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0.1 ESTIMATING THE PSEUDO-DIMENSION OF
A NN:

In our work, we use NN architectures with ReLU activation
functions. To construct a NN with L layers and a variable h,
#hidden-units per layer to model a specific local bucket mes-
sage µ∗, we pick the rule h = b ∗w where w is the bucket’s
width and b is a constant. By doing this, the #parameters in
the NN is :

|θ| = (L− 1) ∗ b2 ∗w2 + b ∗w2 +(L+1) ∗ b ∗w+1 (1)

We make use of the lower bound of pseudo-dimension
for NNs with ReLU activation functions from the work
in Bartlett et al. [2019] to get:

ρ = |θ| ∗ Llog(|θ|/L) (2)

By substituting Eq. 1 in Eq. 2 and ignoring all linear terms
in w we get that ρ can be dominated by:

→ ρ ∝ (L ∗ b ∗ w)2log[(b ∗ w)]

0.2 ESTIMATING ERROR IN PARTITION
FUNCTION:

Let Bc be a bucket in a bucket chain along an ordering d;
let Bc contain the original functions as ϕc and µc+1 as the
message passed to it from the previous bucket; let λc be
the (global) exact message generated in Bc, µ∗

c be the local
exact message in Bc and µc = APP (µ∗

c) its approximation
(e.g., by a trained neural network). Let Ec = logµ∗

c−logµc

and ϵc = maxBc
|Ec|. Then,

log λc − logµc ≤
n−c∑
k=2

ϵc+k

In particular, since λ1 = Z, the partition function and µ1 =
Ẑ, the estimate to the partition function,

logZ − log Ẑ ≤
n−1∑
k=1

ϵ1+k (3)

We will next derive the recursion, starting at the
first processed bucket Bn and going down in
order. Remember throughout that logµ∗

n−i =
log

∑
Xn−i

(elog ϕn−i+log µn−i+1)

For Bn λn = µ∗
n, therefore

log λn − logµn = logµ∗
n − logµn = En

For Bn−1, by definition

log λn−1−logµn−1 = log
∑
Xn−1

elog ϕn−1+log λn−logµn−1

Substituting log λn from Bn

= log
∑
Xn−1

e[(log ϕn−1+log µn)+En] − logµn−1

= log[
∑
Xn−1

e(log ϕn−1+log µn)eEn ]− logµn−1

If maxscope(µ∗
n)
|En| = ϵn, then,

≤ log[eϵn
∑
Xn−1

e(log ϕn−1+log µn)]− logµn−1

≤ ϵn + log
∑
Xn−1

e(log ϕn−1+log µn) − logµn−1

Since log
∑

Xn−1
elog ϕn−1+log µn = logµ∗

n−1 we get

log λn−1 − logµn−1 ≤ ϵn + logµ∗
n−1 − logµn−1 (4)
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or equivalently,

log λn−1 − logµn−1 ≤ ϵn + En−1 (5)

Moving to Bn−2, by definition:

log λn−2−logµn−2 = log
∑
Xn−2

elog ϕn−2+log λn−1−logµn−2

(6)
Substituting log λn−1 from Eq. (4) we get

log λn−2 − logµn−2

≤ log
∑
Xn−2

elog ϕn−2+[log µn−1+ϵn+En−1] − logµn−2

≤ log
∑
Xn−2

elog ϕn−2+µn−1eϵn+En−1 − logµn−2

Taking maxscope(µ∗
n−1)

En−1 = ϵn−1,

≤ϵn+ϵn−1

∑
Xn−2

elog ϕn−2+µn−1 − logµn−2

≤ ϵn + ϵn−1 + log
∑
Xn−2

elog ϕn−2+µn−1 − logµn−2

≤ ϵn + ϵn−1 + log µ∗
n−2 − logµn−2

yielding,

log λn−2 − logµn−2 ≤ En−2 + ϵn−1 + ϵn (7)

Moving to bucket Bn−3, by definition

log λn−3−logµn−3 = log
∑
Xn−3

elog ϕn−3+log λn−2−logµn−3

Substituting for λn−2 from Eq. (7) we get with some algebra

log λn−3 − logµn−3

≤ log
∑
Xn−3

elog ϕn−3+[log µn−2+En−2+ϵn−1+ϵn] − logµn−3

yielding

log λn−3 − logµn−3 ≤ En−3 + ϵn−2 + ϵn−1 + ϵn

and so on. Clearly the emerging expression for bucket Bc is

log λc − logµc ≤ Ec + ϵc+1 + ϵc+2 + ... (8)

or,

log λc − logµc ≤ Ec +

n−c−1∑
k=0

ϵc+1+k (9)

The general transition from n− i to n− i− 1 can be easily
followed to complete the inductive proof. Assuming that
we control the derivation of µc for each Bc to ensure that
Ec = logµ∗

c−logµc ≤ ϵc and substituting in the expression
we get from Eq. (9) that

log λc−logµc ≤ ϵc+

n−c−1∑
k=0

ϵc+1+k ≤ (n−c+1)∗ϵ (10)

0.3 MISCALLANEOUS EXPERIMENTS ON
ANALYZING ERROR

Calculating ϵ from Theorem 1 is hard because it involves
computing the local bucket error E over all configurations
in the scope of the bucket. Therefore, we calculate the maxi-
mum over a sampled test set (lines 18-19 of Algorithm 3) as
ϵ̂. Additionally, we also calculate the average local bucket
error, ϵ̂avg over the same test set.

To bound the global error of the approximated partition func-
tion from Eq. 3, we sum over all the estimated bucket error
bounds, ϵ̂), Clearly, the bound is very lose. We therefore
also use the average local bucket error, ϵ̂avg to give us some
additional information on the global error empirically:

Ê1 ≤
n−1∑
k=0

ϵ̂avg1+k (11)

Relationship between local and global errors empiri-
cally.

Figure 1a) depicts the empirical global errors against the
local error bound for 4 grid instances over 2 sample con-
figurations={60k,120k}. Specifically, the local error bound
shown is the maximum over the estimated local bucket er-
rors (ϵ̂avg from Eq. 11) across all buckets and the (empirical)
global error is the error in the partition function estimate.
As expected, we see a somewhat linear relationship between
the global error and the local error bound. We also see that
higher samples drive the local and global errors towards the
lower-left of the plot and vice-versa.

Impact of sample size on error bounds. Figure 1 also
depicts the impact of sample size on the estimated local
and global error bounds (Eq. 11). Specifically, the local
error bound shown is the maximum over the estimated lo-
cal bucket errors (ϵ̂avg from Eq. 11) across all buckets. As
expected, we see that increasing the training sample size
makes the two bounds tighter. For the 4 grid instances (f10,
f5, f2, f15), we also observed that the empirical global error
in the partition function estimate for for the two sample con-
figurations {(37.21, 7.94), (18.8, 5.9), (10.28, 3.05), (41.3,
27.5)} is in proportion to the global error bound from Fig.
1b).



Figure 1: Statistics of Local & bucket errors compared with global error over 5 runs for 4 grid-hard instances having w=55 with
i−bound=20, where h=w, # buckets trained, #NB = 308 for two different scales of smaples sizes. test wmse is the w.m.s.e of the
learned NN over the test set; local bucket error is the average L1 error for logλ approximations over all buckets; estimated bounds is the
bound obtained in eq 3; empirical error is the average global error over 5 runs.
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