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A DATA COLLECTION AND
INCENTIVES

To see how the participants behave given the ranking in-
centives that we defined in the football quiz, we plotted
the histogram of the sizes of the answers (see Figure 1).
It appears that although the platform enables to select ev-
ery alternative, only two voters did so for all the questions.
Moreover, figures 1b and 1a show that the majority of the
voters tend to select exactly the number of teams that appear
in an image.

B INITIALIZING VOTERS’
RELIABILITIES

Inspired by the Anna Karenina Principle in Meir et al.
[2019], we devised an initialisation strategy for the vot-
ers’ reliabilities. In his book, Leo Tolstoi stated that "Happy
families are all alike; every unhappy family is unhappy in its
own way". In the same spirit, it seems reasonable to make
the hypothesis that accurate users tend to make similar an-
swers, whereas inaccurate users have each their own way of
being inaccurate.

Here follows an example of the Anna Karenina initialization
scheme.

Example 1. Consider following the approval profile (Table
1) for 3 voters, 5 alternatives and 4 Instances. Here we have

A1 A2 A3 A4

Voter 1 {a1, a4} {a1} {a3} {a1}
Voter 2 {a2} {a5} {a4} {a1}
Voter 3 {a2, a3, a4} {a2, a3, a5} {a2, a3} {a3}

Table 1: Approval Ballots of 3 Voters on 4 Instances
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Histogram of the answers' sizes for questions with two winners

(a) Two-winner instances
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Histogram of the answers' sizes for questions with a single-winner

(b) Single-winner instances

Figure 1: Histogram of the ballots’ sizes
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First, compute the mean Jaccard distance of all voters: d1 =
1.71, d2 = 1.69, d3 = 1.65. So dmax = d1 = 1.71 and
dmin = d3 = 1.65, which means that voter 3 (the closest
in average to all the voters) will get the biggest weight
w3 = wmax = 0.75 and voter 1 gets the smallest weight
w1 = wmin. Next, compute the weight that will be assigned
to each voter, for instance:

w2 = (wmax − wmin)
1
d2

− 1
dmax

1
dmin

− 1
dmax

+ wmin = 0.38

Now we can set the initial values for the reliability parame-
ters accordingly:
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We can check that these parameters are such that:

ln

[
p2(1− q2)

q2(1− p2)

]
= w2

After proceeding in the same fashion with all the voters, we
get the initial parameters:{

p̂
(0)
1 = 0.5 p̂

(0)
2 = 0.5 p̂

(0)
3 = 0.5

q̂
(0)
1 = 0.44 q̂

(0)
2 = 0.41 q̂

(0)
3 = 0.32

Since the AMLE only guarantees convergence to a local
maximum, which makes the result depending on the initial
point, we compared the results of this initialization (Anna
Karenina) to other procedures to motivate its choice, see
Figure 2, namely we tested:

• Uniform weights: Initially all the voters in the batch
are given the same weight.

• Random weights: Initially, for each voter in the batch,
pi is randomly picked from (0.5, 1) and qi is randomly
picked from (0, 0.5).

We can notice that these two baseline procedures show very
similar performances, and that they are both outperformed
by the Anna Karenina initialization.

C LOSSES

C.1 HAMMING, HARMONIC AND 0-1 SUBSET
METRICS

In addition to the Hamming and 0-1 subset accuracies, we
introduced a new metric which can be considered as an
intermediate one. The Hamming metric considers each label
independently and the 0-1 subset loss considers them jointly
in a strict fashion, whereas the harmonic accuracies that
we introduced considers all the instance’s labels jointly but
with different convex weights depending on the number of
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Figure 2: Accuracies of different initializations



AMLEc AMLEf Modal Majority
Hamming 0.88 0.86 0.84 0.80
Harmonic 0.78 0.74 0.69 0.61
0/1 0.60 0.53 0.46 0.26

Table 2: Hamming and 0/1 accuracy for entire dataset

correctly predicted ones:

T (S, S∗) =

|S∩S∗|∑
k=1

1

6− k

So out of the 5 labels:

• if 0 labels are correct then T = 0.
• if 1 labels is correct then T = 1

5 .
• if 2 labels are correct then T = 1

5 + 1
4 .

• if 3 labels are correct then T = 1
5 + 1

4 + 1
3 .

• if 4 labels are correct then T = 1
5 + 1

4 + 1
3 + 1

2 .
• if 5 labels are correct then T = 1

5 + 1
4 + 1

3 + 1
2 + 1.

Defined as such, this accuracy favours the estimators that
are able to correctly estimate most of the instance’s labels
without being as rigid as the 0-1 subset accuracy.

This metric is reminiscent of the Proportional Approval Vot-
ing rule for multiwinner elections, which defines the score
of a subset of candidates W for a voter as 1 + 1

2 + . . .+ 1
j ,

where j is the number of candidates in W approved by the
voter. We could consider more generally a class of met-
rics defined by a vector w⃗, such that T (S, S∗) = w|S∩S∗|.
This class generalizes Hamming, 0-1 and Harmonic and is
reminiscent of the class of Thiele rules (see for instance
Lackner and Skowron [2020] for an extended presentation
of multiwinner approval-based committee rules).

C.2 RESULTS

We show in Table 2 the accuracies of the considered methods
when applied to the entire annotation dataset. In Figure 3
we show the evolution of the Harmonic accuracies when the
number of randomly picked voters in each batch increase.
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Figure 3: Normalized Harmonic accuracy
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