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Abstract
Quantifying the uncertainty of a predictive model output is of essential importance in learning
scenarios involving critical applications. As the learning task becomes more complex, so does
uncertainty quantification. In this paper, we consider the task of multi-target regression and propose
a method to output ellipsoidal confidence regions whose shapes are tailored to each instance to
predict. We also guarantee that those confidence regions are well-calibrated, i.e., that they cover
the ground truth with a specified probability. To achieve such a feat, we propose a conformal
prediction method outputting ellipsoidal prediction regions. Experiments on both simulated and
real-world data sets show that our methods outperform existing ones.
Keywords: Inductive conformal prediction, Ellipsoids, Multi-target regression.

1. Introduction

Uncertainty quantification is an important aspect of Machine Learning. It can be as crucial as the
prediction when it comes to sensitive tasks such as when the safety of humans, such as pedestri-
ans and drivers in an autonomous vehicle application (Pan et al. (2020)) or patients in a medical
case (Pereira et al. (2020)), is at risk. In these situations, uncertainty estimates can help in the
decision-making process by identifying instances where an expert’s opinion is better than a wrongly
over-confident model’s prediction. Having multiple outputs to predict at once, especially when cor-
related, makes the estimation even tougher. Some examples of multi-target regression problems
are predicting the financial cost and the price of a house (Rafiei and Adeli (2016)), or predicting
latitude, longitude and altitude in an indoor localization problem (Torres-Sospedra et al. (2014)).

One of the methods that generates uncertainty estimates for any Machine Learning model is
conformal prediction (Vovk et al. (2005)), a distribution-free predictive inference that has gained
popularity in the recent years. Instead of point predictions, this theoretically-proven framework
produces a set (in classification) or an interval (in regression) as predictions with a statistical guar-
antee based on a probability error chosen by the user.

Most research studies on conformal prediction for regression problems focus on single-output
problems. However, in the last few years, some papers working with a multivariate output space
have emerged. Neeven and Smirnov (2018) extend a conformal single-output k-nearest neighbor to
a multi-target weather forecasting problem. Kuleshov et al. (2018a) provide a theoretical conformal
prediction framework for manifold learning. Our previous work Messoudi et al. (2021) produces a
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hyper-rectangle conformal prediction region fitted to a multi-target regression problem, and John-
stone and Cox (2021) exploits an ellipsoidal conformal prediction region for robust optimization.

In this paper, we propose a new conformal prediction method for multi-target regression that
provides k-dimensional ellipsoidal uncertainty regions specific to each instance. Section 2 gives an
overview of our setting by introducing multi-target regression and inductive conformal regression.
Section 3 presents our method of ellipsoidal conformal prediction applied to multi-target regression,
and prove that it is theoretically well-calibrated. Section 4 presents the results of experiments that
show that our method provide tighter prediction sets, while maintaining the desired probability error.

2. Setting

In this section, we present the setting of our work by briefly defining the multi-target regression
problem, reviewing frequency-calibrated prediction methods, before introducing inductive confor-
mal regression, the basic framework used in our research.

2.1. Multi-target regression (MTR)

Let X be the feature space and Y be the target space. The training set is constructed by drawing
n i.i.d. pairs (xi, yi) from a probability distribution on X × Y , where each instance xi ∈ X is
associated with a target yi. In a single target regression setting, we have one real-valued output
yi ∈ Y = R. In a multi-target regression setting, each xi is associated to multiple outputs such
that yi is a k-dimensional real valued target yi = (y1

i , . . . , y
k
i ) ∈ Y with Y = Rk. The objective

of multi-target regression is to learn a function H : X → Y , i.e. to predict multiple outputs
based on the input features characterizing the data set, which is a straightforward generalization of
single-output supervised learning.

2.2. Frequency-calibrated predictions

When learning a model H that concerns some critical application such as medical diagnosis or reli-
ability analysis, it is common to ask the predictions of H to come with an uncertainty quantification
that is well-calibrated.

This calibration can be expressed as the requirement that a probabilistic prediction p̂(y) of H
should converge to the true probability p(y). This is often done through the use of a post-calibration
procedure (Kuleshov et al. (2018b)) or by the use of proper loss functions (Gneiting and Raftery
(2007)).

Another popular means of quantifying uncertainty in a probabilistic setting is to perform a
Bayesian analysis (Kendall and Gal (2017)), yet such analysis does not come with statistical guar-
antees.

One more way to ensure calibration is to accept set-valued predictions from H , typically in the
form of intervals [y, y] for univariate regression, that have a guaranteed coverage probability. More
precisely, ifH(x) = Ŷ denotes a set-valued prediction and y the observed quantity, we require that:

P(y ∈ Ŷ ) ≥ 1− ε

with a specified error ε. This can be achieved by using conformal inference, a flexible framework
that can be added to any Machine Learning algorithm to produce well-calibrated predictions, and
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that only requires exchangeable data (a weaker assumption than i.i.d.). The next subsection will
explain this method for single-output regression in the inductive setting.

2.3. Inductive conformal regression

In a single-output regression problem, conformal prediction provides a prediction interval instead
of a point prediction, allowing for the uncertainty to be quantified depending on the interval size.
This prediction interval can be obtained using a transductive setting (Vovk et al. (2005)), where all
instances are used for each new instance to get its prediction, or an inductive setting (Papadopoulos
and Haralambous (2011)), where the Machine Learning model is trained once on a part of the
training data with the other part used as calibration for conformal inference.

Let Z = {(xi, yi), i = 1, . . . , n} be a sequence of exchangeable pairs for our regression prob-
lem where |Z| = n. Each xi ∈ X is an object and yi ∈ Y its corresponding real-valued label. The
inductive conformal regression steps to obtain a prediction interval are as follows:

1. Divide Z into two disjoint sets: a proper training set Ztr with |Ztr| = l and a calibration set
Zcal with |Zcal| = n− l = q.

2. Train a regression model H on Ztr to predict y and set a non-conformity measure (NCM)
f(z) = |y − ŷ| with ŷ = H(x) that evaluates how much an instance z = (x, y) is strange
compared to those in Ztr.

3. Apply the non-conformity measure f(z) to each element zi ∈ Zcal to obtain the calibration
scores αl+1, . . . , αn, with αi = f(zi) = |yi − ŷi|.

4. Set a significance level ε ∈ (0, 1), sort calibration scores αl+1, . . . , αn in a descending order
and get the index of the (1 − ε)-percentile of the non-conformity score αs such that P(|yi −
ŷi| ≤ αs) ≥ 1− ε. Thus,

αs := αd(1−ε)·qe

5. For a new instance xn+1, get its prediction interval

ŷn+1 = [ŷn+1 − αs, ŷn+1 + αs]

By using the NCM αi = |yi − ŷi|, all prediction intervals for all instances have the same size
2αs. Instead of using this standard approach, a normalized NCM was proposed to get personalized
prediction intervals depending on the models difficulty of outputting an instances prediction Pa-
padopoulos and Haralambous (2011). Hence, if an instance is easy to predict, its prediction interval
should be smaller than another hard instance. This difficulty estimation σi is then used to scale the
standard NCM such as αi = |yi − ŷi|/σi. In this case, the prediction interval becomes

ŷn+1 = [ŷn+1 − αsσn+1, ŷn+1 + αsσn+1]

The two desirable properties from a conformal prediction method are validity, meaning that the
confidence level always satisfies the probability error ε chosen by the user, and efficiency, i.e., the
prediction sets/intervals are the smallest possible in its predictive sense. These two notions will be
used to assess the non-conformity measure performances. For other criteria of efficiency, the reader
can refer to Vovk et al. (2017).
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3. Ellipsoidal multivariate conformal regression

In a multi-target regression problem, it is possible that the outputs share some information between
them and therefore, these outputs are likely correlated. Our objective is to exploit this relationship
to get a generalized conformal inference model with boosted performance results (Caruana (1993)).

Our goal here is to propose a method that is both efficient, localized and offers some flexibility
to capture output dependencies. None of the methods we cited have these three features. Using
and learning manifold (Kuleshov et al. (2018a)) is quite complex, hyper-rectangles cannot capture
covariance information, and (Johnstone and Cox (2021)) consider one global ellipsoid and do not
propose a learning method to get the covariance matrix, as they work in a robust optimization setting,
not a learning one. Nevertheless, as their method can be readily applied to learning and compared
to ours, we will recall it in detail.

3.1. Standard global ellipsoidal non-conformity measure

Knowing that the ellipsoid1 is one of the most flexible geometrical shapes, Johnstone and Cox
(2021) proposed for a robust optimization problem an ellipsoidal NCM:

αi =

√
(yi − ŷi)T Σ̂−1(yi − ŷi), (1)

where yi − ŷi is a vector of univariate non-conformity scores (here, the regressor’s error rate) and
Σ̂−1 is the sample inverse-covariance matrix of the observed errors.

3.2. Normalized local ellipsoidal non-conformity measure

The standard global ellipsoidal NCM in (1) uses a sample inverse-covariance matrix Σ̂−1 globally-
estimated from the training data’s errors. Therefore, it resembles the standard approach in the
univariate case where the non-conformity score is not tailored for each instance. We propose to use
instead a normalized inverse-covariance matrix Σ̂−1

i for each instance xi, to take into consideration
a locally-estimated covariance matrix of the instance. The normalized NCM in this case is:

αi =

√
(yi − ŷi)T Σ̂−1

i (yi − ŷi) (2)

This NCM enables us to define the conformal prediction region as an ellipsoid Ei given by the
following theorem:

Theorem 1 The ellipsoid Ei given by the NCM

αi =

√
(yi − ŷi)T Σ̂−1

i (yi − ŷi),

which center is the regressor’s prediction ŷi, and covariance matrix is Σ̂−1
i
α2
s

, is a conformal valid
prediction.

1. Note that the term “ellipsoid” used in this paper refers to a k-dimensional ellipsoid.
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Proof Let Ei be the ellipsoid to which the ground truth yi of an instance xi should belong. To
satisfy the validity of a conformal predictor considering a significance level ε, we have:

P(yi ∈ Ei) ≥ 1− ε
⇐⇒ P(αi ≤ αs) ≥ 1− ε.

⇐⇒ P
(√

(yi − ŷi)T Σ̂−1
i (yi − ŷi) ≤ αs

)
≥ 1− ε.

⇐⇒ P

√(yi − ŷi)T
Σ̂−1
i

α2
s

(yi − ŷi) ≤ 1

 ≥ 1− ε.

Following an ellipsoid’s definition, we can see that:

Ei =

{
yi ∈ Rk : (yi − ŷi)T

Σ̂−1
i

α2
s

(yi − ŷi) ≤ 1

}
.

Ei is the ellipsoid given by the center ŷi and the matrix Σ̂−1
i
α2
s

.

The volume of Ei, its predictive efficiency, is equal to the standard volume of an ellipsoid:

Vol(Ei) = αks det
(

Σ̂i

)1/2
Vol(Bk), (3)

where Bk = {y ∈ Rk : ||y||2 ≤ 1} is the unit ball.

3.3. Local covariance matrix estimation

As mentioned above, the NCM given by (2) is mainly composed of a normalized inverse-covariance
matrix Σ̂−1

i for each instance xi, meaning that we need to estimate locally a covariance matrix ˆCovi
for xi. Thus, we propose to calculate Σ̂i by:

Σ̂i = λ ˆCovi + (1− λ)Σ̂, (4)

where Σ̂ is the global covariance matrix estimated from error rates over all training instances in Ztr,
that is from the observed errors (yi − ŷi), ˆCovi is the local covariance matrix of instance xi, and λ
is a parameter to control the trade-off between Σ̂ and ˆCovi in order to get a positive definite matrix
Σ̂i. Its value should be high enough to ensure that the influence of ˆCovi is predominant compared
to Σ̂.

To estimate ˆCovi, we propose to use a kNN model to get the neighboring instances of xi from
Ztr, and then use the observed error rates on these instances to estimate ˆCovi. That is, given xi,
we consider the k nearest instances xj ∈ Ztr from xi, and estimate ˆCovi from the observed errors
(yj − ŷj) for instances xj .

4. Experiments

In this section, we present our experimental approach, conduct it on synthetic data and benchmark
data sets and analyze the obtained results. The experiments were conducted using Python and the
code is available in Github 2.

2. https://github.com/M-Soundouss/EllipsoidalConformalMTR
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4.1. Experimental protocol

The objective of our experiments is to compare between four non-conformity measures:

• Standard Empirical Copula (SEC) Messoudi et al. (2021): produces same-size hyper-
rectangle conformal regions by non-parametrically estimating the dependence structure be-
tween calibration non-conformity scores αi using the empirical copula. Although not present
in our previous paper, we can easily derive it by considering the standard NCM αi = |yi− ŷi|.

• Normalized Empirical Copula (NEC) Messoudi et al. (2021): generates personalized hyper-
rectangle conformal regions with a difficulty estimator σi = exp(µi)+β, where a Multi-Layer
Perceptron (MLP) is used to learn µi = ln(|yi − ŷi|).

• Standard Global Ellipsoid (SGE) Johnstone and Cox (2021): gets same-size ellipsoidal
conformal regions using the global inverse-covariance matrix Σ̂−1 from proper training data
Ztr following Equation (1).

• Normalized Local Ellipsoid (NLE - Ours): constructs individual ellipsoidal conformal re-
gions following Equation (2) by exploiting a local covariance matrix specific to each instance,
which is obtained as explained in subsection 3.3.

Table 1 summarizes the features of the different methods. We can see from it that local ellipses
can capture both covariance structures and local variations, hence providing possibly better results.

Is Local Captures Covariance

SEC x x
NEC X x
SGE x X
NLE - Ours X X

Table 1: Properties of the used non-conformity measures.

The experiments are conducted with a 10-fold cross validation following these steps:

1. Split the data set to get proper training Ztr, calibration Zcal and test Zts sets, by allocating 10%
of the data (i.e. 1 fold) to Zts, and splitting the remaining 90% of the instances (i.e. 9 folds)
into proper training and calibration, with a Zcal size equal to 10% of the training instances.

2. Train the underlying algorithm on Ztr, here a multi-output random forest using Scikit Learn’s
“MultiOutputRegressor”, calculate Σ̂ of the errors made on Ztr instances, and get the regres-
sor’s predictions for Zcal and Zts.

3. For the normalized NCMs, train the normalizing models on Ztr: an MLP for NEC to get σi
by learning µi, and a kNN for our method NLE to get the neighboring instances of xi, which
number is equal to 5% of the number of Ztr instances, to calculate Σ̂i.

4. For each instance in Zcal and Zts, get σi values for NEC using the MLP, and Σ̂i values for
NLE using the kNN with λ = 0.95, a high value that favors the impact of ˆCovi in (4).
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5. Choose the significance level’s value ε.

6. Obtain the non-conformity scores for the different NCMs for Zcal, sort α1, . . . , αq in a de-
scending order and get the index s of the (1− ε)-percentile of the non-conformity score αs.

7. For a new object xn+1 in Zts, get its hyper-rectangle or ellipsoidal prediction region depending
on the used NCM.

4.2. On synthetic data

The synthetic data set aims at assessing the performance of all NCMs by controlling the dependence
structure between the outputs. It contains 50000 instances and is created as follows:

• x1 and x2 are generated independently using a uniform distribution with values between −5
and 5.

• y is a 2-dimensional linear transformation of x plus some Gaussian centered noise:

y = Ax+ ε with A =

[
0.7 0.3
0.2 0.8

]
and ε ∼ N (0, Sx).

The covariance matrix Sx of ε depends on x and is a weighted average of four covariance
matrices at four different points µi:

Sx =
4∑
i=1

∆(x, µi)∑4
j=1 ∆(x, µj)

× Covµi (5)

where ∆ is an inverse distance calculated as follows :

∆(x, µi) =

(
1

d(x, µi) + ξ

)4

(6)

with ξ a small value used to avoid a division by 0. Figure 1 shows the four µi points that are
placed at the extremities of our distribution and have the distinct covariance matrices Covµi :

Covµ1 = Covµ4 =

[
0.1 −0.09
−0.09 0.1

]
and Covµ2 = Covµ3 =

[
0.1 0.09
0.09 0.1

]

Figure 1: Representation of µi points and their covariance matrices.
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synthetic (k = 2) ε = 0.01 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

Validity

SEC 99.21± 0.12 95.11± 0.23 90.25± 0.35 85.07± 0.45 80.07± 0.79
NEC 99.24± 0.11 95.08± 0.31 90.26± 0.39 84.99± 0.41 80.12± 0.81
SGE 98.97± 0.17 95.02± 0.37 90.00± 0.50 84.95± 0.49 79.94± 0.73
NLE - Ours 99.01± 0.15 94.89± 0.28 90.02± 0.48 84.91± 0.33 80.00± 0.45

Efficiency

SEC 3.95± 0.13 2.32± 0.04 1.75± 0.03 1.39± 0.02 1.16± 0.02
NEC 3.99± 0.14 2.32± 0.04 1.76± 0.03 1.38± 0.02 1.16± 0.02
SGE 4.19± 0.17 2.51± 0.05 1.84± 0.04 1.46± 0.02 1.20± 0.02
NLE - Ours 2.85± 0.07 1.81± 0.02 1.39± 0.02 1.14± 0.01 0.97± 0.01

Table 2: Validity and efficiency results for synthetic data.

−6 −4 −2 0 2 4 6

−4

−2

0

2

4
True
Pred

(a) Standard Empirical Copula

−6 −4 −2 0 2 4 6

−4

−2

0

2

4
True
Pred

(b) Normalized Empirical Copula

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

True
Pred

(c) Standard Global Ellipsoid

−6 −4 −2 0 2 4 6

−4

−2

0

2

4

True
Pred

(d) Normalized Local Ellipsoid

Figure 2: Results’ visualization for synthetic data with ε = 0.1.

For synthetic data, we calculated the mean validity and efficiency (surface) of all non-conformity
measures for different ε values. Results are summed up in Table 2. They show that all NCMs are
exactly valid, with a slight difference between them. However, when it comes to efficiency, our
method NLE outperforms the others, giving the best results with tighter conformal regions.

For visualization purposes, we drew prediction regions (a rectangle for empirical copula NCMs
and an ellipse for ellipsoidal NCMs) in Figure 2. We notice that both empirical copula NCMs give
almost the same results, which explains why their efficiency results in Table 2 are almost equal.
Another remark is that the drawn ellipses for NLE in subfigure 2d follow the choice of µi values
and their covariance matrices used to generate synthetic data, which shows that our method respects
local covariance, thus explaining the gain in efficiency going from a rectangle to an ellipse.
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4.3. On real data

We use 19 data sets with various numbers of targets to compare between the four different NCMs.
These data sets are from Mulan and the UCI repository. Their information is summed up in Table 3.

Names Instances Features Targets Source
residential building 372 105 2 Rafiei and Adeli (2016)
enb 768 8 2 Tsoumakas et al. (2011)
music origin 1059 68 2 Zhou et al. (2014)
bias correction 7750 25 2 Cho et al. (2020)
jura 359 15 3 Tsoumakas et al. (2011)
scpf 1137 23 3 Tsoumakas et al. (2011)
indoor localization 21049 520 3 Torres-Sospedra et al. (2014)
sgemm 241600 14 4 Nugteren and Codreanu (2015)
atp1d 337 411 6 Tsoumakas et al. (2011)
atp7d 296 411 6 Tsoumakas et al. (2011)
rf1 9125 64 8 Tsoumakas et al. (2011)
rf2 9125 576 8 Tsoumakas et al. (2011)
osales 639 413 12 Tsoumakas et al. (2011)
wq 1060 16 14 Tsoumakas et al. (2011)
scm1d 9803 280 16 Tsoumakas et al. (2011)
scm20d 8966 61 16 Tsoumakas et al. (2011)
oes10 403 298 16 Tsoumakas et al. (2011)
oes97 334 263 16 Tsoumakas et al. (2011)
community crime 2215 125 18 Redmond (2009)

Table 3: Information on the used multi-target regression data sets.

Following the same experiment protocol described above, we calculate validity and efficiency
values for all NCMs with ε = 0.1. These results are summarized in Table 4.

Validity results show that the ellipsoid NCMs perform better than the empirical copula NCMs,
especially when it comes to small data sets (with less than 1000 instances). For these data sets, the
empirical copula NCMs are invalid with higher variance. This can be explained by the fact that
these NCMs are non-parametric, mostly relying on the size of calibration data which is insufficient
for smaller data sets. This simply confirms that good performances are achieved when there is a
good trade-off between the inductive bias (the amount of made hypothesis) of the method and the
amount of data at disposal. Empirical copulas, that make very little assumptions, perform badly
when having only a small amount of Zcal. Even with our theoretical guaranties, the effect of low
calibration data can still be noticed for our method (as in “atp7d”), however its impact is less visible.

Efficiency results show that our method gives the tightest volumes in most times, with a massive
difference when compared to other NCMs in some cases such as “scpf” and “osales”, “scm1d”,
“scm20d” and “community crime”. This confirms that our NCM takes advantage of the flexibility
of an ellipsoid shape in order to give tailored prediction regions for each instance depending on its
local covariance. For the few data sets where an empirical copula approach gives a tighter volume,
this NCM tends to be invalid (except for “indoor localization”).
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ε = 0.1
Validity Efficiency
SEC NEC SGE NLE - Ours SEC NEC SGE NLE - Ours

res building 83.59± 6.73 85.48± 4.02 85.75± 5.08 89.54± 5.11 0.30± 0.07 0.22± 0.06 0.31± 0.08 0.17± 0.05
enb 83.98± 6.37 84.89± 5.99 87.23± 4.15 89.57± 5.22 0.13± 0.03 0.08± 0.02 0.11± 0.02 0.04± 0.02
music origin 88.76± 3.59 88.66± 2.64 89.70± 4.80 89.05± 4.30 10.98± 1.11 16.54± 3.30 10.60± 1.41 9.55± 0.73
bias corr 89.98± 0.93 90.42± 1.32 90.24± 1.06 90.29± 1.48 1.47± 0.06 1.32± 0.05 1.37± 0.05 1.19± 0.07
jura 86.93± 6.20 85.81± 4.69 86.64± 5.22 88.30± 8.03 24.29± 14.14 12.79± 7.57 12.89± 4.26 10.17± 5.60
scpf 84.52± 5.18 84.26± 4.95 87.86± 5.02 87.87± 4.75 3.7710 ± 6.8310 1.2610 ± 2.8110 4.877 ± 8.716 69.59± 89.96
indoor loc 90.32± 0.48 90.32± 0.58 90.37± 0.96 90.11± 0.89 0.06± 0.01 0.05± 0.01 0.07± 0.01 0.29± 0.03
sgemm 90.04± 0.17 90.05± 0.27 89.98± 0.20 90.03± 0.17 8.45−5 ± 2.56−6 7.34−5 ± 3.15−6 1.84−5 ± 4.93−7 1.15−5 ± 3.41−7

atp1d 72.09± 11.19 66.74± 10.73 85.18± 7.08 85.78± 5.50 6.25± 3.47 1.02± 1.15 8.17± 5.63 0.47± 0.45
atp7d 72.29± 11.82 68.54± 12.96 81.82± 10.41 86.13± 10.83 8.07± 10.73 0.64± 0.35 6.84± 9.23 4.11± 7.57
rf1 89.10± 2.14 89.13± 1.99 90.04± 1.50 90.20± 1.53 5.75−7 ± 3.79−7 3.60−7 ± 2.16−7 6.20−7 ± 5.27−7 4.14−8 ± 3.34−8

rf2 90.18± 1.53 89.79± 1.76 90.26± 1.31 89.98± 1.36 7.50−7 ± 4.40−7 3.13−7 ± 2.38−7 6.49−7 ± 4.96−7 4.44−8 ± 2.41−8

osales 81.39± 7.02 78.86± 7.88 86.71± 3.95 88.12± 4.64 5.606 ± 9.556 1.2015 ± 3.4515 1.475 ± 2.465 8.084 ± 1.265

wq 72.74± 4.43 78.49± 2.76 89.15± 4.91 87.55± 3.91 1.3110 ± 6.279 3.9317 ± 1.1818 1.169 ± 7.068 1.359 ± 1.089

scm1d 89.70± 1.27 89.60± 1.61 90.07± 1.27 90.42± 1.25 6.864 ± 2.924 1.123 ± 6.222 4.212 ± 1.792 8.86± 3.42
scm20d 88.23± 1.14 88.72± 1.64 89.26± 1.02 89.45± 1.15 7.985 ± 6.575 7.024 ± 3.854 3.213 ± 2.273 5.522 ± 3.542

oes10 74.15± 13.92 66.13± 19.95 87.57± 8.13 88.58± 6.84 7.625 ± 2.236 1.055 ± 2.865 1.836 ± 4.836 8.253 ± 1.264

oes97 69.11± 8.18 62.94± 15.06 89.22± 6.47 87.99± 7.41 1.455 ± 4.165 3.866 ± 8.386 6.906 ± 1.537 1.187 ± 1.827

com crime 86.18± 3.51 84.61± 3.04 90.21± 3.66 89.03± 2.34 5.199 ± 9.749 7.054 ± 7.614 1.175 ± 1.495 2.80± 7.01

We note XY the value X × 10Y .

Table 4: Validity and efficiency results for all real data sets.
For validity, in red are mean values lower than 80% and in orange are mean values between 80% and 85%.
For efficiency, tighter volumes are in bold. Reported results are mean values of medians over all folds.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.5

−1.0

−0.5

0.0

0.5

1.0

True
Pred

(a) Standard Empirical Copula

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
−1.5

−1.0

−0.5

0.0

0.5

1.0

True
Pred

(b) Normalized Empirical Copula

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

True
Pred

(c) Standard Global Ellipsoid

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0

1.5 True
Pred

(d) Normalized Local Ellipsoid

Figure 3: Results’ visualization for the data set “enb” with ε = 0.1.

Figures 3 and 4 illustrate prediction regions for all NCMs for “enb” and “residential building”
data sets. For “enb”, we can clearly see that even if the dependence structure is roughly the same
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for all instances, our method NLE enables us to have adjustable ellipsoid sizes. For “residential
building”, the different dependence structures in each space region emphasizes the importance of
using an approach that takes into consideration local covariance matrices for each instance, and
thus, give a noticeable advantage to our method, especially when compared to NEC.
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Figure 4: Results’ visualization for the data set “residential building” with ε = 0.1.

5. Conclusion

In this paper, we proposed a new conformal inference approach for a multi-dimensional regres-
sion setting that provides individual ellipsoidal uncertainty regions based on the local covariance
matrix of the instance. This method showed that it can give tighter volumes compared to other non-
conformity measures, and thus better efficiency results while maintaining a validity defined by the
required confidence level.

For future research studies, we would like to explore other ways to estimate the local covariance
matrix, for example by taking into consideration a density estimation. We would also like to adapt
our method to other uncertainty ones such as jack-knife+ (Barber et al. (2021)) and its leave-one-out
approach that allows to use all data in the training, especially for small data sets.
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