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1 ADDITIONAL EXPERIMENTAL
DETAILS

All of our models were implemented in PyTorch [Paszke
et al.,|2019]. Our code makes use of the PySDD to compile
the constraints. In all the experiments, we performed a grid
search on the coefficent of the constraint loss as well as the
the coefficient of the entropy loss in the range [1 x 10°,1 x
1071,5x1071,1x1072,5x1072,1x1073,5x 1073, 1 x
10~*,5 x 10~%]. That is in addition to searching over other
hyperparameters that will be listed, and vary by experiment.
All of our constraints are included with our code.

1.1 ENTITY-RELATION EXTRACTION

We begin by testing our research questions in the semi-
supervised setting. Here the model is presented with only
a portion of the labeled training set, with the rest used ex-
clusively in an unsupervised manner by the respective ap-
proach.

We make use of the natural ontology of entity types and
their relations present when dealing with relational data.
This defines a set of relations and their permissible argu-
ment types. As is with all of our constraints, we express the
aforementioned ontology in the language of Boolean logic.

Our approach to recognizing the named entities and their
pairwise relations is most similar to [Zhong and Chen
[2020]]. Contextual embeddings are first procured, using
the BERTgasg model from the Hugging Face Transformers
library [1_1 for every token in the sentence. These are then
fed into a named entity recognition module that outputs a
vector of per-class probability for every entity. A classifier
then classifies the concatenated contextual embeddings and
entity predictions into a relation.

We employ two entity-relation extraction datasets, the Auto-
matic Content Extraction (ACE) 2005 [Walker et al., 2006]]

"https://github.com/huggingface/transformers

and SciERC datasets [Luan et al., 2018|]. ACEO5 defines
an ontology over 7 entities and 18 relations from mixed-
genre text, whereas SCiERC defines 6 entity types with 7
possible relation between them and includes annotations
for scientific entities and there relations, assimilated from
12 AI conference/workshop proceedings. We report the per-
centage of coherent predictions: data points for which the
predicted entity types, as well as the relations are correct.

Constraint The ACEOS specification lists all permissible
relations and their arguments the conjunction of which repre-
sent our constraint. Unlike ACEO5, SciERC does not specify
an ontology of entities and their permissible relations. There-
fore, our constraint is determined through procuring the set
of all possible relation-subject-object triples in the training
set, and applying a threshold to eliminate all noisy labelings
in the training set. The script for extracting such a cosntraint
is provided with our code.

We used SGD as the optimizer with an initial learning rate
of 1.0, which was annealed by a decay rate of 0.9 for every
10 epochs that there is no improvement on the validation
set. Every model was allowed to train for 100 epochs, with
early stopping if progress is not made for 20 epochs.

1.2 PREDICTING SIMPLE PATHS

For this task, our aim is to find the shortest path in a graph,
or more specifically a 4-by-4 grid, G = (V, F) with uniform
edge weights. Our input is a binary vector of length |V| +
|E|, with the first |V| variables indicating the source and
destination, and the next | E'| variables encoding a subgraph
G’ C G.Each label is a binary vector of length | E'| encoding
the shortest simple path in G’, a requirement that we enforce
through our constraint. We follow the algorithm proposed
by [Nishino et al.| [2017] to generate a constraint for each
simple path in the grid, conjoined with indicators specifying
the corresponding source-destination pair. Our constraint is
then the disjunction of all such conjunctions.
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To generate the data, we begin by randomly removing one
third of the edges in the graph G, resulting in a subgraph,
G’. Subsequently, we filter out connected components in
G’ with fewer than 5 nodes to reduce degenerate cases.
We then sample a source and destination node uniformly
at random. The latter constitutes a single data point. We
generate a dataset of 1600 examples, with a 60/20/20
train/validation/test split. We keep all the hyperparameters
provided by Xu et al.| [2018] fixed, employing a 5-layer
MLP as our baseline, with 50 hidden units per layer, and the
Adam optimizer with a learning rate of 1 x 1073,

1.3 PREFERENCE LEARNING

We also consider the task of preference learning. Given the
user’s ranking of a subset of elements, we wish to predict
the user’s preferences over the remaining elements of the
set. We encode an ordering over n items as a binary matrix
X;j, where foreach 4, j € 1,...,n, X;; denotes that item ¢
is at position j. Our constraint « requires that the network’s
output be a valid total ordering.

We use preference ranking data over 10 types of sushi for
5, 000 individuals, taken from PREFLIB [Mattei and Walsh),
2013]], split 60/20/20. Our inputs consist of the user’s pref-
erence over 6 sushi types, with the model tasked to predict
the user’s preference, a strict total order, over the remaining
4. We keep all the hyperparameters provided by Xu et al.
[2018] fixed, employing a 3-layer MLP as our baseline, with
25 hidden units per layer, and the Adam optimizer with a
learning rate of 1 x 1073.

1.4 WARCRAFT SHORTEST PATH

Following [Poganci¢ et al.| | 2020]], our training set consists
of 10,000 terrain maps curated using Warcraft II tileset.
Each map encodes an underlying grid of dimension 12 x 12,
where each vertex is assigned a cost depending on the type
of terrain it represents (e.g. earth has lower cost than water).
The shortest (minimum cost) path between the top left and
bottom right vertices is encoded as an indicator matrix,
and serves as label. Presented with an image of a terrain
map, a convolutional neural network — following [Poganci¢
et al.,2020]], we use ResNet18 [He et al., | 2016|] — outputs a
12 x 12 binary matrix indicating the vertices that constitute
the minimum cost path.

We keep all the hyperparameters provided by [Pogancic¢
et al.,|2020] fixed , using an Adam optimizer with a learning
rate of 5 x 10~%. To obtain the constraint, we compiled a
constraint for a 6 x 6 grid, that was applied 9 times, to each
overlapping region of the 12 x 12 grid.
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