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Abstract

While explainability is widely considered necessary for trustworthy predictive models, most
explanation modules give only a limited understanding of the reasoning behind the predic-
tions. In pedagogical rule extraction, an opaque model is approximated with a transparent
model induced using original training instances, but with the predictions from the opaque
model as targets. The result is an interpretable model revealing the exact reasoning used
for every possible prediction. The pedagogical approach can be applied to any opaque
model and use any learning algorithm producing transparent models as the actual rule
extractor. Unfortunately, even if the extracted model is induced to mimic the opaque, test
set fidelity may still be poor, thus clearly limiting the value of using the extracted model
for explanations and analyses. In this paper, it is suggested to alleviate this problem by
extracting probabilistic predictors with well-calibrated fitness estimates. For the calibra-
tion, Venn-Abers with its unique validity guarantees, is employed. Using a setup where
decision trees are extracted from MLP neural networks, the suggested approach is first
demonstrated in detail on one real-world data set. After that, a large-scale empirical eval-
uation using 25 publicly available benchmark data sets is presented. The results show that
the method indeed extracts interpretable models with well-calibrated fitness estimates, i.e.,
the extracted model can be used for explaining the opaque. Specifically, in the setup used,
every leaf in a decision tree contains a label and a well-calibrated probability interval for
the fidelity. Consequently, a user could, in addition to obtaining explanations of individual
predictions, find the parts of feature space where the decision tree is a good approximation
of the MLP and not. In fact, using the sizes of the probability intervals, the models also
provide an indication of how certain individual fitness estimates are.

Keywords: Rule extraction, Fidelity, Interpretability, Explainability, Calibration, Venn-
Abers predictors

1. Introduction.

When using machine learning for data analysis, predictive models are often required to
provide explanations for predictions produced. This can be necessary to comply with regu-
latory measures, in domains such as finance, law enforcement or medicine; or to follow ethics
guidelines like (High-Level Expert Group on AI, 2019). Today, a majority of the research
about explanation methods focuses on creating explanations for single instance predictions,
e.g., LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017). These methods
explain how the different features contribute to one prediction, thus aiding a human deci-
sion maker in understanding the reasons behind that specific prediction. However, in many
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scenarios, where a more global understanding of the model and the underlying relationship
is needed, these single prediction explanations will not suffice.

Rule extraction is a technique for approximating global models with interpretable mod-
els, e.g., decision trees or rule sets. Such interpretable approximations of the opaque model
admit extensive inspection and analysis of the relationships found by the opaque model,
enabling global explanations and providing insights into the underlying data and the do-
main. Given an extracted interpretable model, it is of course also straightforward to obtain
detailed explanations for single predictions, i.e., local explanations. Depending on the exact
situation, the extracted model may either be used to make the actual predictions, or simply
to explain the predictions made by the opaque model.

One way to obtain the interpretable model is to have a machine learning technique (that
produces transparent models) learn the input-output relationship of the opaque model.
This procedure is referred to as pedagogical or black-box rule extraction. Pedagogical rule
extraction is model agnostic, in the sense that it may by used on any type of opaque model.
Another option is to employ open-box techniques which extract a transparent model based
on the inner workings of the opaque model. These techniques rely on specific characteristics,
regarding e.g., the architecture of the opaque model, and are thus tailored to a specific type
of models, most often a neural network.

In rule extraction, fidelity measures the extent to which an extracted model makes the
same predictions as the opaque model upon which it is based. For classification, this simply
means the proportion of instances where the opaque and transparent models agree. Peda-
gogical rule extraction results in transparent models that approximate the opaque model,
similarly to the way a model approximates a data set in inductive learning, whereas open-
box techniques will produce exact, but possibly very complex, transparent representations.
Thus, pedagogical rule extraction has the distinct advantage of being model agnostic, but
provides no fidelity guarantees. Open-box methods, in contrast, often per design obtains
perfect fidelity, but is restricted to a certain type of opaque models.

In order to be used for explaining opaque models, the extracted models need to have
high fidelity. A low-fidelity transparent model is, at best, not very useful, and at worst mis-
leading, since it might produce predictions that differ substantially from the opaque model.
Naturally, most pedagogical rule extraction techniques are designed to somehow optimize
fidelity, but similar to any inductive model generated to optimize predictive performance
during training, there are no guarantees that fidelity on training data will carry over to new
unseen data. Furthermore, a single measure of model fidelity on a test set only indicates
the average infidelity rate, but does not give any indication of whether a particular instance
can be expected to be predicted identically to the opaque model or not.

2. Background.

2.1. Rule extraction

Rule extraction is the process of generating transparent models, typically trees or rule sets,
from opaque models, such as neural networks or ensembles. Rule extraction is a large field
in machine learning, and a wealth of algorithms exist. A good introduction and survey
can be found in (Huysmans et al., 2006). One reason for performing rule extraction is
to complement predictions from an opaque model with explanations to explicitly show a
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decision maker the relationships found by the model and utilized in the prediction. Another
situation where rule extraction is used is when a transparent model is needed for the actual
predictions. Rather than using a technique directly producing a transparent model, such as a
decision tree, from data, an interpretable model can be extracted from a high-performance
opaque model. When doing this, the underlying assumption is that the opaque model
provides a better basis for construction of the transparent model than the original training
data, i.e., that the opaque model is a better representation of the relationship between inputs
and targets than the examples in the data set. The main motivation for this assumption is
that a properly trained opaque model will have “smoothed out” irregularities in the data,
and learned a more general function than the one expressed by the examples in the data set.
Experimental evaluation supports this claim by showing that transparent models generated
by rule extraction often outperform state-of-the-art decision tree algorithms like CART and
C4.5, see e.g., (Johansson, 2007). Rule extraction with guarantees on fidelity – but without
the addition and communication of fidelity estimations – has previously been studied by
Johansson et al. (2014) for classification, and by Johansson et al. (2022), for regression.

2.2. Probabilistic prediction

Probabilistic predictors output not only a label but a probability distribution. If these
probability distributions perform well against statistical tests based on subsequent obser-
vations of the labels, the probabilistic predictor is said to be valid. In this paper, we will
focus on one aspect of validity, i.e., that the predictor should be well-calibrated. If pcj is the
probability estimate for class j, the probability estimate for the predicted label (i.e., the
confidence) should match the observed accuracy.

p(cj | pcj ) = pcj (1)

Here it must be noted that if a transparent model capable of producing probability estimates
is generated by pedagogic rule extraction, the probability estimates will in fact be for fidelity
(i.e., making the same prediction as the opaque model) and not accuracy. Specifically, if
the extracted model is a probability estimation tree (PET) (Provost and Domingos, 2003),
the fidelity estimates can be calculated using relative frequencies; i.e., the proportion of
training instances corresponding to a specific class in the leaf where the test instance falls:

p
cj
i =

g(i, j)∑C
k=1 g(i, k)

(2)

where g(i, j) is the number of instances belonging to class j (i.e., instances predicted as
class j by the opaque model) that falls in the same leaf as instance i, and C is the number
of classes. For simplicity, we call such decision trees extracted from opaque models fidelity
estimation trees (FETs).

Unfortunately, PETs are notorious for being very overconfident, see e.g., (Johansson
et al., 2018), requiring external calibration to become well-calibrated. While the standard
approaches Platt scaling (Platt, 1999) and isotonic regression (Zadrozny and Elkan, 2001)
can be used for this calibration, several recent studies (Johansson et al., 2019a,b, 2021) sug-
gest applying Venn predictors (Vovk et al., 2004) instead. When used for calibration, Venn
prediction uses a separate calibration set, similar to Platt scaling and isotonic regression.
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In this paper, we will investigate using Venn predictors for calibrating FETs, arguing that
if well-calibrated, these models will be a very good basis for explanations of the opaque
model, specifically alleviating the problem with the potentially low test set fidelity present
in all pedagogic rule extraction. While the test set fidelity may still be low, the proposed
method gives an exact description of the fidelity to expect in different parts of feature space.

2.3. Venn and Venn-Abers predictors

Venn predictors are multi-probabilistic predictors with proven validity properties (Vovk
et al., 2005). Calibrating on a separate labeled data set not used for training the underlying
model, the key idea of Venn prediction is to divide all calibration instances into a num-
ber of categories. These categories are typically somehow based on the predictions from
the underlying model, and the specific division into categories is called a Venn taxonomy,
where different Venn taxonomies produce different Venn predictors. When predicting a test
instance, the category is determined using the taxonomy and the underlying model, exactly
as for the calibration instances. The probability distribution over the possible labels is then
calculated as the relative frequencies of the labels for calibration instances belonging to that
category. To obtain validity, this calculation must include the test instance to be predicted,
where the true label is, of course, not known. Consequently, all possible labels for the test
instance must be considered, leading to a set of C label probability distributions, where C
is the number of possible labels. These C probability distributions are the actual output of
Venn prediction, but to make the predictions easier to interpret, they are often converted
into a predicted label together with a probability interval, see e.g., (Lambrou et al., 2015).

While the multiprobability predictions produced by Venn predictors are automatically
valid, regardless of the taxonomy used, the chosen taxonomy affects both the accuracy of
the Venn predictor and the sizes of the probability intervals. Ideally, the probability es-
timates should, of course, be close to zero or one, and the intervals as tight as possible.
While taxonomies with more categories lead to more specific predictions, using too many
categories will result in larger intervals, since each interval will be based on few exam-
ples. For two-class problems, this trade-off can be handled automatically by using so-called
Venn-Abers predictors (Vovk and Petej, 2012) where an optimized taxonomy is found us-
ing isotonic regression. Since Venn-Abers predictors are Venn predictors, they inherit the
validity guarantees, while the optimized taxonomy leads to more specific predictors.

Venn-Abers predictors require scoring classifiers as underlying models, i.e., a test pre-
diction from the underlying model must be a prediction score s(x), where a higher value
indicates a larger belief in the label 1. With access to a calibration set {zq+1, . . . , zl}, a
multi-probabilistic prediction from a Venn-Abers predictor for xl+1 is produced as follows:

Let s0 be the scoring function for {zq+1, . . . , zl, (xl+1, 0)} and s1 be the scoring function
for {zq+1, . . . , zl, (xl+1, 1)}.

Let g0 be the isotonic calibrator for

{(s0(xq+1), yq+1), . . . , (s0(xl), yl), (s0(xl+1), 0)} (3)

and g1 be the isotonic calibrator for

{(s1(xq+1), yq+1), . . . , (s1(xl), yl), (s1(xl+1), 1)} (4)
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Then the valid probability interval for yl+1 = 1 is

(p0, p1) = (g0(s0(xl+1)), g1(s1(xl+1))) (5)

It should be noted that this valid probability interval is more informative than the
corresponding point estimation. Specifically, the width of the interval is an indication of
the uncertainty, i.e., it exhibits the confidence in the estimation.

3. Method.

All experimentation was carried out using scikit learn, keras and tensorflow. Both single-
and multi-layer MLPs were used as opaque models. The activation functions in the hidden
and output layers were ReLU and sigmoid, respectively. Since all problems are two-class,
one single output unit was used. The number of hidden units h was chosen as h = ⌊23a⌋
where a is the number of attributes. The loss function was set to cross entropy, and Adam
was used as the optimizer. Standard decision trees were used as the extracted models.
All parameter values were left at default, with the exception that the minimum number of
training instances in each leaf was set to 5.

Since Venn-Abers needs a separate labeled data set for the calibration, two different
MLPs were trained for every fold; one using all training instances and one dividing the
training instances into a proper training set (2/3) and a calibration set (1/3). All in all,
the following setups were used:

• ANNa: MLPs trained using all training data.

• ANNt: MLPs trained using 2/3 of the training data.

• Uncal: Rule extraction with decision trees induced on the original training data but
with the predictions from ANNa as the targets.

• VA: Rule extraction with decision trees induced on the original training data but
with the predictions from ANNt as the targets, and then calibrated with Venn-Abers
on the calibration set.

For the actual evaluation, 10x10-fold cross validation was used, so all results are averaged
over the 100 folds.

In the analysis, we first look at model results, i.e., accuracy, fidelity and sizes. After that,
we evaluate the quality of the fidelity calibration, starting with the expected calibration
error (ECE) as used by e.g., Guo et al. (2017). Here it must be noted that while ECE
and the other calibration metrics described below are normally used to evaluate accuracy
estimations, we use them to evaluate fidelity estimations. In the rule extraction scenario,
the probability estimates from the interpretable models are of course, as described above,
for the predictions from the opaque model, not the true targets. Consequently, the predicted
labels from the opaque model are also used instead of the true targets in the calculations.

When evaluating Venn-Abers for calibration, a scalar probability (here fidelity) esti-
mate is necessary. For this, we follow the suggestion by Vovk and Petej (2012) and use a
regularized value p instead of the center of the interval (p0, p1):

p =
p1

1− p0 + p1
(6)
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ECE partitions the fidelity estimates into M equally-sized bins and then calculates the
actual fidelity of each bin. Let fid(Bm) be the fidelity and est(Bm) the mean fidelity estimate
in bin m. Then

ECE =

M∑
m=1

|Bm|
n

∣∣∣∣fid(Bm)− est(Bm)

∣∣∣∣ (7)

where n is the total number of calibration instances. In the experimentation, we used 5
bins.

While ECE is easily interpretable, the calculation only involves the mean of the predic-
tions falling in a specific bin. With this in mind, the quality of the fidelity calibration was
also evaluated using two loss functions that operate on individual predictions.

The log loss function is defined as:

λlog =

{
−log p if ŷ = 1

−log(1− p) if ŷ = 0
(8)

where log is the natural logarithm, ŷ is the prediction from the opaque model and p is
the probability estimate for the label 1 from the interpretable model. It should be noted
that while the log loss is infinite when an estimate is categorical but wrong, the log loss
calculation in scikit learn avoids this by clipping the probability estimates so they are not
exactly 0 or 1.

Similarly, the Brier loss, which punishes large errors less severely, is defined as:

λBr = (ŷ − p)2 (9)

The 25 benchmarking data sets used (see Table 1) are all two-class problems, publicly
available from either the UCI repository (Bache and Lichman, 2013) or the PROMISE
Software Engineering Repository (Sayyad Shirabad and Menzies, 2005).

Table 1: Dataset descriptions

Data set #inst #attrib Source Data set #inst #attrib Source

colic 328 23 UCI kc2 522 22 Promise
creditA 690 16 UCI kc3 325 39 Promise
diabetes 768 9 UCI liver 345 7 UCI
german 1000 21 UCI pc1req 320 9 Promise
haberman 306 4 UCI pc4 1458 38 Promise
heartC 303 13 UCI sonar 208 61 UCI
heartH 270 12 UCI spect 218 22 UCI
heartS 270 14 UCI spectf 348 45 UCI
hepati 155 20 UCI transfusion 748 5 UCI
iono 351 35 UCI ttt 958 10 UCI
je4042 274 9 Promise vote 435 17 UCI
je4243 363 8 Promise wbc 699 10 UCI
kc1 2109 22 Promise
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4. Results.

In this section we first present a case study from the drug discovery domain before showing
and analyzing the results from the benchmarking study.

4.1. Drug discovery case study

Table 2: Molecule feature descriptions

Feature name Feature description

Weight Molecular weight in Dalton.

LogP
Partition Coefficient, which describes how easily
each molecule is dissolved into water.

HDonors Number of hydrogen donors.
HAcceptors Number of hydrogen acceptors.

AromaticRings Number of aromatic rings.

TPSA
The topological polar surface area, which is the surface
sum over all polar polar parts of the molecule.

RotatableBonds Number of bonds which allow free rotation around themselves.
HeavyAtomCount Number of non-hydrogen atoms.
FractionCSP3 The fraction of C atoms that are SP3 hybridized.
RingCount Number of rings.

The discovery of new pharmaceuticals drugs is a long and costly process. This process has
become more and more data-driven where models, both simulation- and machine learning
based, are used to predict the properties of proposed molecules.

A common process is to perform a virtual screening of large sets of virtually gener-
ated molecules and only continue the discovery process with those molecules that have
promising predictions, see (Reddy et al., 2007). In these cases, additional value can be
gained by not only removing those molecules with negative predictions, but also removing
positive predictions, where either the prediction or the logic of the predictive model is un-
certain. This allows the future discovery process to focus on a few promising candidates
with clearly understood predictions. To achieve this, it is necessary to dissect the model and
understand what it bases its decisions on, enabling domain experts to couple established
knowledge about the problem to the model decision process. Furthermore, such analysis of
the model may result in increased understanding of the underlying chemical mechanics that
causes certain properties and, consequently, which chemical sub-spaces future drug discov-
ery projects should target. To highlight the benefits that can be gained through extracting
rules that demonstrate the underlying reasoning of the model, we conduct a study where a
deep artificial neural network model is trained to predict the inhibition of the cytochrome
P450 2C19 enzyme. This is an enzyme that is involved in the human metabolism and an
inhibition would lead to slow metabolism of the molecule, as well as other drugs. Hence,
the inhibition of this enzyme may lead to a decrease of effectiveness of other drugs and a
harmful collection of substances in the body.
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To train the model, the data set that was collected by Veith et al. (2009), consisting of
12 665 instances, is used. The molecules in this data set are represented by 10 molecular
descriptors that are both commonly used and human-understandable. The features are
listed in Table 2 and are selected in order to make explanations of the opaque model
interpretable and informative from a chemical perspective.

The opaque model used in this study is a deep neural network with 5 hidden layers and
a total of 91 456 free parameters to fit. When trained and evaluated, using 10-fold cross
validation, the neural network achieves an accuracy of 76.4%. The extracted model, which
is a decision tree, is then trained to mimic the network, and when evaluated it gets an
accuracy of 71.8% on the original data. The accuracy of both these models are, however, of
lesser importance as long as we could explain the predictions of some of the examples with
great certainty and correctly understand how the model is reasoning in these cases. For this,
the method presented above is applied, resulting in the well-calibrated and interpretable
FET in Fig 1.

Figure 1: A well-calibrated and interpretable FET for the cytochrome P450 2C19 enzyme.
Colors represent the target classes of molecules with either no CYP2C19 inhibition (orange)
or CYP2C19 inhibition (blue), the intensity of the colors corresponds to the estimated
fidelity while the width of the leaves give the sizes of the Venn-Abers probability intervals,
indicating how certain the fidelity estimates are.

The FET, consequently, conveys two things:

• Its fidelity to the opaque model in different parts of the input space, represented by
the colour intensity of the leaves.

• How certain it is about its own fidelity, represented by the width of the leaves.
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The entire left branch of the tree in our example is more or less strongly dedicated
to the prediction of no CYP2C19 inhibition, with some leaves being certain that they
are performing exactly as the underlying model (having small intervals and strong color
intensity), whereas other leaves are less likely to explain the underlying model well, or
indicate the model being less confident about its fidelity. The central part of the tree is
dedicated to the prediction of molecules with CYP2C19 inhibition with different degrees of
fidelity and certainty, with some leaves having high fidelity with certainty and others having
a lot of uncertainty. In the right-most part of the tree, most leaves have both low fidelity
and high uncertainty.

Each leaf also represent a description, in the form of a series of conjunctive conditions
defined for the input attributes, of the instances in that part of the instance space. Example
of rules, in the form of conjunctive conditions, that describe the instance space of the three
numbered leaves in Fig. 1 are listed below in Fig. 2. The interval at the end of each rule is
the Venn-Abers interval for the fidelity.

1) LogP ≤ 1.2

→ No CYP2C19 inhibition [0.961, 1.0]

2) LogP > 4.1

& FractionCSP3 ≤ 0.34

& AromaticRings ≤ 6

& RingCount ≤ 3

& RotatableBonds ≥ 5

→ CYP2C19 inhibition [0.929, 0.995]

3) LogP > 2.5

& 0.47 < FractionCSP3 ≤ 0.56

→ Indecisive [0.451, 0.656]

Figure 2: Rules for the three leaves in Figure 1

Note that the rules above, and the uncertainty that is attributed to each of these pre-
dictions, represent the FET’s explanation of how the underlying opaque model, in this case
a deep neural network, behaves. Hence, these rules describe the approximate reasoning of
the opaque model, showing in which regions of the input space the FET detects that it
follows general patterns, such as shown in rules 1) and 2). These rules can easily be verified
with domain knowledge to determine whether the opaque model is behaving rationally. For
instance, the first rule strongly indicates that if the logP is low, then the underlying model
will predict that there will be no CYP2C19 inhibition. There are also regions in the input
space where the FET could not discover any general patterns in the behaviour of the opaque
model, for example rule 3) above. This does not imply that the model would intrinsically
fail for inputs in this region, just that no easily obtained explanations exist there. Finally,
Fig. 3 shows the reliability plot for the CYP2C19 data set.
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Figure 3: Fidelity reliability plot for CYP2C19.

In this and following examples, only five bins are used. Even if both models have low
ECEs in this example, it is evident that the uncalibrated FET is slightly over-confident in
its fidelity estimate, whereas the calibrated FET is very accurate in its fidelity estimate.

In summary, the possibility to extract a well-calibrated FET from an opaque model
like a deep neural network provides multiple benefits. Firstly, the FET provides a global
explanation of the opaque model, clearly indicating where the extracted model performs
similarly to the opaque model and where it does not. Secondly, each leaf clearly indicates
both a fidelity level and an estimate of the confidence in the fidelity level. Thirdly, each leaf
and the path to that leaf provide a specific explanation of the logic behind those predictions
of the opaque model.
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4.2. Results on benchmarking data sets

Table 3 below shows the model results on the benchmark data. Starting with accuracy, we
see that the loss in accuracy associated with using an interpretable model is as low as just
two percentage points, on average. Looking at mean ranks, it is obvious that the access to
more training data is beneficial. Using a Wilcoxon signed ranks tests with α = 0.05, ANNa
is actually significantly more accurate than ANNt. For the extracted models, though, there
are no such differences, despite the fact that VA is trained on a smaller data set than Uncal.
Regarding fidelity, the differences are again very small, and not significant at α = 0.05.
Finally, it may be noted that using the smaller training set, and having a fixed setting for
the minimum instances in each leaf, as expected, leads to smaller trees. While some of the
trees are rather complex, most of them are small enough to manually inspect and analyze.

Table 3: Model results

Accuracy Fidelity Size
ANNa ANNt Uncal VA Uncal VA Uncal VA

colic .804 .789 .779 .804 .837 .824 49.2 33.1
creditA .850 .848 .842 .844 .882 .874 65.8 46.1
diabetes .765 .760 .748 .747 .886 .874 66.7 47.7
german .649 .650 .647 .671 .823 .827 149.4 106.5
haberman .713 .719 .714 .720 .981 .983 6.4 4.0
heartC .819 .815 .780 .777 .857 .829 38.1 27.1
heartH .828 .829 .784 .774 .866 .865 32.1 22.9
heartS .832 .828 .774 .779 .851 .841 31.7 22.2
hepati .848 .843 .783 .800 .835 .859 17.4 11.8
iono .917 .915 .871 .872 .857 .870 28.7 20.4
je4042 .714 .711 .719 .702 .900 .894 25.8 16.3
je4243 .626 .625 .618 .612 .912 .885 32.7 24.6
kc1 .762 .759 .753 .750 .935 .931 55.0 39.6
kc2 .793 .791 .797 .793 .942 .937 16.7 11.9
kc3 .871 .867 .874 .870 .942 .948 18.4 12.8
liver .686 .640 .610 .597 .772 .793 53.3 34.1
pc1req .683 .654 .691 .639 .853 .822 16.7 12.0
pc4 .904 .902 .879 .880 .908 .919 87.6 60.2
sonar .841 .816 .717 .697 .715 .733 29.8 19.5
spect .883 .881 .865 .884 .948 .975 19.1 9.9
spectf .791 .788 .749 .782 .803 .829 33.3 22.3
transfusion .749 .752 .746 .745 .975 .974 14.0 9.8
ttt .981 .960 .913 .909 .912 .903 84.9 68.5
vote .860 .856 .862 .846 .910 .902 53.2 36.7
wbc .971 .970 .954 .952 .971 .968 19.9 15.4

Mean .806 .799 .779 .778 .883 .882 41.8 29.4
Mean rank 1.16 1.84 1.40 1.60 1.40 1.60 2.00 1.00

’
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Before looking at aggregated results regarding the calibration, we discuss some typical
results on the data set level. Figure 4 below shows a reliability plot for the diabetes data
set. On this data set, the uncalibrated model is constantly too confident, i.e., the empirical
fidelity is lower than the confidence for all bins. Specifically, there is a large group of
instances where the uncalibrated model is very certain about the label predicted by the
opaque model. Calibration with Venn-Abers, however, produces a very well-calibrated
model.
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Figure 4: Fidelity reliability plot for diabetes
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Figure 5 below shows a similar example where the calibration leads to a model which is
less certain, which of course makes sense since the fidelity on this specific data set is lower
than 0.8. Looking at the reduction in ECE, the external calibration is very successful.
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Figure 5: Fidelity reliability plot for liver
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Figure 6 below shows one of the most extreme data sets, where the uncalibrated model
is exceptionally poorly calibrated, specifically much too overconfident. Again, the external
calibration is very successful, although even the calibrated model is still slightly overconfi-
dent.
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Figure 6: Fidelity reliability plot for sonar
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Figure 7 below illustrates a data set where calibration is able to improve an already
reasonably well-calibrated model.
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Figure 7: Fidelity reliability plot for kc1
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Figure 8 below, finally, shows one of the two data sets where the ECE is actually larger
after the calibration than before. Here, where the fidelity is over 0.98, the calibration makes
the model slightly underconfident.
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Figure 8: Fidelity reliability plot for haberman

Turning to the aggregated calibration results in Table 4 below, the first two columns
show the average difference between the estimated and empirical fidelities. Interestingly
enough, for Uncal the average difference over all data sets is 0.06, i.e., uncalibrated fidelity
trees are on average six percentage points too optimistic. For VA, however, the difference is
very close to zero. Comparing fidelity ECE:s, the calibration lead to lower ECE:s on all data
sets but two. This is of course a significant difference using a Wilcoxon test at α = 0.05.
For log loss and Brier loss, the results are even more clear; the calibration using Venn-Abers
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results in an improvement on each and every data set. In summary, these results clearly
demonstrate the benefit of using calibration, often converting fidelity trees from outright
misleading to well-calibrated.

Table 4: Calibration results

Difference ECE Log loss Brier loss
Uncal VA Uncal VA Uncal VA Uncal VA

colic .079 -.013 .096 .030 8.97 .427 .322 .132
creditA .063 -.004 .068 .014 15.84 .336 .514 .098
diabetes .063 .002 .064 .007 21.10 .330 .660 .096
german .075 .002 .075 .011 2.48 .404 .149 .126
haberman .008 -.012 .009 .015 32.48 .058 .951 .013
heartC .073 .003 .081 .026 14.99 .395 .504 .122
heartH .051 -.014 .056 .031 17.63 .332 .600 .098
heartS .081 -.010 .086 .029 16.39 .392 .536 .119
hepati .089 -.005 .089 .019 23.31 .351 .752 .105
iono .096 -.009 .097 .016 9.14 .339 .292 .101
je4042 .051 -.017 .053 .024 16.26 .284 .520 .081
je4243 .042 -.007 .046 .017 12.16 .295 .396 .085
kc1 .038 .004 .038 .007 29.39 .183 .880 .051
kc2 .032 -.015 .033 .020 26.67 .182 .800 .048
kc3 .025 -.013 .030 .019 29.31 .137 .899 .038
liver .127 .005 .128 .013 6.43 .455 .272 .147
pc1req .050 -.030 .061 .038 12.18 .409 .460 .128
pc4 .054 -.002 .057 .005 27.91 .224 .853 .062
sonar .193 .010 .193 .032 10.90 .570 .385 .192
spect .000 -.024 .025 .027 .32 .098 .030 .022
spectf .119 -.010 .119 .013 3.91 .411 .162 .127
transfusion .013 -.008 .013 .008 31.99 .083 .940 .021
ttt .031 -.002 .032 .006 9.84 .257 .322 .073
vote .036 -.003 .036 .006 21.71 .270 .699 .077
wbc .011 -.010 .012 .013 21.37 .103 .635 .025

Mean .060 -.007 .064 .018 16.91 .293 .541 .087
Mean rank 1.88 1.12 2.00 1.00 2.00 1.00

’

Table 5 below shows the Venn-Abers fidelity estimates and the corresponding empirical
fidelity values. Despite the fact that most intervals are fairly tight, typically just a few
percentage points, the empirical error rate falls within the interval for every data set.
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Table 5: Venn-Abers fidelity estimates and corresponding empirical fidelity values

VA fid. est. Fid. VA fid. est Fid.
Low High Emp. Low High Emp.

colic .799 .845 .824 kc2 .916 .949 .937
creditA .863 .890 .874 kc3 .925 .963 .948
diabetes .870 .893 .874 liver .785 .829 .793
german .822 .845 .827 pc1req .764 .876 .822
haberman .968 .990 .983 pc4 .914 .928 .919
heartC .820 .871 .829 sonar .726 .783 .733
heartH .837 .893 .865 spect .944 .982 .975
heartS .818 .874 .841 spectf .806 .852 .829
hepati .835 .907 .859 transfusion .962 .980 .974
iono .851 .891 .870 ttt .896 .916 .903
je4042 .866 .917 .894 vote .891 .925 .902
je4243 .869 .910 .885 wbc .955 .976 .968
kc1 .931 .945 .931 Mean .865 .905 .882

’

5. Concluding remarks.

We have in this paper introduced and evaluated rule extractors with well-calibrated fitness
estimations. In the specific setup used in the empirical study, Venn-Abers was used for
calibrating standard decision trees generated from pedagogic rule extraction. The result
is a very informative model where each leaf in the tree contains a well-calibrated fidelity
estimation probability interval. In our opinion, this solves the inherent problem with the
potentially low test fidelity always present in black-box rule extraction. Using this repre-
sentation language, a user would always know exactly how well the extracted model is able
to approximate the opaque model, for every instance. Obviously, the extracted model can
also be used to understand the opaque in many more ways than just explaining individual
predictions. Specifically, it clearly identifies the parts of feature space where it is a good ap-
proximation of the opaque model and not. Looking at the sizes of the probability intervals,
a user also gets an indication of the confidence in individual fitness estimations.

For future work, dedicated rule extraction algorithms could be used, instead of deci-
sion trees. More generally, we suggest outright comparisons between external explanation
modules and well-calibrated rule extraction, investigating the quality of the explanations.
Finally, it should be noted that the fidelity trees introduced here, just like all pedagogic rule
extractors, are of course agnostic to whether the opaque model is correct or not. But an ex-
tracted model calibrated using a separate labeled data set can actually include information
about the performance of the opaque model on these instances. We believe that investigat-
ing the exact construction and usability of such accuracy/fidelity estimation models would
be very interesting.
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Ulf Johansson, Tuwe Löfström, Henrik Boström, and Cecilia Sönströd. Interpretable and
specialized conformal predictors. In COPA, pages 3–22. PMLR, 2019b.
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