martingale recovery time. It consists of 100100 instances
described by one numeric variable in the range [0,1] and a binary label. For the first 10100
instances the label is True if the numeric input is higher than 0.5, otherwise the label is
False, this is our first concept. After the 10100th observation, CD starts occurring. The
remaining 90000 instances have a True label if their numeric input is higher than 0.55,
otherwise the label is set to False, this is our second concept. In our experiments on this
dataset we set the training set size to 100 instances.

Although this synthetic dataset consists of only one variable, it is constructed in such
way that when the CD occurs the distance between the decision boundaries is very small
making it hard to detect the CD. Furthermore, it highlights some important issues of ICM
when combined with the kernel and histogram betting functions.
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5.1.2. SYNTHETIC BENCHMARK DATASETS

The STAGGER (Schlimmer and Granger, 1986) is a standard benchmark dataset widely
used for evaluating CD detection. For our simulations we have generated 1000000 instances,
where each example is described by 3 categorical attributes and has binary target output.
The drift type here is sudden while there are 4 different concepts, a drift occurs every 10000
examples (i.e. each chunk consists of 10000 examples). In our experiments on this dataset
we set the training set size equal to 200. Here the training set size compared to the number
of instances before a drift occurs is very small, specifically it is 2% of the total number of
instances of each chunk.

The SEA (Street and Kim, 2001) dataset is a popular synthetic dataset that contains
sudden CD. For our simulations we have generated 1000000 instances, where each example
is described by 3 numeric attributes and has a binary label. There are 4 concepts and a
drift occurs every 250000 examples (i.e. each chunk consists of 250000 examples). In our
experiments the classifier training set size is set to 1000. In this dataset the three variables
take random values in the range [0-10] and if the sum of the first two variables is less than
or equal to a pre-specified threshold then the instance is assigned to class 1 otherwise to
0, the third variable is irrelevant. Also compared to the number of observations before
a CD occurs this training size is negligible. Note that here we test the transition from
concept a — b — ¢ — d while in the case of STAGGER we test the transition from concept
a—b—c—d— a,.... Note that in this study we also inject noise in both datasets
by changing 10% of the labels and examine the performance of our approach with and
without noise. Also note that when a CD is detected we wait for enough new observations
for formulating an equally sized training set with the initial one before retraining the model
and restarting to apply Algorithm 1.

5.1.3. REAL WORLD BENCHMARK DATASETS

The ELEC dataset (Harries et al., 1999) is a time series containing 45312 instances recorded
at 30-min intervals with a binary class label (identifying if we have a rise or a drop in price
compared with a moving average of the last 24 hours). Each example consists of eight
variables. The data has been collected from the Australian New South Wales Electricity
Market. In our experiments we have excluded the variables time, date, day, and period,
so we only used nswprice, nswdemand, transfer, vicprice, and vicdemand. The training set
size was set to 300, corresponding to trying to predict future values using as training set
the observations of about for less than 1 week.

The Airlines dataset (Ikonomovska E, 2010) is from the Data Expo Competition 2009.
The data has been collected from USA airports and consists of flight arrival and departure
records of commercial flights within the USA from October 1987 to April 2008. It con-
tains 539383 instances each described by 7 features. The purpose is to classify if a flight
was Delayed or Not delayed. In our experiments we have used a training set size of 200
observations.

5.2. Performance Measures

To evaluate the performance of the proposed approach we consider four measures (some of
these are not applicable in all cases):

10
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(a) Accuracy: Average accuracy of the classifier (excluding the training set).

(b) Mean delay: Average number of observations before detecting a CD after it has
occurred.

(c) True alarm rate(TAR): Average rate of CDs that have been correctly detected per
chunk.

(d) False alarm rate(FAR): Average rate of CDs erroneously detected per chunk.

5.3. Results

In this section we present the experimental results of the three sets of experiments we
performed. For the four benchmark datasets we used a tree-bagger (with 40 trees) while for
the recovery time dataset we used a simple tree classifier. For each example the tree-bagger
or tree classifier will output the posterior probability p; for the true label y;. Therefore we
define the NCM: a; = —p;.

For all of our experiments we calculate the histogram density estimator using the p-
values of the last L = 1000 observations instead of L = 5000 as in (Eliades and Papadopou-
los, 2021), this was done in order to accelerate the process of calculating f, since 1000
p-values seem sufficient for estimating the p-value density function. Additionally when a
CD occurs our density estimator will be able to adapt to the new p-value distribution faster.

When we use the KDE we set L = 500 on the recovery time dataset, while for the rest
of our experiments we set L = 100 as in (Volkhonskiy et al., 2017).

In all experiments the parameters ¢ and W of the Cautious betting function were set
to 100 and 5000 respectively, although we believe that a very high value of W would also
work.

In subsection 5.3.1 we perform simulations using the recovery time dataset. Our aim
here is to compare the time needed of the Cautious betting function to recover when a CD
occurs with that of the kernel and the histogram functions. For this experiment we have
performed 10 simulations and average the results.

In the remaining two subsections we perform simulations on the two Synthetic and two
Real world datasets. We focus on CD detection and model retraining to regain accuracy.
The presented results are averaged over 5 simulations on each dataset. For all experiments
with Algorithm 1 we set § = 100.

We empirically demonstrate that the use of the Cautious betting function keeps the
number of false alarms low and accelerates the detection of CD. We also compare the
accuracy of the proposed approach with that of two state-of-the-art algorithms: AWE and
DWM-NB described in Section 2. The accuracies of these two algorithms were obtained
from Sarnovsky and Kolarik (2021).

5.3.1. BETTING FUNCTION RECOVERY TIME COMPARISON

In this set of experiments we use the histogram, kernel and Cautious (combined with kernel
and histogram) betting functions to calculate the value of the martingale S,, on the recovery
time dataset.

We have trained a decision tree on the first 100 observations and evaluated CD detection
performance on the rest.

Figure 1 presents the .S,, growth calculated by equation (2).
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Figure 1: log(S,) growth for Recovery time dataset

To give an explanation of what Figure 1 presents we have to keep in mind that the first
10000 NCSs correspond to observations belonging to the first concept and the remaining
NCSs correspond to observations that belong to the second concept. Recall from equation
(1) how the p-values are calculated, the H; sequence consists of {01, @102, ..., @i—1, 05}
NCSs. If 101 < ¢ < 10100 the H; sequence will contain NCSs of instances generated by
the first concept, on the other hand when ¢ > 10100 the H; sequence consists of NCSs
belonging to the first and the second concept. Thus as observations arrive with ¢ > 10100
the H; sequence will be a mixture of distributions and as ¢ increases the impact of the first
concept on the p-value calculation is reduced.

In Subfigures 1(a) and 1(b) we present the resulting Martingales using the histogram
and kernel betting function respectively, as we can see at time t = 10100 the Martingale
switches from a decreasing to an increasing behavior, but unfortunately it fails to recover to
a big value and reject the EA. As more observations arrive the martingale starts to decrease,
this is not surprising. Recall from equation (1) how the p-values are calculated, before the
10101*" observation the H; sequence contains only NCSs of instances generated by the first
concept, then as more observations arrive the H; sequence will contain NCSs generated
by the first and the second concept, thus H; will be a mixture of the two distributions.

12



A BETTING FUNCTION FOR ADDRESSING CONCEPT DRIFT WITH CONFORMAL MARTINGALES

As observations increase the 'impact’ of the first distribution will become smaller, thus
the produced p-values will be asymptotically uniform making it even harder for the ICM
to detect a CD. The fact that a uniform or a close to uniform distribution results in the
martingale value having a decreasing behavior suggests the need for a mechanism that will
prevent the martingale from getting a low value thus enabling the quick detection of CD.

In Subfigures 1(¢) and 1(d) we show the resulting Martingales using the Cautious betting
function. Notice that after time t = 10100 our strategy switches from no betting to betting.
After a constant behavior started to fluctuate and then switches to an increasing behavior
and finally manages to detect the CD with a significance level much smaller than 1%. When
the martingale reaches its maximum value it starts to reduce and remains stable because
the betting function switches to a no bet strategy (h = 1), this is an outcome of the fact
that the resulting p-values will be asymptotically uniform or close to uniform for the reasons
explained above.

Table 1 compares the performance of the four betting functions. As we can see when we
combine the Cautious betting function with the kernel and histogram, the TAR increases.
Specifically, the histogram betting function fails to detect any CD but when we combine it
with the Cautious betting function the TAR increases to 0.7. The kernel betting function
was able to detect 30% of the CDs but combined with the Cautious betting function man-
aged to reach a TAR of 0.8. Generally speaking the Cautious betting function manages to
increase the TAR and reduce the mean delay while keeping the FAR equal to zero.

Table 1: RECOVERY TIME DATASET

Betting Function FAR | TAR | Mean Delay
Histogram 0 0 —

Kernel 0 0.3 14835
Cautious with Histogram | 0 0.7 12335
Cautious with Kernel 0 0.8 12339

Note that in this experiment while calculating the kernel density estimator we used a
frame window of 500 p-values, while for the rest of our experiments we used 100 p-values
only. When we use 500 p-values the kernel density will be able to detect CD while when
we use 100 p-values unfortunately it will fail even if we combine it with the Cautious
betting function. A possible explanation is that it the kernel density estimator has reduced
performance near the bounds and we therefore need to fine tune the bandwidth, which is a
very computationally intensive task.

5.3.2. SYNTHETIC DATASETS

In this subsection, we present the STAGGER and the SEA dataset results while using the
four different betting functions. In Table 2 we show the results while performing simulations
on the noise free STAGGER dataset. In this dataset, when we use the histogram betting
function, as the number of bins increases, the time required to detect a CD increases and
consequently accuracy reduces. This is due to the fact that when we have long time intervals
with no concept change, the martingale value will tend to zero, thus the time needed to
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recover increases. When we combine the histogram estimator with the Cautious betting
function, we can see that in most cases all performance measures have been dramatically
improved, also we can observe that when the number of bins increases the mean delay
and consequently the accuracy improves, this is an outcome of the betting strategy we use
which avoids betting when not necessary. The kernel betting function performs well on the
STAGGER dataset, specifically it outperforms the histogram betting function, but it does
not perform better than the Cautious combined with the histogram. If we combine the
kernel with the Cautious betting function it performs well but not better than the Cautious
combined with a 15 bin histogram.

In all cases the TAR is 100% and the FAR is very low. The best CD detection time
is obtained when we use the Cautious betting function combined with a 15 bin histogram
estimator.

Table 2: STAGGER (0% noise)

Betting function No of Bins | Accuracy | Mean delay | TAR | FAR
Histogram 5 0.98661 223.2 1 0.008
Histogram 10 0.98621 228.5 1 0.004
Histogram 15 0.98559 240.5 1 0.008
Histogram with Cautious | 5 0.99287 118.6 1 0

Histogram with Cautious | 10 0.99509 96.8 1 0.002
Histogram with Cautious | 15 0.99587 69.6 1 0

Kernel — 0.99220 136.7 1 0.008
Kernel with Cautious — 0.99720 77.9 1 0.004

The simulated results on the STAGGER dataset with 10% noise are presented in Table 3.
Here the betting functions have similar behavior to the noise free experiment. In this case,
because the dataset is noisy, the accuracy is reduced by about 5%. When we use the
histogram betting function the mean delay increases as the number of bins increases, but
when we combine it with the Cautious betting function the mean delay decreases. When
the kernel betting function is used, it performs better than the histogram but not better
than the Cautious combined with the histogram. When we combine the kernel with the
Cautious betting function it outperforms all other betting functions. In all cases the TAR
is equal to 100% and the FAR is close to zero. The best CD detection time is obtained
when we use the Cautious betting function combined with the Kernel.

Table 4 presents our results on the noiseless SEA dataset. Unfortunately some of our
simulations on the SEA dataset show poor performance, this is due to the fact that the
concept durations are too long and the Martingale fails to recover. The histogram betting
function with a number of bins equal to 5 and 10 fails to detect any CD. When we set the
number of bins equal to 15 most of the CDs are detected but with a big delay. When we
combine the Cautious betting function with the histogram estimator and a number of bins
equal to 10 or 15 all CDs can be detected and we have no false alarms. The kernel betting
function fails to detect any CDs even if we combine it with Cautious betting function. The
best mean delay is obtained when we combine the Cautious betting function with a 15 bin
histogram estimator.

14



A BETTING FUNCTION FOR ADDRESSING CONCEPT DRIFT WITH CONFORMAL MARTINGALES

Table 3: STAGGER (10% noise)

Betting function No of Bins | Accuracy | Mean delay | TAR | FAR
Histogram 5 0.93690 227.6 1 0.002
Histogram 10 0.93604 236.7 1 0.004
Histogram 15 0.93535 250.8 1 0.008
Histogram with Cautious | 5 0.94225 86.4 1 0.002
Histogram with Cautious | 10 0.94440 7.2 1 0
Histogram with Cautious | 15 0.94438 70.2 1 0
Kernel — 0.94290 113.8 1 0.002
Kernel with Cautious — 0.94550 48.4 1 0
Table 4: SEA (0% noise)
Betting Function No of Bins | Accuracy | Mean delay | TAR | FAR
Histogram 5 0.92110 - 0 0
Histogram 10 0.92080 - 0 0
Histogram 15 0.96867 6497.1 0.996 | 0
Histogram with Cautious | 5 0.92090 - 0 0
Histogram with Cautious | 10 0.98290 1367.2 1 0
Histogram with Cautious | 15 0.98190 830.5 1 0
Kernel — 0.92060 - 0 0
Kernel with Cautious — 0.92100 - 0 0
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The results shown in Table 5 are obtained while performing simulations on the SEA
dataset with 10% noise. As in the case of the noiseless dataset our experiments here indicate
poor performance i.e. failure to raise an alarm when a CD occurs, for the same reason
explained above. The histogram betting function with a number of bins equal to 5 and 15
fails to detect any CD. When we set the number of bins equal to 10 most of the CD are
detected but with a big delay. When we set the number of bins to 10 or 15 on the histogram
estimator and combine it with the Cautious betting function all CDs can be detected and
we have no false alarms. The kernel betting function fails to detect any CDs but when
we combine it with Cautious betting function it manages to detect all CDs. The best CD
detection time is obtained when we combine the Cautious betting function with a 15 bin
histogram.

Table 5: SEA(10% noise)

Betting Function No of Bins | Accuracy | Mean delay | TAR | FAR
Histogram ) 0.8610 - 0 0
Histogram 10 0.8809 6023.6 0.998 | 0
Histogram 15 0.8606 - 0 0
Histogram with Cautious | 5 0.8606 - 0 0
Histogram with Cautious | 10 0.9149 1367.2 1 0
Histogram with Cautious | 15 0.9140 441.1 1 0
Kernel — 0.8607 - 0 0
Kernel with Cautious — 0.9151 518.3 1 0

5.3.3. REAL DATASETS

In this subsection, we present the simulated results for the ELEC and the AIRLINES
datasets while using the four different betting functions. In Table 6 we show the results
obtained while performing simulations on the ELEC dataset. Here when using the histogram
betting function the number of bins does not play a significant role in the improvement of
accuracy, but when the histogram estimator is combined with the Cautious betting function
the accuracy improves because the CM does not get a value close to zero, allowing it to
recover faster and thus reject the EA. In this dataset the kernel betting function provides
an accuracy comparable with that of the Cautious combined with the histogram, a possible
explanation is that the time duration of the different concepts is short, thus the CM does
not get values close to zero and can recover fast. When we combine the kernel with the
Cautious betting function the accuracy improves and the number of detected CDs increases.
This is because the Cautious betting function allows the CM to recover faster and more
CDs are detected without false alarms which allows model retraining . The best accuracy
is achieved when we use the Cautious betting function combined with the kernel density
estimator i.e. 75.93%.

In Table 7 we show our results while performing simulations on the AIRLINES dataset.
The histogram betting function with a number of bins equal to 5 performs better. When ce
combine the histogram estimator with the Cautious betting function the accuracy improves
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Table 6: ELEC

Betting function No of Bins | Accuracy | Number of CD detected
Histogram 5 0.73470 116.2

Histogram 10 0.73711 103.8

Histogram 15 0.73472 83.6

Histogram with Cautious | 5 0.75429 102.2

Histogram with Cautious | 10 0.75101 107.4

Histogram with Cautious | 15 0.74836 108.8

Kernel — 0.75178 128.8

Kernel with Cautious — 0.75929 146.2

as the number of bins increases. When the kernel betting function is used the accuracy is
comparable to that obtained in the histogram betting function. If we combine the Cautious
betting function with the kernel the accuracy further improves. A possible explanation is
that in the AIRLINES dataset a CD appears after a long time, thus when more bins or the
kernel betting function are used the Martingale gets a value close to zero making it more
difficult to recover resulting in a decrease in accuracy. This decrease is correlated with
the number of CDs detected. On the other hand the use of the Cautious betting function
increases the number of the detected CDs, the fact that the accuracy increases as the number
of CDs increases suggests that the raised alarms are not false, thus model retraining is
performed when necessary to recover accuracy. Our simulations on the AIRLINES dataset
indicate that the Cautious betting function combined with the kernel density estimator
achieved the best accuracy of 60.18%.

Table 7:  AIRLINES

Betting Function Number of bins | Accuracy | Number of cd detected
Histogram 5 0.57177 21.2

Histogram 10 0.56229 5.8

Histogram 15 0.55354 3

Histogram with Cautious | 5 0.57377 39.6

Histogram with Cautious | 10 0.59633 59.6

Histogram with Cautious | 15 0.59088 51

Kernel — 0.56597 11.8

Kernel with Cautious — 0.60184 714

5.4. Discussion

In all cases the Cautious betting function outperforms the previously proposed betting
functions in all performance measures. Specifically the FAR is reduced, the TAR is increased
and also the mean delay is reduced . This improvement allows model retraining when a CD
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occurs and therefore leads to a higher accuracy. Table 8 compares the best betting function
of our simulations for each dataset with two state of the art algorithms in terms of accuracy.

As can be seen from the results presented in this table, the proposed approach has
similar accuracy to the two state-of-the-art approaches, in all cases, while it outperforms
both in the case of the SEA dataset.

Table 8: Comparison of Cautious betting function with state of the art methods

Dataset CAUTIOUS | AWE | DWE-NB
STAGGER | 0.946 0.948 | 0.901
SEA 0.915 0.879 | 0.876
ELEC 0.759 0.756 | 0.800
AIRLINES | 0.602 0.618 | 0.640

6. Conclusions

We have proposed a novel betting function that is built on top of existing betting functions
and greatly reduces the time needed to detect a CD, especially when the change occurs after
a long time. Our betting function manages to prevent the martingale from getting a very
low value. This is done by switching to a no bet strategy when there is no evidence that any
change is taking place. We empirically demonstrated that the Cautious betting function
reduces the time needed to detect a CD, while in the case of real datasets it provides
an improvement in accuracy. Furthermore, the performance achieved is close to, and in
some cases even better than, that of two state-of-the-art CD detection techniques. Based
on our experimental results, we believe that the proposed approach is quite promising for
addressing CD, especially since there is still room for further improvements. Thus our future
plans include examining the combination of the Cautious betting function with more than
one uniformity tests as well as employing strategies for selecting a representative training
set for the underlying classifier.
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