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A UNBIASED ESTIMATOR FOR FTRL AND O-FTRL UNDER BANDIT FEEDBACK

For FTRL and O-FTRL under bandit feedback, we use the following unbiased estimator of ¢’ " which is proposed by
[Lattimore and Szepesvaril 2020]:
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This estimator takes values in (—00, tmayx] While the standard importance-weighted estimator takes values in (—oo, 00).

B SENSITIVITY ANALYSIS ON MUTATION PARAMETERS

In this section, we investigate the performance of M-FTRL with a fixed reference strategy with varying u € {1073,5 x

1073,1072,1071, 1}. We set the reference strategy to ¢; = (ﬁ) L and set the learning rate to n = 10~!. The initial
a€A;

strategy profile 70 is generated uniformly at random in H?Zl A°(A;) for each instance. We conduct experiments on BRPS

under full-information feedback. Figure shows the average exploitability of 7 for 100 instances. This result highlights the
trade-off between the convergence rate and exploitability as shown in Theorem[5.4]
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Figure 1: Exploitability of ¢ for M-FTRL with a fixed reference strategy in BRPS under full-information feedback.

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).


mailto:<abe$\protect _$kenshi@cyberagent.co.jp>?Subject=Your UAI 2022 paper

C ADDITIONAL LEMMAS

Lemma C.1. Forany € H?Zl A(A;), 7t updated by M-FTRL satisfies that:
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Lemma C.2. Ler 7 € H?:l A(A;) be a stationary point of. For a player i € {1,2}, if ¢; € A°(A;) and pu > 0,
then we also have T!' € A°(A;).

D PROOFS

D.1 PROOF OF THEOREM

Proof of Theorem[5.1] By the method of Lagrange multiplier, we have:

71'#(0,'): exp( (1))
T T e e (L)

Therefore, the time derivative of 7! (a;) is given as follows:
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By combining these equalities, we get
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D.2 PROOF OF LEMMA

Proof of Lemma[5.3] Let us define 97 (2;) = max,en(a,) {(2i,p) — ¥i(p)}. Then, from Lemma|C.1] the time derivative
of Dy (m, ") is given as:
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From the maximizing argument of [Shalev-Shwartz, 2011]], we have Vi) (z;) = arg max {(z;,p) — 1;(p)} and then
PEA(A;)

Vi (24) = 7t Furthermore, from the definition of z{(a;), we have 4 z!(a;) = g (a;) + ey (cilai) = ¢ (a;)). Then,
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where the sixth equality follows from Zz yof =0and ), 4w (a) Ci((a = 11 4ea Ci(@i) = p, and the last equality
follows from vmm2 = —vy' 2 and vﬂl’ﬁz = vfl’ﬂz by the definition of two-player zero-sum games. O

D.3 PROOF OF LEMMA 5.6
Proof of Lemma By using the ordinary differential equation (RMDJ), we have for all : € {1,2} and a; € A;:
7' (ai) (47" (@) =" ) + p (eilas) = 7 (@) = 0.

Then, we get:




Note that from Lemma —— is well-defined. Then, for any 7} € A(A;) we have:
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D.4 PROOF OF THEOREM

Proof of Theorem[5.2} First, we prove the first part of the theorem. By setting 7 = 7 in Lemma[5.5]and 7’ = 7* in Lemma

[5.6] we have:
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where the third equality follows from Z?Zl vT" = 0 by the definition of zero-sum games.
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Next, we prove the second part of the theorem. From the first part of the theorem, we have:
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where the second inequality follows from « > In(1 + ) for all z > 0, and the third inequality follows from the concavity of
the In(- ) function and Jensen’s inequality for concave functions. On the other hand, when ¥;(p) = >, 4. p(a;) Inp(a;),

Dy, (7!, 7t) = KL(!', 7}). Thus, we have Dy, (7, 7*) = Zz L KL(7#, xt). From this fact and , we have:
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%KL(W ) < —p ( ) KL (1", 7).

E PROOFS OF ADDITIONAL LEMMAS
E.1 PROOF OF LEMMA

Proof of Lemma|[C.1] First, for any 7 € H?zl A(Ay),
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From the assumptions on ; and the first-order necessary conditions for the optimization problem of
arg max {(z!,p) — ¥;(p)}, for 7! = arg max {(z!,p) — 1;(p)}, there exists A € R such that
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Therefore, we have:
(#i,mi —mi) = (AL + V() m — 7f) = (Vai(m)), i — ) - 3)
By combining (2) and (3):
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E.2 PROOF OF LEMMA

Proof of Lemma|C.2] We assume that there exists i € {1,2} and a; € A; such that ' (a;) = 0. Then, for such ¢ and a;, we
have:

d

ot (ai) = ' (a:) (a7 (a) = 07" ) + pu(eilas) = 7(a:)) = peifas) > 0.
This contradicts that (Z m!'(a;) = 0 since 7* is a stationary point. Therefore, for all ¢ € {1,2} and a; € A;, we have
T ( 2) > 0. O
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