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0.1 ESTIMATING THE PSEUDO-DIMENSION OF
A NN:

In our work, we use NN architectures with ReLLU activation
functions. To construct a NN with L layers and a variable h,
#hidden-units per layer to model a specific local bucket mes-
sage u*, we pick the rule h = b * w where w is the bucket’s
width and b is a constant. By doing this, the #parameters in
the NN is :

0] = (L—1)%b*xw? +bxw? + (L+1)xbxw+1 (1)

We make use of the lower bound of pseudo-dimension
for NNs with ReLLU activation functions from the work
in Bartlett et al.|[2019] to get:

p = 10] * Llog(|6]/L) 2

By substituting Eq. 1 in Eq. 2 and ignoring all linear terms
in w we get that p can be dominated by:

— p o< (L*bxw)?log[(b* w)]

0.2 ESTIMATING ERROR IN PARTITION
FUNCTION:

Let B, be a bucket in a bucket chain along an ordering d;
let B, contain the original functions as ¢, and p.4+; as the
message passed to it from the previous bucket; let A, be
the (global) exact message generated in B,, i) be the local
exact message in B, and p. = APP(u}) its approximation
(e.g., by a trained neural network). Let £, = log u: —log 1

and e, = mazp,|E.|. Then,
n—c
log Ac —log pie < Z €ctk
k=2

In particular, since \; = Z, the partition function and p; =
Z, the estimate to the partition function,

n—1

logZ —log Z <> €14k 3)
k=1

We will next derive the recursion, starting at the
first processed bucket B, and going down in
order. Remember throughout that logu) _, =
logzx .(610g¢n—i+logﬂn—i+l)

For B, )\, = p, therefore

log A, — log p,, = log p — log ., = Ey,
For B,,_1, by definition

log Aj,—1—log pn—1 = log Z eloB on-1 108 An _log 1y,
Xn—1

Substituting log A,, from B,,

— log Z e[(log bn_1+log un)+En] _ log L1
Xn_1

— log[ Z e(IOg ¢nfl+10g/tn)eEn] _ log ,U/nfl
Xn—1

If Mmazscope(ur) | Enl = €n, then,

< logle Y ellosdnatlosmn)] _logp,
Xn-1

S €n + log Z 6(10g¢n—1+10gﬂn) _ log ’un71
Xn—l

Since log Yy elog Pn—1tlogin — Jog 11* | we get

log A1 —log pin—1 < € +log iy, | —log i1 (4)
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or equivalently,

IOg /\nfl - log Hn—1 <eéep+ Enfl (5)
Moving to B,,_o, by definition:

log Ap—2—log pin—2 = log Z eloBon-2 o8 An1 _log py,,

Xn_2
(6)
Substituting log A\, from Eq. (4) we get
log A2 — log ptn—2
S log Z el()g¢n72+[10gMn—1+€n+En71] _ log M’I‘L*Q
Xn—2
< log Z elog n—ztpn—1pentEn_1 _ log Lin—2
Xn—2
Taking maxXscope(ux ) En—1 = €n—1,
Sen“renfl Z elog bn—atpn—1 _ log Lin—2
anf.’
<eé€p+en_1+ IOg Z eIOg bn—2tpn—1 _ IOg 2
Xn—?
< €n+en—1+10g ;o —10g tn—2
yielding,
log )‘n*Q - log Hn—2 < En72 +en—1ten (7)

Moving to bucket B,,_3, by definition

log )\n,g—log [in_3 = 10g Z elog¢n,—3+log >\7172_10g Ln—3
Xn—3

Substituting for A\, from Eq. (7)) we get with some algebra
log A3 — log pin—3

< log § elog On—3+[log pin—2+En_2+€n_1+€n]

X7L—3

—log pn—3

yielding
log >\n73 - IOg Hn—3 < En73 +€n—2+t€n_1+ €y

and so on. Clearly the emerging expression for bucket B, is

log A\c —log pie < B¢+ €cq1 + €cq2 + ... (8)
or,
n—c—1
10% )\c - 1Og He < E. + Z €ct+1+k 9

k=0

The general transition from n — ¢ ton — ¢ — 1 can be easily
followed to complete the inductive proof. Assuming that
we control the derivation of u,. for each B, to ensure that
E. =log u:—log . < €. and substituting in the expression

we get from Eq. (9) that

n—c—1

log A —log e < €.+ Z €ctr1+k < (n—c+1)xe (10)
k=0

0.3 MISCALLANEOUS EXPERIMENTS ON
ANALYZING ERROR

Calculating € from Theorem 1 is hard because it involves
computing the local bucket error E over all configurations
in the scope of the bucket. Therefore, we calculate the maxi-
mum over a sampled test set (lines 18-19 of Algorithm 3) as
€. Additionally, we also calculate the average local bucket
error, €*Y9 over the same test set.

To bound the global error of the approximated partition func-
tion from Eq.[3] we sum over all the estimated bucket error
bounds, €), Clearly, the bound is very lose. We therefore
also use the average local bucket error, €*V9 to give us some
additional information on the global error empirically:

n—1
By <) ey (11)
k=0

Relationship between local and global errors empiri-
cally.

Figure [Th) depicts the empirical global errors against the
local error bound for 4 grid instances over 2 sample con-
figurations={60k,120k}. Specifically, the local error bound
shown is the maximum over the estimated local bucket er-
rors (€**9 from Eq. across all buckets and the (empirical)
global error is the error in the partition function estimate.
As expected, we see a somewhat linear relationship between
the global error and the local error bound. We also see that
higher samples drive the local and global errors towards the
lower-left of the plot and vice-versa.

Impact of sample size on error bounds. Figure (1] also
depicts the impact of sample size on the estimated local
and global error bounds (Eq. [TT). Specifically, the local
error bound shown is the maximum over the estimated lo-
cal bucket errors (¢**9 from Eq. across all buckets. As
expected, we see that increasing the training sample size
makes the two bounds tighter. For the 4 grid instances (10,
f5, £2, f15), we also observed that the empirical global error
in the partition function estimate for for the two sample con-
figurations {(37.21, 7.94), (18.8, 5.9), (10.28, 3.05), (41.3,
27.5)} is in proportion to the global error bound from Fig.

[b)-



N, = 60k, h=w N, = 150k, h=w
Statistics on local bucket errors Statistics on global errors Statistics on local bucket errors Statistics on global errors
d test w.m.s.e local bucket errors estimated bounds I empirical errors test w.m.s.e local bucket errors estimated bounds I empirical errors
avg | max avg max avg | max avg max avg | max avg max avg | max avg | max
1| 2.19e-04 0.06 1.67 3.81 2517 1664 24.01 1.63E-05 0.006 0.29 371 71.75 1380 8.11 13.62
2 || 1.74E-04 0.053 0.784 2.44 115.6 796 2214l 3132 1.40E-05 0.0068 0.131 1.45 3434 680 6.4 123
3 || _1.06E-04 0.053 0.336 0.661 34.98 264.91 5.05 7.88 7.46E-06 0.004 0.045 0.46 10.28 228.59 4.3 5.95
4]] 194604 0.057 1.988 35938 | 2549.28 | 2243 27.68 185605 0.009 0382 4665 106.75 2166 3103 [GTAGIN|

Figure 1: Statistics of Local & bucket errors compared with global error over 5 runs for 4 grid-hard instances having w=55 with
i—bound=20, where h=w, # buckets trained, #N B = 308 for two different scales of smaples sizes. test wmse is the w.m.s.e of the
learned NN over the test set; local bucket error is the average L1 error for log approximations over all buckets; estimated bounds is the
bound obtained in eq@ empirical error is the average global error over 5 runs.
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