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Abstract

Single-cell gene expression matrices require a cell type label for each cell for downstream
analysis. A cell type label refers to a heterogeneous group to which a cell belongs. Ma-
chine learning algorithms that aim to automate the assignment of cell type labels train on
reference datasets for which cell type labels are already defined. However, these methods
are prone to error due to possible preprocessing errors and the dynamic nature of cellular
states. Therefore, it is essential to measure the uncertainty associated with classifications.
Here, we hypothesize that conformal prediction may provide a principled approach for
this. We examine inductive conformal classifiers (ICPs) on the task of single-cell label
transfer. ICPs lead to well-calibrated models that quantify uncertainties well. Results are
motivating, and the uncertainties are intuitive and easy to interpret. We also consider
a confidence-credibility conformal predictions setup that accurately predicts single labels
with the desired error level. Such a model can also reject the classification of cell types
unobserved in the reference dataset. However, the presence of unknown cell types violates
the underlying assumption of a conformal predictor and is highly dependent on the quality
of batch correction. We envision more work in detecting unknown cell types and using
conformal predictions to evaluate batch correction methods.

Keywords: single-cell RNA-seq, single cell classification, conformal prediction

1. Introduction

Single-cell RNA sequencing (scRNA-seq) techniques measure mRNA expression from indi-
vidual cells. The ability to analyze mRNAs at a single cell level has allowed biologists to
identify new cell states and understand their dynamics and fate (Lähnemann et al., 2020).
scRNA-seq results in a count matrix with genes and numeric expression of those genes per
cell. In this count matrix, there are thousands of cells and genes (>10,000 variable genes).
In order to analyze this resulting data, clustering tools such as Uniform Manifold Approxi-
mation and Projection (UMAP) are used to identify the cell types based on gene expression
patterns of marker genes - the genes that are abundantly expressed only on cells belonging
to specific cell types (Zhang et al., 2019). However, this process is time-consuming and
requires an expert. As a result, it is imperative to simplify the process and utilize existing
knowledge from already labeled datasets. We refer to this task as single-cell label transfer.

When dealing with single-cell datasets from different sources, we can term the already
labeled dataset(s) as the reference and the dataset we are interested in labeling as the query.
While both datasets may come from the same tissue and, as a result, may share a large
number of cell types, the cells themselves may exhibit differences. These differences can
either be biological or technical (Tran et al., 2020). A biological difference is between tissue
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states (e.g. disease vs. healthy) and must be observed. Therefore, a method to identify
cells based on a reference is inherently subjected to this, and will likely be uncertain for
differentially distributed data points. The technical differences arise due to the use of dif-
ferent technologies and sequencing libraries, different ways to prepare tissue samples, etc.
and can cause technical bias. Since our interest is in identifying cells in reference-based
query, it is vital to remove this technical bias. Several methods termed batch correction or
single-cell data integration methods have been proposed to perform this task (Korsunsky
et al., 2019; Lotfollahi et al., 2019; Hie et al., 2019; Hausmann et al., 2022). Batch correc-
tion is a preprocessing step for many cell type classification methods. The objective is to
obtain a representation of original gene expressions of reference and query in a joint space
where the datasets are well integrated. Some batch correction methods such as Harmony
(Korsunsky et al., 2019) and Scanorama (Hie et al., 2019) align clusters computed on prin-
cipal components; the result is a co-embedding which can be used to identify cell types.
Batch correction is not perfect and can lead to errors, especially in cases of partial overlap
between cell types present between reference and query (Hie et al., 2019). Here, however,
we assume that both datasets share similar distribution after correction with some noise
depending on the batch correction method used.

The many sources of differences between a reference and a query single-cell dataset
make it necessary to be aware of the uncertainty associated with the method that transfers
knowledge from the reference to the query. In the case of single-cell label transfer, we
are interested in the transfer of discrete cell type labels, and as such, the use of machine
learning algorithms is natural. Here, we wanted to ask about the current state of identifying
uncertainty associated with methods in use. In our experiments, we refer to single-cell label
transfer as a two step process where we sequentially use batch correction and classification
algorithms. State-of-the-art single-cell classification methods such as scPred (Alquicira-
Hernandez et al., 2019) involve training an SVM and setting a heuristic threshold on output
probabilities to filter out potentially wrong classifications. We argue that a heuristic-based
threshold method depends entirely on the output probabilities and does not consider the
likelihood of a data point to be from the dataset it was trained on. If we were to find
cells where our model is confused between two or more cell types, we again have to resort
to setting a threshold on the cell types other than the majority cell type label. It raises
another question, if we were to change our algorithm, will the same heuristic be valid?
Hence, this problem of choosing a probability threshold is largely dataset- and classification
algorithm- dependent. A better approach is to identify uncertainties that consider how well
the test samples conform to what model has observed and which can work agnostically to
any classification algorithm.

Conformal prediction provides a natural approach to solve the aforementioned prob-
lem. Conformal classification is model agnostic and provides certain theoretical guarantees.
Moreover, it is simple and general. Conformal classification has emerged as a method to
measure distribution-free uncertainty in a range of applications. In terms of bioinformatics
applications, it has been widely used to avoid the use of toxic drugs (Eklund et al., 2015;
Alvarsson et al., 2021). We describe conformal classification in Section 2.1. In this work,
we evaluate conformal classification on the task of single-cell label transfer using six human
scRNA-seq datasets. We present the results in Section 3. We discuss those results and
future directions in Section 4.

2



Uncertainty Estimation for Single-cell Label Transfer

2. Methods

2.1. Inductive Conformal prediction (ICP)

The assumption of conformal prediction is the probabilistic exchangeability of data points.
Exchangeability is a weaker assumption than IID. (Probabilistic) Exchangeability refers to
likeliness of permutations of data order, i.e. for n data points (x1, y1), (x2, y2)..., (xn, yn),
all n! permutations are equally likely (Shafer and Vovk, 2008). Here we consider a variant
of conformal predictors, Inductive Conformal Predictors (ICP). We briefly describe the
procedure of an ICP setup.

Given a classifier h : x → y, where (x, y) is a training example, we need a nonconfor-
mity measure fnc which quantifies how likely an instance is to be from training examples.
Various non-conformity measures exist such as inverse probability function which relies on
the output probability of the h, and is given as, fnc(xi, j, h) = 1− (h(xi))j , where (h(xi))j
is the predicted probability of the data point xi to belong to class j.

To make predictions with ICP, we perform data split to measure non-conformities on
a held-out dataset. In particular, the training set is divided into two distinct datasets,
commonly referred to as proper training set and calibration set. Mondrian approach to cali-
bration can be adopted to ensure similar guarantees for all classes by having one calibration
set per class (Vovk et al., 2003).

After creating data splits, we train a machine learning model, which in this case is a
classifier. Then, during calibration, the scores of non-conformity measures are evaluated
using predictions for all data points within the calibration set from the trained classifier.
Since we have access to the actual labels for each of these data points, non-conformity
scores for the true class can be calculated. During prediction time, for each data point,
non-conformity scores are computed for each class and assigned either one label, multiple
labels, or no label, depending on the non-conformity score for a class and the non-conformity
measures for all calibration data points within that class. Thereafter, p-value, p(x,y), of an
instance x for label y, can be given by the proportion of instances observed in calibration
set that are either equally or more non-conforming when compared to this instance. At
significance level ϵ, all labels yi satisfying p(x, yi) > ϵ are assigned to the test instance. In
case where no calibration instance is less likely to belong to any label than the test instance,
the prediction results in an empty set. These empty sets indicate an erroneous classification
or test instance being from a different distribution than all instances in the calibration set.
Proportion of prediction sets of different sizes differ with the confidence levels. Further, since
p-values cannot be considered probabilites over a finite test set, we considered confidence-
credibility framework to classify at desired error rates. The confidence-credibility framework
is described in Section 2.1.1.

2.1.1. Confidence-credibility framework

p-values obtained from a conformal classifier can not be used to guarantee an observed error
rate over a finite test dataset. In order to relate p-values to probabilities over this dataset,
we refer to what is known as confidence-credibility predictions (Papadopoulos, 2008). Here
the aim is to assign a single label to each sample in the test set with some confidence and
credibility. Confidence is given as 1 - second largest p-value. This is the highest confidence
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at which the output is a single label. Credibility measures how likely a sample is to come
from training set. It is defined as the largest p-value.

In order to use this setup to predict a single label while expecting at most K errors on
the test set, we can use the following procedure as described in Linusson et al. (2018):

1. For each data point in the test set of size n, make predictions on a test sample i and
obtain a triplet (ŷi, γi, µj), where ŷi is the most likely single label, γ̂i is the confidence
for the label and µi is the credibility.

2. Set total number of errors tolerable on the test set, K, and obtain k̂i = n(1− γi).

3. Assign label ŷi to the test sample i, if k̂i ≤ K.

This procedure can be label-conditional to provide an expected maximum error for each
label.

3. Experiments and results

In this section, we detail datasets used, define our experimental setup and present our
results. In brief, for each experiment, we investigate calibration errors for ICPs to identify
if a model is well-calibrated. Secondly, we evaluate the distribution and patterns of single,
multi, and empty prediction sets. Finally, in order to make point predictions, we make
use of the confidence-credibility setup and, as a comparison, provide its accuracy with base
algorithm (SVM) with threshold = 0.7 as used in Lotfollahi et al. (2022). In all experiments,
data split for proper training and calibration sets for ICP set up is 80%-20%.

3.1. Datasets

We used six scRNA-seq datasets from human peripheral blood mononuclear cells (PBMCs)
and pancreas tissues from different sequencing technologies. The datasets are listed in Table
1.

Tissue Dataset name Original Source Technology
PBMC PBMC 8k 10x Genomics 10x

PBMC 6k 10x Genomics 10x
Pancreas inDrop Baron et al. (2016) inDrop

SS2 Segerstolpe et al. (2016) Smart-seq 2
CEL-Seq 2 Muraro et al. (2016) CEL-Seq 2
Fluidigm C1 Lawlor et al. (2017) Fluidigm C1
CEL-seq Grün et al. (2016) CEL-Seq

Table 1: Details of datasets. The second column, Dataset name refers to the name of
dataset as used in this work.

We downloaded PBMC datasets from the website of 10x Genomics1 and we manually
labeled cell types for each dataset separately. To label PBMC datasets, we used marker

1. https://www.10xgenomics.com
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genes listed in Table 2 and tools from Scanpy (Wolf et al., 2018). In addition, we obtained
the count matrices of pancreas datasets from Hie et al. (2019) along with cell type labels.
Here, we restricted cell types to Bcells, Monocytes, CD4Tcells, CD8Tcells, and NK cells for
PBMCs and to Alpha, beta, gamma, delta, acinar, ductal, endothelial, stellate cells for the
pancreas dataset.

Cell type Genes
Bcells MS4A1, CD19
CD4Tcells IL7R, CD4
CD8Tcells CD8A
Monocytes LYZ, FCGR3A
NK GNLY, NKG7

Table 2: Marker genes used to define cell types in PBMCs.

3.2. Preprocessing, feature selection and classification

First, we subset the reference and query datasets with the genes present in both. Then, to
remove the low-quality cells, we filtered out genes expressed in less than 3 cells and cells that
express less than 200 genes. We also removed cells expressing more than 4% mitochondrial
genes. After that, we transformed the datasets to log2 (1+CPM), where CPM refers to
counts per million. Then we centered the dataset using Mean-variance scaling to have
zero mean and unit variance. Finally, we subsetted the datasets to have 1,000 most highly
variable genes (HVGs) and combined them. On the resulting data matrix, we computed
principal components (PCs). After initial preprocessing, the number of cell types per dataset
are provided in Tables 3 and 4.

Dataset Bcells CD4Tcells CD8Tcells Monocytes NK Total
PBMC 6k 704 2,240 714 1,397 301 5,536
PBMC 8k 992 1,975 890 1,870 320 6,047

Table 3: Number of cell types in PBMC datasets.

Dataset Alpha Beta Gamma Delta Acinar Ductal Endo. Stellate Total
inDrop 2,249 3,048 260 613 272 898 689 362 8,391
SS2 1,109 796 219 142 103 462 67 63 2,961
CEL-Seq 2 885 600 125 199 170 315 31 101 2,426
Fluidigm C1 241 300 12 21 6 27 12 13 632
CEL-Seq 220 341 21 66 162 402 37 22 1,271

Table 4: Number of cell types in pancreas datasets.

As described in Section 1, we can use batch correction methods before training a machine
learning classifier to remove technical bias. Here, we use Harmony (Korsunsky et al., 2019)
on 50 PCs for this purpose. Harmony first computes soft clusters for each cell on a PCA
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embedding and then performs iterative correction of clusters to ensure that similar cells are
closely clustered. As it is beyond the scope here to describe Harmony in detail, we refer the
reader to the original publication for a detailed overview of Harmony. The final dataset,
thus, contains 50 PCs that are corrected using Harmony. In our experiments, we report
visualizations of UMAP embeddings to ensure sufficient data integration.

As an underlying algorithm, we use support vector machines (SVMs). SVMs have been
used in single-cell classification previously and have achieved state-of-the-art performance
(Alquicira-Hernandez et al., 2019). Further, a threshold can be set on output probabilities
to only make confident classifications. Previous methods have used thresholded SVM to
filter out potentially wrong predictions and have achieved good results (Alquicira-Hernandez
et al., 2019; Lotfollahi et al., 2022). Therefore, SVM is a natural choice for us to use with
conformal prediction for our task.

3.3. PBMCs

To begin with, we experimented on the two PBMC datasets. Distributions of the counts
per cell type are largely similar between the two datasets, with CD4Tcells being the most
abundant cell type (Table 3). We trained on one of the two datasets and tested on the
other. Since the sources of training and test sets are different in these experiments, this
could lead to validation issues of CP. To mitigate this, we first aligned training and test
distributions using Harmony. Then, we visualize PC- and UMAP- embeddings before and
after batch correction with Harmony in Figure 1. Visually, the datasets are well-integrated.
Here, compared to Monocytes and B cells, several overlapping CD8Tcells, CD4Tcells, and
NK cells exist. This difference is likely due to the biological similarities of CD4Tcells,
CD8Tcells, and NK cells.

Figure 1: PC- and UMAP-embeddings for a: Original and b: Harmony corrected dataset.

We evaluated the base algorithm, SVM, on both original and batch corrected datasets.
We considered two settings: experiment 1 - Training set: PBMC 6k, test set: PBMC 8k,
and experiment 2 - Training set: PBMC 8k, test set: PBMC 6k. The confusion matrices
of resulting models are given in Table 5. Without batch correction, relatively distinct cells,
Bcells, and Monocytes are well-classified. However, in both experiments, the accuracies for
CD8Tcells are almost 0 (experiment 1 - CD8Tcells: 0, and experiment 2 - CD8Tcells: 0.008).
Almost all CD8Tcells are identified as CD4Tcells. After batch correction, this is slightly
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better (experiment 1 - CD8Tcells: 0.12, and experiment 2 - CD8Tcells: 0.17). There can
be two reasons for this poor performance on CD8Tcells. The first is the inherent difference
in cell types (this is unlikely as both datasets are from healthy individuals and cell types
are annotated using similar procedures), and the second is the improper batch correction
or simply an inaccurate classifier. It should also be noted that a hierarchical classification
approach can also be considered in this case to employ a two-step classification process
where first, Monocytes and lymphocytes are classified. Then lymphocytes are classified
into Tcells, NK, and Bcells (Alquicira-Hernandez et al., 2019). However, since we are
interested in evaluating uncertainties, our objective lies in understanding whether ICP leads
to similar performance as the underlying algorithm, and whether the resulting uncertainties
make sense.

(a) PBMC 6k to PBMC 8k

Before batch Correction

Bcells CD4Tcells CD8Tcells Monocytes NK
Bcells 0.88 0.11 0 0.01 0
CD4Tcells 0 0.99 0 0.01 0
CD8Tcells 0 0.99 0 0.01 0
Monocytes 0 0.04 0 0.96 0
NK 0 0.52 0 0.21 0.27

After batch Correction

Bcells CD4Tcells CD8Tcells Monocytes NK
Bcells 0.99 0.01 0 0 0
CD4Tcells 0 0.97 0.02 0.01 0
CD8Tcells 0 0.88 0.12 0 0
Monocytes 0 0.02 0 0.98 0
NK 0 0.04 0.15 0.02 0.79

(b) PBMC 8k to PBMC 6k

Before batch Correction

Bcells CD4Tcells CD8Tcells Monocytes NK
Bcells 0.88 0.08 0 0.04 0
CD4Tcells 0 0.97 0.02 0.01 0
CD8Tcells 0 0.91 0.01 0.01 0.07
Monocytes 0 0 0 1 0
NK 0 0.11 0 0.04 0.85

After batch Correction

Bcells CD4Tcells CD8Tcells Monocytes NK
Bcells 0.98 0.01 0 0.01 0
CD4Tcells 0 0.88 0.1 0.02 0
CD8Tcells 0 0.44 0.17 0 0.39
Monocytes 0 0 0 1 0
NK 0 0.04 0.01 0 0.95

Table 5: Confusion matrices for experiments - 1 (Training set: PBMC 6k, Test set: BMC
8k) and 2 (Training set: PBMC 8k, Test set: BMC 6k) a: before and b: after
batch correction.

Next, we classified the same datasets with ICP and evaluated the quality of the cali-
bration. Figure 2 shows the error rates on calibration set across significance levels. For
the non-Mondrian approach, the error rates differ widely between cell types. This is un-
derstandable as the number of cells differs per cell type (Tables 3). In contrast, for the
Mondrian approach, errors on the calibration set are uniform across cell types. Next, we
evaluated the performance of ICP in comparison with SVM and SVM with a threshold.
Results are given in Table 6 for ICP at significance = 0.025. The choice of 0.025 is arbitrary
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and is chosen to provide sufficient confidence. Here, for ICP, we include all predictions,
regardless of the size of the prediction set. We compare both averages as well as overall
accuracies. Average accuracy favors all cell types equally, regardless of size of the cell type
cluster. Accuracies of ICPs are slightly better than the others.

Figure 2: Error rates on calibration set for a: non-Mondrian and b: Mondrian approaches.
The first row shows the results for experiment 1 and the second row shows the
results for experiment 2.

Method Test set Average accuracy Overall accuracy
SVM PBMC 8k 0.771 0.844
SVM PBMC 6k 0.616 0.834
SVM (thr 0.7) PBMC 8k 0.842 0.868
SVM (thr 0.7) PBMC 6k 0.742 0.863
ICP (With SVM) PBMC 8k 0.935 0.854
ICP (With SVM) PBMC 6k 0.790 0.868

Table 6: Comparison of SVM, SVM with threshold = 0.7 and ICP. For ICP, significance, ϵ
= 0.025 and all prediction sets are considered. Average accuracy refers to average
of per cell type accuracy and overall accuracy refers to accuracy across all cell
types.

While ICP gives better average accuracy, it should be noted that to evaluate the results
properly, we must consider both prediction set sizes and errors over the finite test set. To
accomplish this, we first looked at the error rate per cell type over the test set (Figure 3).
For experiment 1 (Test set: PBMC 8k), the error rates for CD8Tcells and NK are higher,
while for experiment 2 (Test set: PBMC 6k), the error rates for CD8Tcells are higher than

8



Uncertainty Estimation for Single-cell Label Transfer

error rates for other cell types. This is in line with the errors observed from the underlying
algorithm. Since errors can arise from misclassifications, i.e. prediction set doesn’t include
the ground truth cell type, or no classification, i.e. empty prediction set. To assess this,
we computed the ZeroC (fraction of prediction sets of size 0), OneC (fraction of prediction
sets of size 1), and MultiC (fraction of prediction sets of size greater than 1), and we show
them at different significance levels in Figure 4. For both experiments, across all cell types,
the errors can be attributed to high ZeroC. In experiment 1, for both CD8Tcells and NK
cells, ZeroC is higher even at low significance levels, indicating poor credibility and errors
due to empty prediction sets. For experiment 2, this is only observed for CD8Tcells.

Figure 3: Error rates on test set for a: experiment 1 and b: experiment 2.

Figure 4: ZeroC, OneC and MultiC for a: experiment 1 and b: experiment 2.

Since errors are mainly attributed to empty prediction sets, we looked at the confidence-
credibility predictions. Figure 5 shows the confidence and credibility scores on the UMAP
embeddings for both experiments. CD8Tcells largely seem to be less credible. Therefore, we
provide the average credibility per cell type in Table 7. We observed much lower credibility
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for CD8Tcells (0.143) and NK cells (0.28) in experiment 1 and for CD8Tcells (0.164) in
experiment 2. This is in line with the error rates on the test set (Figure 3).

Figure 5: Confidence and credibility visualized on UMAP embeddings of test sets for a:
experiment 1 and b: experiment 2.

Test set Cell type Average credibility
PBMC 8k Bcells 0.417
PBMC 8k CD4Tcells 0.415
PBMC 8k CD8Tcells 0.143
PBMC 8k NK 0.280
PBMC 8k Monocytes 0.419
PBMC 6k Bcells 0.60
PBMC 6k CD4Tcells 0.482
PBMC 6k CD8Tcells 0.164
PBMC 6k NK 0.56
PBMC 6k Monocytes 0.45

Table 7: Average credibility per cell type for experiments 1 and 2.

Using these confidence and credibility scores, we fixed K at 0.025 (as a fraction of the
size of the test set) and considered a label-conditional variant of the confidence-credibility
setup defined in Section 2.1.1. K = 0.025 was chosen since at this level, model classified over
50% of all cells. We compared classification rates (i.e. Proportion of cells that were assigned
a cell type label) and accuracy per cell type between CC-ICP (confidence-credibility setup
of ICP) and SVM with a output probability threshold of 0.7. The results for experiments
1 and 2 are given respectively in Tables 8 and 9. While SVM with threshold provides more
classifications and the classification rates are largely similar across cell types, for CC-ICP,
only a limited number of CD8Tcells are classified (experiment 1: 0.11 and experiment 2:
0.466). However, the observed error rate is higher than the expected maximum error. To
further evaluate this, we computed fractions of cells that were classified per cell type with
increasing expected error rates. We show them over UMAP embeddings in Figure 6. As the
expected error rate increases, more cells are classified. Experiments 1 and 2 are classified
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at substantially different rates. However, the accuracy of the classified cells shows no such
behavior. This is expected as K balances the trade-off between the number of classifications
and the expected error.

Method Cell type Classification rate Accuracy
SVM (thr 0.7) Bcells 0.982 1
SVM (thr 0.7) CD4Tcells 0.956 0.988
SVM (thr 0.7) CD8Tcells 0.808 0.068
SVM (thr 0.7) NK 0.94 0.987
SVM (thr 0.7) Monocytes 0.968 0.975
CC-ICP Bcells 0.968 0.99
CC-ICP CD4Tcells 0.564 0.98
CC-ICP CD8Tcells 0.11 0.946
CC-ICP NK 0.638 0.931
CC-ICP Monocytes 0.649 0.99

Table 8: Comparison of classification rates and accuracies for SVM with threshold 0.7 and
confidence-credibility inductive conformal predictions (CC-ICP) for experiment 1.

Method Cell type Classification rate Accuracy
SVM (thr 0.7) Bcells 0.974 0.99
SVM (thr 0.7) CD4Tcells 0.859 0.897
SVM (thr 0.7) CD8Tcells 0.757 0.146
SVM (thr 0.7) NK 0.94 0.987
SVM (thr 0.7) Monocytes 0.82 0.98
CC-ICP Bcells 0.717 0.99
CC-ICP CD4Tcells 0.656 0.911
CC-ICP CD8Tcells 0.466 0.589
CC-ICP NK 0.94 0.985
CC-ICP Monocytes 0.768 0.948

Table 9: Comparison of classification rates and accuracies for SVM with threshold 0.7 and
confidence-credibility inductive conformal predictions (CC-ICP) for experiment 2.

3.4. Pancreas

In this section, we focus on a single-cell label transfer setting in which information from
multiple sources are utilized to increase available information. Here, we are interested in
evaluating conformal prediction when reference and query consist of various datasets. On
the one hand, this setting is more informative, but it can also be challenging due to increased
sources of errors. Here, pancreas SS2 and inDrop form query, and the remaining pancreas
datasets form reference (Table 4).

Similar to experiments on PBMCs, first, we looked at the quality of batch correction
(Figure 7). Qualitatively, datasets once again seem well-integrated. Similar to our experi-
ments on PBMCs, we next looked at the calibration error rates, test error rates, the sizes
of prediction sets, and confidence and credibilities. For brevity, we present these results
together in Figure 8. Here, there is no clear outlier looking directly at the test error rates
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Figure 6: Classification and error rates for a: experiment 1 and b: experiment 2 for different
values of K. K is given as a fraction of the size of test set.

and the sizes of prediction sets. The comparison with other algorithms is given in Table 10
and average credibility per cell type is given in Table 11. As before, ICP, with all prediction
sets considered, performs better than SVM and SVM with a threshold. For Stellate cells,
the average credibility is the lowest (0.274), followed by alpha cells (0.312). We next looked
at classification rates and accuracies at different values of K (Figure 9). Here, the average
accuracy per cell type is shown, and is much closer to the expected error rate.

Figure 7: PC- and UMAP-embeddings for a: Original and b: Harmony corrected pancreas
dataset.
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Figure 8: For pancreas dataset, a: Error rates on calibration set for non-Mondrian and
Mondrian approaches. b: Error rates on test set. c: Sizes of prediction sets per
cell type. d: Confidence and credibility visualized on UMAP embeddings of test
set.

Method Average accuracy Overall accuracy
SVM 0.771 0.857
SVM (thr 0.7) 0.862 0.935
ICP (With SVM) 0.928 0.934

Table 10: Comparison of SVM, SVM with threshold = 0.7 and ICP. For ICP, significance
ϵ = 0.025, and all prediction sets are considered. Average accuracy refers to
average of per cell type accuracy and overall accuracy refers to accuracy across
all cell types.
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Cell type Average credibility
Acinar 0.508
Alpha 0.312
Beta 0.421
Delta 0.488
Ductal 0.488
Endothelial 0.473
Gamma 0.531
Stellate 0.274

Table 11: Average credibility per cell type.

Figure 9: Classification and error rates for experiment on pancreas datasets for different K.
K is given as a fraction of the size of test set.

3.5. Classification of unknown cell types

Next, we wanted to investigate ICP predictions for detecting unknown cell types, i.e. cell
types that are not observed in the training and calibration sets. While this setting violates
the underlying assumption of conformal prediction, we still wanted to evaluate whether the
resulting assignments for these unknown cells make sense, at least concerning the clustering,
and whether the classification rates for these unknown cell types are lower compared to cell
types observed in the reference. We removed each cell type from the training set while
making no changes to the test set. For fair evaluation, we performed batch correction
separately for each removal. This is essential as the presence of unknown cell types can
affect the performance of batch correction algorithms (Hie et al., 2019). We compared
assignments for the unknown cell type with average assignments on known cell types (i.e.
cell types observed in training and test sets). The results are given in Table 12. The
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results are different across cell types; however, the assignments on unknown cell types are
considerably lower than those on the known cell types.

Unknow cell type Assignment on Unknown Average assignments on known
Alpha 0.08 0.42
Delta 0.59 0.64
Beta 0.68 0.82
Ductal 0.514 0.762
Acinar 0.501 0.761
Gamma 0.455 0.636
Endothelial 0.445 0.748
Stellate 0.379 0.705

Table 12: Classification of unknown cell types. Each row indicate an experiment where
the cell type listed in the column ”Unknown cell type” were removed from the
training set.

3.6. Conformal prediction and Quality of batch correction

Lastly, we wanted to see if the higher error rate for particular cell types is due to the
quality of batch correction. It should be noted that there is no ”best” batch correction
algorithm, and the quality of correction may differ from one dataset to other. Further, to
evaluate batch correction, access to accurate cell type annotations in both the reference
and query is needed. We argue that there is a relation between batch correction quality
and uncertainties of conformal predictions. To confirm this, we considered two other batch
correction algorithms, namely Scanorama (Hie et al., 2019) and scGen (Lotfollahi et al.,
2019), and performed batch correction on PBMC datasets. We computed homogeneity
scores (Rosenberg and Hirschberg, 2007) which measures the purity of clusters. High overlap
between two cell type clusters would thus result in lower homogeneity. Scanorama gave the
highest homogeneity score (0.812), and we considered corrected PCs from Scanorama for our
experiment. We considered the setting with training dataset: PBMC 8k and test dataset:
PBMC 6k. We observed a more consistent error rate over test set at different significance
levels in Figure 10 and a more uniform average credibility per cell type in Table 14 compared
to what we observed in Table 7 using Harmony. We envision further evaluations across other
datasets and using more batch correction algorithms. However, this provides an insight into
why the observed error rates could be higher for conformal prediction. It also evaluates data
integration algorithms in relation to the label transfer task.
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Method Homogeneity score
Harmony 0.613
Scanorama 0.812
scGen 0.795

Table 13: Homogeneity scores for Harmony, Scanorama and scGen for correction of PBMC
datasets.

Figure 10: Results with using ICP on Scanorama corrected dataset: a: Error rates on the
calibration set using non-mondrian and mondrian approaches. b: Error rates
on test set.

Cell type Average credibility
Bcells 0.587
CD4Tcells 0.460
CD8Tcells 0.440
Monocytes 0.498
NK 0.487

Table 14: Average credibility per cell type using ICP on Scanorama corrected datasets.
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4. Discussion

We have presented a use case of conformal classification in single-cell label transfer. In
both PBMC and pancreas datasets, conformal classifiers were well-calibrated. However,
due to poor batch correction, the data may not be well integrated, and therefore may
not wholly follow the exchangeability criterion. Consequently, we utilized the confidence-
credibility framework and identified regions of uncertainty accurately. This setup allowed to
classify cell types with desired error rates. Interestingly, these regions correspond to regions
with cell type overlap and poor integration, such as CD8Tcells in the PBMC dataset and
stellate cells in the pancreas datasets. These uncertainty patterns are informative as they
reveal the uncertain nature of classification for those clusters and characterize cell clusters
that an expert must look into. Further, we could repurpose ICP to predict unknown cell
types. However, further evaluations using various cell types and tissues are needed to make
conclusions. Nevertheless, ICP may help minimize errors on unknown cells, and these
clusters may be identified by investigating uncertainty patterns.

We observed a relationship between the observed error of conformal classification and
the quality of batch correction. We expect an ideal batch correction method to remove
the technical bias and cluster similar cell types together. Hence, the difference between
expected and observed error rates under the confidence-credibility setup may quantify batch
correction quality specifically for the task of label transfer.

Lastly, we would like to mention possible future directions motivated by the experiments
described here. First, technical improvements may be necessary to improve and to further
assess the applicability of conformal prediction in label transfer. In this work, we did not
consider any normalization method for restricting prediction sets, which is a natural next
step. Moreover, we would be interested in utilizing conformal anomaly detection to detect
unknown and rare cell types.
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reject option using conformal prediction. In Pacific-Asia Conference on Knowledge Dis-
covery and Data Mining, pages 94–105. Springer, 2018.

18



Uncertainty Estimation for Single-cell Label Transfer

Mohammad Lotfollahi, F Alexander Wolf, and Fabian J Theis. scgen predicts single-cell
perturbation responses. Nature methods, 16(8):715–721, 2019.

Mohammad Lotfollahi, Mohsen Naghipourfar, Malte D Luecken, Matin Khajavi, Maren
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