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Abstract

The paradigm of Learning Under Privileged Information (LUPI) was used in various prac-
tical applications, including its combination with Conformal Prediction (CP) framework.
In this note, we discuss possible sources and limitations of its efficiency. We try to argue
that accuracy improvement coming from using privileged information is not occasional.
For this goal, we consider some minimalistic models of LUPI where the contribution of the
privileged information appears in its noise-free essence. Then, we discuss connection of
LUPI paradigm and CP framework in relation with the models.
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1. Introduction

In the standard machine learning approach, an instance consists of a feature vector and a
label. There exists a training set of examples, where both of them are available, and new
examples where only the feature vectors are known and the labels have to be predicted.

Learning Under Privileged Information (LUPI) paradigm of machine learning was ini-
tially presented by Vapnik and Vashist (1). In this view, an instance is divided into three
parts instead of two. An object consists of a feature vector, a vector of privileged informa-
tion, and a label. The role of the feature vector is the same as in the standard paradigm:
it is available for all training and all the new examples. Unlike that, privileged information
(PI) is available only for training examples. The same can be said about the availability of
labeled examples. However, for the new examples, the prediction of the privileged features
is not required. In another interpretation, Privileged Information means having missing
values in some features of testing examples, not training ones.

The prediction task in LUPI paradigm is the same as in the usual one: to predict the
labels for the new examples. Therefore, their results are comparable to each other. PI is
additional and its usage is optional. As a baseline, it is always possible just to ignore all PI
and to make the prediction in a usual way by one of the machine learning methods.

It may happen that ignorance of additional information may lead to a loss of efficiency
(accuracy) of the predictions. Although many published applications demonstrate a positive
contribution of PI to accuracy, using LUPI paradigm may be useless or even harmful if PI
is noisy or redundant. This creates a difficulty in the analysis of real data results because
any real additional feature contains elements of both real information and noise. Therefore,
in this work, we take a step back from practical applications to some minimalist artificial
models. This is needed to study the effect of PI clarified from noise and side circumstances.
The most important point is to state the dependency on the training set size as the most
principal dimension of the problem.
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x x∗ y P{(x, x∗, y)}
0 1 odd 0.4
0 2 even 0.2
0 3 odd 0.2
0 4 even 0.2

Table 1: Distribution (minimalist example).

We will also pay attention to the question of a connection between LUPI paradigm and
CP framework. The practical work (3) has shown the possibility of applications, and we
try to explain this effect in connection to artificial modeling.

2. Modelling of LUPI

2.1. General setting

In this work, we follow notation from (1) x, x∗, y for the feature vector, the privileged
information, and the label, respectively.

We assume that the data follows i.i.d. (power) assumption that all the triples (xi, x
∗
i , yi)

are generated independently by the same distribution P , and on n-th step yn+1 has to be
predicted after training on the base of the full triples (xi, x

∗
i , yi) for i = 1, . . . , n and the

new example’s feature vector xn+1.

2.2. A minimalist model

For our first example, we consider the following LUPI data generating model with the
distribution P on triples as shown in Tab. 1.

This model is ‘minimalist’, we try to make a non-trivial LUPI model as simple as
possible.

It can be said the goal of machine learning is approximation to the true density P{y|x}
for any example x. As far as the training data grows, training examples with xi far from xn+1

become less important for estimation of P{yn+1|xn+1}. Therefore, in our first example, we
assume that x is a constant value. It can be interpreted as ignoring all the training examples
which are not close enough to xn+1.

Next, the simplest machine learning prediction task is binary classification, therefore we
assume that the range of y is two values.

We also need an example of privileged information. We assume that for each value in
the range of y, there are two different possible values of x∗. So, there are four combinations
(PI,label) pairs (x∗, y). If the numeration of the pairs (x∗, y) matches the numeration of x∗,
then y can be omitted when talking about the pairs.

We assume that P{x∗, y|x} is non-zero for any x∗. This models the realistic situation
when x lies in the area where none of the classes dominates strongly, all of them are possible.

Remind that, regardless whether PI is used or not, the final machine learning task is to
answer the question: “is yn+1 even or odd”? The best answer is “odd” because the true
probability of this event is P{y = odd|x} = 0.6 that can not be improved. In any case this
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answer has a larger chance to be correct than “even”. So, we will measure the accuracy of
a prediction algorithm by its chance of giving the output “odd” after training.

As the prediction algorithm, we apply the simplest “all-neighbours” rule explained be-
low. It makes the prediction by majority of votes, in case of tie makes the choice randomly.

• Without privileged information:

training data: (y1, . . . , yn);

decision rule: choose between “even”, “odd” by majority of votes;

breaking ties (same number for “even” and for “odd”): fairly randomised;

examples:

(even,odd,even)→even;

(even,odd,odd)→odd;

(even,odd,odd,even)→ 1
2 odd, 1

2 even.

• With privileged information:

training data: (x∗1, . . . , x
∗
n);

decision rule: choose between 1,2,3,4 by the highest number of votes, then convert to
“odd” or “even”;

breaking ties (more than one winner): equally randomised between the winners;

examples:

(1,2,1,3,4)→ 1 → odd;

(1,2,1,2,4)→ 1
2 1, 1

2 2 → 1
2 odd, 1

2 even;

(1,2,3,1,2,3,4)→ 1
3 1, 1

3 2, 1
3 3 → 2

3 odd, 1
3 even.

Definitely, the final answers will match in majority of cases. But there may be some
exceptions such as: (1,1,1,2,2,4,4)=(odd,odd,odd,even,even,even,even). This is where using
PI improves the quality by replacing the answer “even” with “1=odd”.

Let us show how using PI increases the probability to guess the correct (“odd”) answer.
The overall dependence on the training size is shown in Tab. 3 and Fig. 1. Note that in this
artificial example, the probabilities and the corresponding gains can be calculated exactly.
The examples of how this is done are given in Tab. 2 for n = 4, 5, for other values they are
analogous. Please that there is some difference between even and odd values of n due to
combinatorial causes, this is why a tooth-like pattern is visible on the gain plot.

We can make the following observations.

1. Starting from n = 10, PI always makes a positive contribution.

2. Starting from n = 40, the contribution of Pi decreases although remains positive.

3. There is a permanent difference between odd and even values of n
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y1 . . . yn prob. (with permutations) non-PI PI PI gain

1124 12*0.4*0.4*0.2*0.2=0.0768 1
2 odd, 1

2 even odd +1/2*0.0768
2213 12*0.4*0.2*0.2*0.2=0.0384 1

2 odd, 1
2 even even -1/2*0.0384

3324 12*0.2*0.2*0.2*0.2=0.0192 1
2 odd, 1

2 even odd +1/2*0.0192
4413 12*0.4*0.2*0.2*0.2=0.0384 1

2 odd, 1
2 even even -1/2*0.0384

Total 0.0096

y1 . . . yn prob. (with permutations) non-PI PI PI gain

11223 30*0.4*0.4*0.2*0.2*0.2=0.0384 odd 1
2 odd, 1

2 even -1/2*0.0384
11224 30*0.4*0.4*0.2*0.2*0.2=0.0384 even 1

2 odd, 1
2 even +1/2*0.0384

11442 30*0.4*0.4*0.2*0.2*0.2=0.0384 even 1
2 odd, 1

2 even +1/2*0.0384
11443 30*0.4*0.4*0.2*0.2*0.2=0.0384 odd 1

2 odd, 1
2 even -1/2*0.0384

22331 30*0.2*0.2*0.2*0.2*0.4=0.0192 odd 1
2 odd, 1

2 even -1/2*0.0192
22334 30*0.2*0.2*0.2*0.2*0.2=0.0096 even 1

2 odd, 1
2 even +1/2*0.0096

33441 30*0.2*0.2*0.2*0.2*0.4=0.0192 odd 1
2 odd, 1

2 even -1/2*0.0192
33442 30*0.2*0.2*0.2*0.2*0.2=0.0096 even 1

2 odd, 1
2 even +1/2*0.0096

Total -0.0096

Table 2: Calculation of the gain for n = 4, 5 (minimalist example). Only the data sequences
with different non-PI and PI results are included, up to permutations.

Training set size Expected gain of LUPI

1 0
2 0
3 -0.016
4 0.0096
5 -0.0096
6 0.00576
7 -0.00448
8 0.009856
9 -0.00103936
10 0.0111176
11 0.00314446
12 0.0139637
13 0.00627315
14 0.0158457
15 0.00946521
16 0.0181392
17 0.0120808
18 0.0198352
19 0.014547
20 0.0216421

Table 3: Dependence on the training set size (minimalist example).
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Figure 1: Dependence on the training set size (minimalist example): comparison and dif-
ference of the accuracy.
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x x∗ y P{(x, x∗, y)}
0 1 odd 0.5
0 2 even 0.2
0 3 odd 0.1
0 4 even 0.2

Table 4: Distribution (imbalanced example).

Observation 3 is likely to be related to combinatorial effects within the concrete experimental
setting. Observations 1–2 are more principal and can be preliminary explained. In the
initial period (n < 10 in this example), PI does not help in classification because it split
the data into very small classes, and this prevents any essential analysis. Later (starting
from n > 10), PI becomes useful by giving the algorithm a ‘hint’ about the data structure.
However, asymptotically the difference between learning with/without PI gradually becomes
negligible because the learning algorithm discovers the correct data structure anyway as far
as the training set becomes more and more representative. This is why the contribution is
permanently decreasing after its peak is reached at n = 40.

To sum, we can make a hypothesis that involving PI is useless in the very early stage,
not essential asymptotically, but it can help to accelerate the learning in the middle stage.

2.3. An imbalanced model

A modification of the previous example with probabilities shown in Tab.4. The dependence
on the training size is shown in Tab. 5 and Fig. 2.

At the best point, the gain of using PI in accuracy reaches the level of 10%. This
happens because the role of PI is concrete enough: it splits each of the classes into two clear
sub-classes (clusters).

So, the preliminary conclusions are the following. PI is highly useful if it prevents an
attempt to make a strong union between heterogeneous small classes which are labeled the
same but do not have much in common with each other.

3. Connection with conformal prediction

3.1. Using LUPI with CP

The conformal Prediction (CP) framework for LUPI was earlier developed in (3) with appli-
cation to the medical area (the symptoms as basic and privileged features). The remainder
of its general scheme is shown in Alg. 1. Is to assign p-values to complex hypotheses about
the pairs (x∗, y) unlike just y in the standard conformal prediction, and then calculation
p(y) as maxx∗ p(x∗, y). So LUPI+CP combined approach made gain from the cases when
p(y) is large while for any complement x∗, p(x∗, y) is small.

This has another support in the notion of credibility known from CP theory (2). The
credibility is defined as maxy p(y), so it can be interpreted as using the original label in the
role of x∗, at the same time leaving the label place y trivial. So, by analogy to LUPI, the
calculation of credibility can be called Anomaly Detection Under Privileged Information
(ADUPI).
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Training set size Expected gain of LUPI

1 0
2 0
3 0.008
4 0.0384
5 0.0264
6 0.05256
7 0.04928
8 0.0681856
9 0.0629686
10 0.0803262
11 0.0754191
12 0.0890781
13 0.0841907
14 0.0958017
15 0.0906497
16 0.100385
17 0.0951047
18 0.103262
19 0.0979449
20 0.104824

Table 5: Dependence on the training set size (imbalanced example).
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Figure 2: Dependence on the training set size (imbalanced example).
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Algorithm 1 Conformal prediction scheme with/without PI

INPUT: training data (triples) (x1, x
∗
1, y1), . . . , (xn, x

∗
n, yn) ∈ X ×X∗ × Y

INPUT: testing example xn+1

INPUT: conformity score function A : (z, Z) → [−∞,+∞] where z is triple of type
(x, x∗, y), Z is a bag of triples.
INPUT: using PI? (yes/no)
if PI=no then
set X∗ := {0} and all x∗i := 0

end if
for (x∗, y) ∈ X∗ × Y do
x∗n+1 := x∗

yn+1 := y
for i:=1,. . . ,n+1 do

αi := A
(
(xi, x

∗
i , yi), {(xj , x∗j , yj)|j = 1, . . . , j − 1, j + 1, . . . , n+ 1}

)
end for
generate θ with uniform distribution on [0,1]

p(x∗, y) = |{i:αi<αn+1}|+θ|{i:αi=αn+1}|
n+1

end for

3.2. Minimalist models

To have an understanding, let us also go through minimalist models, and them in terms
of CP. In that minimalist examples, the conformity score is also defined simply as: ‘the
proportion of examples having the same extended label’. Here by the extended label we
mean its extension (x∗, y) with privileged info if PI is included in training.

The results are shown on Fig. 3,4. Possible criteria of efficiency applicable to Conformal
Prediction are discussed in (4). However, here for simplicity and comparability, we just
measure the accuracy of the output chosen by the highest p-value. This way, in the non-PI
setting we compare p(even) to p(odd) to get the answer ‘odd or even?’, while with PI the
choice is done by comparing between p(1), p(2), p(3), p(4). If the highest of them is p(1) or
p(3), the output is ‘odd’, otherwise it is ‘even’.

The figures are similar to the examples produced earlier beyond CP paradigm but in
terms of conformal prediction, LUPI has a natural interpretation, in terms of hypothesis
testing. A source of LUPI efficiency is that a complex hypothesis sometimes can be discarded
more efficiently after splitting it into partial hypotheses.

3.3. A more complex example

As a more complex illustration, we present another toy example of LUPI approach, within
CP framework. It is an example when each of two classes is a mixture of two normal
distributions, and PI shows how to make un-mixing. The models are described in Tab. 6.
They are analogous to two examples described earlier, the simple and the imbalanced ones.
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Figure 3: Dependence on the training set size (conformal version of the minimalist exam-
ple).

P{x|(x∗, y)} x∗ y P{(x∗, y)}
N(1, 1) 1 odd 0.4
N(2, 1) 2 even 0.2
N(3, 1) 3 odd 0.2
N(4, 1) 4 even 0.2

P{x|(x∗, y)} x∗ y P{(x∗, y)}
N(1, 1) 1 odd 0.5
N(2, 1) 2 even 0.2
N(3, 1) 3 odd 0.1
N(4, 1) 4 even 0.2

Table 6: Distribution (conformal examples 1,2).
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Figure 4: Dependence on the training set size (conformal version of the imbalanced exam-
ple).
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Figure 5: Dependence on the training set size (conformal examples 1,2).

As the conformity measure we use a simple one, often used in using CP framework for
Nearest Neighbours basic method.

distance to the nearest neighbour with another label

distance to the nearest neighbour with the same label
.

As before, the label means either y or (x∗, y) (the extended label), if PI is ignored or used
respectively.

In this task, the expected gain is estimated empirically, by making a random sample of
100,000 data sequences. The results for different sizes of training set are shown in Fig. 5.

Surely, the contribution is smaller in the figures and less stable than the purely deter-
ministic and featureless minimalist models demonstrated before. This is explainable by the

12



On Efficiency of Learning Under Privileged Information

fact that the gain of PI is local, related only to the areas where the distributions overlap
essentially, so that the difference between PI and non-PI calculation may appear.

However, it can be seen that the shape of Fig. 5 is similar to that figures. Again, we
have an intermediate stage (n between 15 and 25) where acceleration of the learning can
be visible. So the principal conclusions are supported by this model as well.

4. Conclusion

In this work, we analyzed the efficiency LUPI learning paradigm by modeling it in simplistic
ways. We supported our initial idea that the efficiency should be studied dynamically, in
its dependence on the size of the training set.

Our observations lead to the following hypothesis about the dynamics of the impact of
PI can be roughly divided into three stages, in dependence on the training set size.

1. Very small size – the gain from using PI is negative, as PI overloads the learning
algorithm.

2. Medium size – the gain is positive, as PI accelerates the learning.

3. Large size – the gain is still positive but tends to decrease, as learning without PI also
becomes efficient.

This report is just the beginning of the work in progress, and these conclusions are
preliminary and due to further check and analysis. As far as the models become more
complex, more limitations on the applicability of LUPI will be found. Even at this level,
we have to note: if the noise in PI is high, then the pattern may be weaker than this
one. Especially, if PI is completely useless then there is hardly any chance for the second
(‘Medium size’) to appear.

One important direction of future work is the validation with real-world data sets. Here
we have support from previous experience such as a combination of LUPI paradigm with CP
framework applied to medical diagnostic in (3) where the contribution of PI to the efficiency
was positive in the given setting. However, it also may gain from a dynamic investigation for
different sizes of the training set. In this work, we also left aside a comparison of conformal
predictions in terms of their proper criteria of efficiency observed is (4). This should be
done in future investigations as well.
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