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Abstract

We continue study of conformal testing in binary model situations. In this paper we consider
Markov alternatives to the null hypothesis of exchangeability. We propose two new classes
of conformal test martingales; one class is statistically efficient in our experiments, and
the other class partially sacrifices statistical efficiency to gain simplicity and computational
efficiency.
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1. Introduction

This paper treats a problem similar to the one considered in Ramdas et al. (2022): we
would like to test online the null hypothesis of exchangeability of binary observations under
Markov alternatives. By de Finetti’s theorem, the null hypothesis is equivalent to the
observations being independent and identically distributed (IID).

The simplest way of online hypothesis testing is to use test martingales, which are defined
as nonnegative processes with initial value 1 that are martingales under the null hypothesis;
see, e.g., Shafer et al. (2011). Such processes, for the null hypothesis of exchangeability, can
be constructed using the method of conformal prediction (Vovk et al., 2022), and we will
refer to them as conformal test martingales. A previous paper (Vovk, 2021b) constructs
custom-made conformal test martingales for different alternative hypotheses, those of a
changepoint.

The method of Ramdas et al. (2022), which is specifically devoted to Markov alterna-
tives, is more general: instead of a test martingale the authors construct a “safe e-process”
(to be defined in the next section). Safe e-processes are closely related to test martingales
and admit a similar interpretation as the capital of a gambler trying to discredit the null
hypothesis. Our methods give similar results to the methods of Ramdas et al. (2022) in
the model situations that we consider (following Ramdas et al. 2022). The advantage of
our methods is that they extend easily to the usual setting of machine learning, where the
observations are pairs (z,y) consisting of a potentially complex object x and its label y. In
this usual setting the methods of Ramdas et al. (2022) do not work at all: see, e.g., Vovk
(2021b, Remark 2); we will also discuss it briefly in Section 6.

In this paper we only design conformal test martingales for a simple Markov alternative
hypothesis (a specific Markov probability measure). This is different from Ramdas et al.
(2022), who are interested in testing against the composite alternative Markov hypothesis.
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As in Ramdas et al. (2022), we could mix our conformal test martingales over all possible
alternative hypotheses analytically (this is done in Vovk et al. 2022, Chapter 8). A simpler
solution is to consider a dense grid of parameter values and use the arithmetic average of
our conformal test martingales over the grid.

Remark 1 There is an unlikely possibility of confusion between the conformal test mar-
tingales used in this paper with the older notion of conformal martingales introduced in
1972 (Getoor and Sharpe 1972; see also Revuz and Yor 1999, Section 5.2). In this paper we
will never use the expression “conformal martingale” (without “test”) outside this remark.

2. Model situations

This section introduces the model situations considered in this paper, following Ramdas
et al. (2022, Section 4.2). Our data consist of binary (0 or 1) observations generated from
a known Markov model. We will use the notation Markov(wl‘o,wl‘l) for the probability
distribution of a Markov chain with the transition probabilities 7o for transitions 0 — 1
and my|; for transitions 1 — 1; the probability that the first observation is 1 will always be
assumed 0.5. The probability of the first observation plays a very minor role, and our null
hypothesis is, essentially, that 7y = my|1.

In our computational experiments, we consider two cases and three scenarios. In the
hard case, the model is Markov (0.4, 0.6), and in the easy case, the model is Markov(0.1,0.9).
(The hard case is harder to distinguish from the null hypothesis than the easy case.) The
number of observations is N := 10% (as in Ramdas et al. 2022) or N := 10% or N := 10%;
we will refer to these scenarios as large, medium, and small, respectively.

In all our experiments we use 2022 as the seed for the NumPy pseudorandom number
generator. (This, however, does not make the trajectories in our plots comparable between
different scenarios.) The dependence on the seed will be explored in boxplots reported in
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Figure 1: The process R of Ramdas et al. (2022) and the Simple Jumper in the large
scenario. The vertical axis is logarithmic (base 10); e.g., for the process R we
show the values log;, R. Left panel: the hard case (the final value of R is about
10%0). Right panel: the easy case (the final value of R is about 101660).
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Section 5; the seed affects not only the data but also the values of conformal test martingales,
which are randomized processes, given the data.

Let B; be the Bernoulli distribution on {0,1} with parameter 7 € [0,1]: Br({1}) =
m. Set Ber(mw) := B2°. Our null hypothesis (the IID model, or, in our binary context,
the Bernoulli model) is that the observations are generated from Ber(mw) with unknown
parameter .

To detect deviations from the null hypothesis in the online mode (with the observations
arriving sequentially), we typically use test martingales w.r. to Ber(m). See the previous
paper (Vovk, 2021b) for the definitions.

Ramdas et al. construct a “safe e-process” R = R,,, which satisfies the following prop-
erty: under any Ber(r), R is dominated by a test martingale M wr. to Ber(7), in the

sense that R, < Mr(f) for all n and 7 (this property implies the definition of a safe e-process
given by Ramdas et al.). The trajectories of the R process for the two cases, hard and
easy, and for the large scenario are shown in Figure 1 (they coincide with those in Figure 4
in Ramdas et al. 2022 apart from using base 10 logarithms and a different randomly gen-
erated dataset). The figure also shows trajectories of the Simple Jumper martingale used
earlier (see, e.g., Vovk 2021a) for various values of its parameter, called the jumping rate;
it performs poorly in this context.

3. Two benchmarks

In this section we will discuss possible benchmarks that we can use for evaluating the
quality of our conformal test martingales. Our goal will be to perform almost as well as the
benchmarks. The upper benchmark is

Markov(myg, 7 Zlyeey 2
Ber(0.5)([z1, - - -, 2n))
where [21,...,2,] is the set of all infinite sequences of binary observations starting from
Zly...,2n, and 21, zo, ... are the actual observations. The lower benchmark is
Markov(myg, 7 Zlyeeey 2
LB, — (7110, 7171) ([21 nl) @)

Ber(7)([21, - - -, #n)) ’

where 7 := k/n (the maximum likelihood estimate) and k = k(n) is the number of 1s among
Z1,...,2n. By definition, UByg = LBg := 1.

The upper benchmark (a likelihood ratio) is a martingale only under Ber(0.5) (and not
under any other element of the null hypothesis), and so impossible to attain with “honest”
methods such as conformal testing (since conformal test martingales are martingales under
any element of the null hypothesis). The lower benchmark is valid under any element of
the null hypothesis, but they do not generalize to complicated non-binary cases. Ramdas et
al.’s (2022) R process is the integral of the lower benchmark (2) over all Markov alternatives
w.r. to a specific probability measure on them, a Jeffreys-type prior (and so it would be
unfair to compare its performance with the performance of our conformal test martingales,
which are aimed at a specific Markov distribution as alternative hypothesis).

The trajectories of the upper and lower benchmarks in the large scenario are shown in
Figure 2 in red and green; the figure also shows the trajectory the R process, and the other
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Figure 2: The two benchmarks, R process, Bayes—Kelly conformal test martingale, and its
simplified version in the large scenario. The vertical axis is logarithmic (base 10).
Left panel: hard case (the trajectories for the two benchmarks and Bayes—Kelly
almost coincide). Right panel: easy case (the trajectories for the two benchmarks,
R process, and Bayes—Kelly virtually coincide).
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Figure 3: The analogue of Figure 2 for the last 1000 observations (in the right panel, the tra-
jectories for the two benchmarks, R process, and Bayes—Kelly virtually coincide,
as in Figure 2).

two trajectories should be ignored for now. The two benchmarks coincide or almost coincide.
Figure 3 shows the same trajectories “under the lens”, over the last 1000 observations.
Notice that the upper benchmark can never be less than the lower benchmark.

4. Bayesian conformal testing

In this section we will use a Bayesian method that is statistically efficient (being competitive
with the benchmarks) in our experiments but whose computational efficiency will be greatly
improved in the next section. The p-values p1,ps,... are generated as described in Vovk
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(2021Db); in particular, we are using the identity nonconformity measure (the nonconformity
score of an observation z is z). Under the alternative hypothesis, the p-values are generated
by a completely specified stochastic mechanism.

A conformal test martingale is usually represented as a product of betting functions,
i.e., nonnegative functions f : [0, 1] — [0, c0) that integrate to 1. The value of the conformal
test martingale after observing zi,...,2, € {0,1} is fi(p1) ... fu(pn), where p1,po,... are
the conformal p-values and each betting function f; is chosen, in a measurable manner,
depending on p1,...,pi—1-

According to Fedorova et al. (2012, Theorem 2), the optimal (in the Kelly-type sense
of that paper) betting functions f, are given by the density of the predictive distribution
of p, conditional on knowing pi,...,pn—1. Let us find these predictive distributions. We
will use the notation Ula,b], where a < b, for the uniform probability distribution on the
interval [a, b] (so that its density is 1/(b — a)).

We are in a typical situation of Bayesian statistics. The Bayesian parameter is the
binary sequence (z1,z22,...) € {0,1}* of observations, and the prior distribution on the
parameter is Markov(mw,wl‘l). The Bayesian observations are the conformal p-values
1, P2, . ... Given the parameter, the distribution of p, is

U0, k/n] if zn = 1
PR Ulk/n, 1] if 20 = 0,

where k := z; + - - - + 2, is the number of 1s among the first n observations.

Let w},;, where n = 1,2,..., k = 0,...,n, and L € {0,1}, be the total posterior
probability’ of the parameter values z1, 2o, ... for which z; +---+ 2, = k and z, = L; we
will use them as the weights when computing the predictive distributions for the p-values.
We can compute the weights wy; ; recursively in n as follows. We start from

1 1 1
U]O70 = le = 05, Wy 1 = Wy = 0. (3)
At each step n > 2, first we compute the unnormalized weights
- -1 -1 -1
wgao = (wZ,O Tolo + w]TcL,l 7T0|1) ZZ (Oapn)v (4)
~ —1 —1 —1
afy = (wphgmyo + Wit ) B (L pa), (5)

where [ is the likelihood defined by

n+l k+1
ntl o jfp < Bl
lﬁ(l,P) . { k+1 n+1

otherwise,

n+1 if p > k

m 0,p) := n—k+1 n+1
£(0.p) {0 otherwise,

and then we normalize them:



VOVK NOURETDINOV GAMMERMAN

Algorithm 1: Bayes—Kelly ((p1, po, ..

)= (51,52,...))

Sb:::Sl:::l
set the initial weights as per (3)
forn=2,3,... do

Sp = fn(pn)Sn—1, with f,, defined by (7)
update the weights as per (4), (5), and (6)
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Figure 4: The Bayes—Kelly and Bayes—Kelly simplified conformal test martingales, the R-
process, and the two benchmarks in the middle scenario. The vertical axis is
logarithmic (base 10). Left panel: hard case. Right panel: easy case (the trajec-
tories for the two benchmarks, R process, and Bayes—Kelly virtually coincide).

Given the posterior weights for the previous step, we can find the predictive distribution

for p, as
k+1 k
<7T1|LU |:0, 7’L:| +7T0|LU |:7’L71:|)7

where we use the shorthand mg;, := 1 — my . Therefore, the betting functions for the
resulting Bayes—Kelly conformal test martingale are

n—1 1
-1
Po~ YD Wi

k=0 L=0

n—1 1
_ n n
8 =SSt (e + i)

k=0 L=0

The procedure is summarized as Algorithm 1; Sy, S1,. ..
Bayes—Kelly conformal test martingale.

is the resulting trajectory of the

For experimental results, see Figures 2 and 3 (large scenario) and Figure 4 (middle
scenario). The Bayes—Kelly conformal test martingale appears to be very close to the two
benchmarks in the middle scenario. Its simplified version is described in the next section.
The relatively poor performance of the R process in the left panel of Figure 4 should not
be interpreted as it being inferior to the Bayes—Kelly conformal test martingale: remember
that R works against all Markov alternatives, whereas the other processes that we consider,
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Figure 5: The weights wiooo’ k=0,...,1000, at the last step for the Bayes—Kelly conformal
test martingale in the medium scenario (the hard case on the left and easy on the
right).

Algorithm 2: Simplified Bayes-Kelly ((p1,p2,...) — (S1,52,...))
S() = Sl =1
forn=2,3,... do
if p,_1 <0.5then L:=1else L:=0
if p, <0.5 then §S,, := 27r1|LSn,1 else S, := 27TO‘LSn,1

including the two benchmarks, are adapted to a specific Markov alternative hypothesis
(Markov(0.4,0.6) in the hard case and Markov(0.1,0.9) in the easy case). In Figure 3, the
Bayes—Kelly conformal test martingale even exceeds the two benchmarks over some range
of observations, but it is a statistical fluke.

5. Simplified Bayesian conformal testing

In this section we consider a radical simplification of the Bayes—Kelly conformal test mar-
tingale (7). We still assume that the Markov chain is symmetric, as in our model situations.
(This assumption will be relaxed in the appendix.) If we assume that the weights w} ;,
k=0,...,n, are concentrated at 7

kEx~k+1~n/2
and set

(8)

"o if not,

(7) will simplify to

fu(p) = 211 1p<05 + 270 1 1p>0.5, 9)

with L defined by (8). Figure 5 shows the weights (averaged over L € {0,1}) for the last step
of the Bayes—Kelly conformal test martingale in the medium scenario (10% observations).
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Figure 6: The analogue of Figures 2 and 4 for the small scenario (with the hard case on the
left and easy on the right).
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Figure 7: Boxplots based on 102 runs for the final values of the two benchmarks (upper UB
and lower LB), the Bayes—Kelly conformal test martingale (BK), and its simplified
version (sBK) in the large scenario. Left panel: hard case. Right panel: easy case.

They are indeed concentrated around values of £ not so different from 0.5N = 500; this
is because Bys is the stationary distribution in both hard and easy cases, both being
symmetric. If k(n —1) := z1 +--- + 2,1 = (n — 1)/2, then the expression on the right-
hand side of (8) is equal to z,—; with high probability, which justifies setting (8). The
simplified procedure is summarized as Algorithm 2. It is both simpler and more efficient
computationally as compared with Algorithm 1.

The performance of Algorithm 2 is shown in Figures 2-4 and 6. It is usually worse
than that of the Bayes—Kelly conformal test martingale and the two benchmarks, but is
comparable on the log scale apart from the right panel of Figure 6.

The right panels of Figure 6 and Figures 8 and 9 show that the statistical performance
of the simplified Bayes—Kelly martingale particularly suffers in the easy case. The notches
in the boxplots in Figures 7-9 indicate confidence intervals for the median.
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Figure 8: The analogue of Figure 7 for 103 runs in the medium scenario.
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Figure 9: The analogue of Figures 7 and 8 for 10* runs in the small scenario.

6. Conclusion

This paper replicates, to a high degree of accuracy, the empirical results obtained by Ramdas
et al. (2022) while using the method of conformal testing (based on conformal prediction).
Ramdas et al.’s method is restricted to finite observation spaces, since their main object
if study, referred to as the R process in this paper, is the lower benchmark (2) with the
numerator replaced by another alternative distribution (namely, the average of all Markov
distributions with respect to a Jeffreys-type prior). Even if the observation space is the real
line R (let alone the sophisticated observation spaces used in machine learning), the lower
benchmark becomes useless for interesting alternatives: the maximum likelihood estimate
over all exchangeable distributions will become concentrated on the actual observations
making the benchmark equal to zero (while identical 1 is achievable trivially by never
gambling).

On the other hand, conformal testing is applicable in wide generality: see, e.g., Vovk
(2021a), Vovk (2021b), and Vovk et al. (2022, Chapter 7). And its good performance
(competitive with our benchmarks) in the binary case suggests that it is statistically efficient
in general.
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The most obvious direction of further research developing results of Vovk (2021b) and
this paper is to try and adapt the Bayes—Kelly conformal test martingales (whether sim-
plified or not) to infinite observation spaces, perhaps starting from the real line R. A first
step in this direction was made in Nouretdinov et al. (2021).
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Appendix A. Asymmetric Markov alternatives

In the main part of this paper we considered, following Ramdas et al. (2022, Section 4.2), the
case of symmetric Markov alternatives (i.e., the case Vi, j : Ti; = j|i). In this appendix we
do not assume symmetry and only assume min; j 7;; > 0; in particular, the Markov chain is
aperiodic and irreducible. We still assume that the initial distribution of the Markov chain
is uniform (although Proposition 2 below only needs the initial distribution to be positive,
i.e., both probabilities, for 0 and for 1, to be positive).

The definition of the lower benchmark (2) still works in the asymmetric case, but in the
definition of the upper benchmark (1) we replace Ber(0.5) in the denominator by Ber(my),
where 77 is the probability of 1 under the stationary distribution for the Markov chain. By
definition, the stationary distribution (mg, 1), where 7 is the probability of 0, satisfies

o070 + To[1 71 = To (10)
T1oT0 + M1 71 = 1.

By the ergodic theorem (Norris, 1997, Theorem 1.10.2), this choice of the denominator for
the likelihood ratio process makes the upper benchmark as close to the lower benchmark as
possible asymptotically. The following proposition says that this choice of the denominator
is asymptotically optimal.

Proposition 2 For any x € (0,1) \ {m},

Markov (7)o, m1j1) ([215 - - - 2n]) . Markov (7)o, m1j1) ([215 - - - 5 Zn])
Ber(z)([2z1,- .-, 2n]) Ber(m1)([z1, - -+, 2n])

from some n on almost surely under Markov (g, 711)-

Proof We have, by the ergodic theorem and strong law of large numbers for martingales
(Shiryaev, 2019, Theorem 7.5.4), almost surely as n — oo,

l log Markov(m‘o, 7T1‘1)([Zl, - ,Zn])
Ber(z)([z1, -, 2n])
7T T T ™
= mo|omo log o0 T1|070 log o mo;1 71 log LI 7171 log UE L o(1)
1—2z T 1—=z T

1 1
= |70 log + 71j0m0 log — + 7o) 71 log + w1 log — + ¢+ o(1)
1—=x T 11—z T
1 1 1
= 7o log +mlog —+c+o(l) > mplog — + 71 log — + ¢+ 0(1)
1—=z T o !
1 Markov(myg, ™ Zlyenny 2
~ g (110, m1y1) ([21 nl) +o(1),
n Ber(m1)([z1,- -+, 2n))
where ¢ is a constant (depending only on the 7s), the penultimate “=" follows from (10),
and the last inequality, “>”, disregards the o(1) terms and follows from the positivity of
the Kullback—Leibler distance in this context. |

11



VovK NOURETDINOV GAMMERMAN

24 —— upper benchmark
—— lower benchmark
71 —— R process
1 \ —— Bayes-Kelly
—"Upper benchmark | —— Bayes-Kelly simplified
—— lower benchmark
—— R process

—— Bayes-Kelly
—— Bayes-Kelly simplified

'"'v

N
(4]

N
o

-
&

=
o
L

log10 processes
o
log10 processes

G
L

o
L

0 200 400 600 800 1000 0 200 400 600 800 1000

Figure 10: The analogue of Figures 2, 4, and 6 for the medium scenario and the asymmetric
hard (left) and asymmetric easy (right) cases.

The Bayes—Kelly conformal test martingale (Algorithm 1) also works for asymmetric
Markov chains. Let us derive the simplified Bayes—Kelly conformal test martingale (Algo-
rithm 2) in the non-symmetric case. The solution to (10) is

T1)0
™m=—-:
110 + Toj1
When
k~k+1~xnm
and

I 1 ifp,1<m
0 if not,
(7) will lead to
T
™

To|L
1PS7F1 + 1P>7T1
o

fn(p) =

in place of (9).

Examples of the performance of various processes in simulation studies with asymmetric
Markov alternatives are shown in Figures 10 and 11 (the poor performance of the R process
in the left panel of Figure 10 should be ignored, since the comparison is not fair, as discussed
earlier). In the asymmetric hard case the model is Markov(0.4,0.5), and in the asymmetric
easy case, the model is Markov(0.1,0.5). (These two cases are somewhat harder than the
symmetric hard and easy cases, respectively.)
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Figure 11: The analogue of Figures 8 and 9 for the medium scenario and the asymmetric
hard (left) and asymmetric easy (right) cases.
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