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To see how the participants behave given the ranking in-
centives that we defined in the football quiz, we plotted
the histogram of the sizes of the answers (see Figure [I)).
It appears that although the platform enables to select ev-
ery alternative, only two voters did so for all the questions.
Moreover, figures [T and [Ta] show that the majority of the
voters tend to select exactly the number of teams that appear
in an image.

B INITIALIZING VOTERS’
RELIABILITIES

Inspired by the Anna Karenina Principle in [Meir et al]
[2019], we devised an initialisation strategy for the vot-
ers’ reliabilities. In his book, Leo Tolstoi stated that "Happy
families are all alike; every unhappy family is unhappy in its
own way". In the same spirit, it seems reasonable to make
the hypothesis that accurate users tend to make similar an-
swers, whereas inaccurate users have each their own way of
being inaccurate.

Here follows an example of the Anna Karenina initialization
scheme.

Example 1. Consider following the approval profile (Table
[) for 3 voters, 5 alternatives and 4 Instances. Here we have

Al A? A3 Al
Voter 1 {ai,a4} {a1} {as} {a1}
Voter 2 {as} {as} {aq} {a1}
Voter 3 | {ag,as,a4} | {az,a3,as} | {as,a3} | {as}

Table 1: Approval Ballots of 3 Voters on 4 Instances
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(b) Single-winner instances

Figure 1: Histogram of the ballots’ sizes
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First, compute the mean Jaccard distance of all voters: d =
1.71,d; = 1.69,ds = 1.65. So diper = di = 1.71 and
dmin = d3 = 1.65, which means that voter 3 (the closest
in average to all the voters) will get the biggest weight
W3 = Wmar = 0.75 and voter 1 gets the smallest weight
W1 = Wimin. Next, compute the weight that will be assigned
to each voter, for instance:

1 1
— _ . do dmaz . =10.38
Wy = (wmam wmin) 1 1 + Wmin = U.
dmin dmaz

Now we can set the initial values for the reliability parame-
ters accordingly:
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We can check that these parameters are such that:

n ] =

After proceeding in the same fashion with all the voters, we
get the initial parameters:

V=05 pP =05 p =05
i =044 ¢V =041 ¢ =032

Since the AMLE only guarantees convergence to a local
maximum, which makes the result depending on the initial
point, we compared the results of this initialization (Anna
Karenina) to other procedures to motivate its choice, see
Figure 2] namely we tested:

* Uniform weights: Initially all the voters in the batch
are given the same weight.

* Random weights: Initially, for each voter in the batch,
p; is randomly picked from (0.5, 1) and ¢; is randomly
picked from (0, 0.5).

We can notice that these two baseline procedures show very
similar performances, and that they are both outperformed
by the Anna Karenina initialization.

C LOSSES

C.1 HAMMING, HARMONIC AND 0-1 SUBSET
METRICS

In addition to the Hamming and 0-1 subset accuracies, we
introduced a new metric which can be considered as an
intermediate one. The Hamming metric considers each label
independently and the 0-1 subset loss considers them jointly
in a strict fashion, whereas the harmonic accuracies that
we introduced considers all the instance’s labels jointly but
with different convex weights depending on the number of
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Figure 2: Accuracies of different initializations




AMLE. | AMLE; | Modal | Majority
Hamming 0.88 0.86 0.84 0.80
Harmonic 0.78 0.74 0.69 0.61
0/1 0.60 0.53 0.46 0.26

Table 2: Hamming and 0/1 accuracy for entire dataset

correctly predicted ones:
Isnsl
T(S,5*) = —

So out of the 5 labels:

e if 0 labels are correct then 7" = 0.

« if 1 labels is correct then T = %

e if 2 labels are correct then T' = % + %
e if 3 labels are correct then T’ = = + % + %
* if 4 labels are correct then T' = % + ] + 3 + %

e if 5 labels are correct then 7' = rtits+s5+ 1.

Defined as such, this accuracy favours the estimators that
are able to correctly estimate most of the instance’s labels
without being as rigid as the 0-1 subset accuracy.

This metric is reminiscent of the Proportional Approval Vot-
ing rule for multiwinner elections, which defines the score
of a subset of candidates W for a voter as 1 + % + ...+ %,
where j is the number of candidates in W approved by the
voter. We could consider more generally a class of met-
rics defined by a vector w, such that T'(S, S*) = w|gng«|-
This class generalizes Hamming, 0-1 and Harmonic and is
reminiscent of the class of Thiele rules (see for instance
Lackner and Skowron|[2020] for an extended presentation
of multiwinner approval-based committee rules).

C.2 RESULTS

We show in Table[2lthe accuracies of the considered methods
when applied to the entire annotation dataset. In Figure 3]
we show the evolution of the Harmonic accuracies when the
number of randomly picked voters in each batch increase.
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Figure 3: Normalized Harmonic accuracy
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