Asymmetric DQN for Partially Observable Reinforcement Learning
(Supplementary Material)

Andrea Baisero' Brett Daley' Christopher Amato'

1Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts, USA

A PROOFS

A1 PROOF OF LEMMA
We first note that B, may also be expressed as B : Q — R + 7P Q, where P,: Q — Q is the linear operator defined by

PrQ(h,a) = Egp,q [Q(hao, m(hao))], and has operator co-norm || Py || = 1. Next, we show that B is a y-contraction in
oo-norm, i.e., for any two Q, Q' € Q, the following inequality holds:

1B2Q — BxQ'|| = R+ 7PrQ — R — P Q|

=91Px Q- Q)|
<TlIP-NQ — @l
=71Q -’ (1

Therefore, we conclude that B, has a unique fixed point which is Q™ by definition.

A.2 PROOF OF LEMMA

Proof. We show that B is a y-contraction in co-norm, i.e., for any two Q, Q' € Q, the following inequality holds:

|BQ — BQ'| = max ‘R(h, a) +YEonq max Q(hao,a’) — R(h,a) — yEop.q max Q' (hao,a’)

= fyrrf}ax Eo‘hﬂ {mE}XQ(h0,0, a/)} —]Eo|h,a [mz?,x Ql(hao7 a/)H

Eojh,q {mz}x Q(hao,a’) — max Q' (hao, a')} ’

}

= max
v h,a

< 'yn’}aXEo‘hﬂ [max Q(hao,a’) — max Q' (hao,a’)
L, a a’ a’

< ymax

7(1,0

<y, max |Q(hao,a’) — Q' (hao,ad’)]

=1Q -Q'll. 2)

max Q(hao,a’) — max Q' (hao, a’)

Therefore, we conclude that B has a unique fixed point which is Q* by definition. O

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<baisero.a@northeastern.edu>?Subject=Your UAI 2022 paper

A.3 PROOF OF LEMMA

Proof. We first note that B, may also be expressed as B, : U — R + vP;U, where P, : U — U is the linear operator
defined by P, U(h, s,a) = Ey 45,4 [U(hao,s’, m(hao))], and has operator co-norm || P || = 1. Next, we show that B is a
~-contraction in co-norm, i.e., for any two U, U’ € U, the following inequality holds:

|B:U — B,U'| = |R +~vP,U — R — P, U’||

=91P- (U -V ||

<AIPIU = U]

=AU -]l ®
Therefore, we conclude that B, has a unique fixed point which is U™ by definition. O

A4 PROOF OF LEMMA (ASYMMETRIC BELLMAN EQUIVALENCE)

Proof. We assume () = EU, and show that the following elementwise identity holds,
(EBy)U)(h,a) = Eyp {R(s, a) +7Eg o/s,a {U(hao, s’ argmax Q(hao, a’))”
= R(h,a) +vEy, |:Es’,o|s7a {U(hao, s’ argmax Q(hao, a'))”

= R(h,a) + vEy ojh.q [U(hao7 s’ argmax Q(hao, a’))]

= R(h,a) + vEoha |Es|hao {U(hao, s’ argmax Q(hao, a’))”

a’

= R(h,a) + vEq)p,q |Q(hao,argmax Q(hao, a’))}

= R(h,a) +vEqpq _mgx Q(hao, a’)}
= BQ(h,a).)

Therefore, EBy)U = BQ. O

A.5 PROOF OF THEOREM (AQL OPTIMALITY)

Proof. Let (hy, sk, ar) denote the history, state, and action visited at the k-th iteration of the AQL algorithm. To facilitate
our analysis, we would like to remove the explicit conditional updates in Equations (I3) and (I4). We define the binary
random process X € U such that

1 if(h =(h
xi(h 0y = 4 L) = s an) 5)
0 otherwise
Using elementwise multiplication and division, the AQL updates in Equations (13) and (I4) can be written as
Uk+1 + Uy + arXr(Bg@u Uk +wi — Uy), (6)
Qr+1 + Qk + ar(Exk)(EBy@) Uk + vk — Qk) - (7

We note that the noise processes wy, and vy, are not statistically independent because they are computed using a shared
transition, which guarantees that vy, = Fwy. This allows us to prove that Uy and @, remain mutually consistent after

each update, i.e., Qr = EUy, which we show by induction. From the assumed initialization in the theorem, the base case
Qo = EUj is satisfied. Assume that @), = EUj, holds for the inductive hypothesis. It follows that
EUyy1 = E(Ug + arxr(Bg(o) Uk +wi — Uy))
= FEU, + ak(EXk)(EBg(Qk)Uk + Fwy — EUk))
= Qr + ar(Exk)(EByq) Uk + vr — Qk)

= Qk+t1, (3)
and therefore Uy, and @, are mutually consistent for all k¥ > 0. By Lemma[4.2] Equation (7)) reduces to
Qr+1 = Qk + ar(Exx)(BQk + vi — Qk) -)

Now let py(h, s,a) € [0,1] be the probability that (h, s, a) = (hy, sk, ax) conditioned on iteration k — 1. Additionally, let 1
denote vectors whose components are all equal to one. We can equivalently express Equations and in the form

U1 = (1 — appr) Uk + arpr By Ur + w},) (10)
Q1 = (1 — arEpr)Qr + arEpi(BQ + vy.) (11

where

’o Xk
wy, = Wk + (pk—l) (Bg(Qk)Uk+wk_Uk>7 (12)
) E
v = v+ (EXk - 1) (BQk + vi — Qk) - 13)
Pk

It can be verified that E [w},] = E[v}] = 0 and that the conditional variances of wj, and v, are bounded such that

Proposition 4.4 of Bertsekas and Tsitsiklis| [[1995] applies given the conditions on a. It follows that () converges with
probability 1 to Q*, the unique fixed point of the contraction mapping B (Lemma [3.2).

The fact that Q; — Q* guarantees the existence of some iteration k*, with probability 1, such that g(Qy) = 7*, for k > k*.
Therefore,
U1 = (1 — apr)Uk + anpr(Br- U +wy), Vk > k" (14)

B~ is a contraction mapping that admits U™ as its unique fixed point (Lemma|3.3). Once again, Proposition 4.4 of Bertsekas
and Tsitsiklis| [[1995] applies, and we conclude that U, — U™ with probability 1.

O

B MODEL ARCHITECTURES

This section contains the model architectures used by each method when run on each environment of our evaluation (see
Figure([T)). Some components of the architectures are the same for all methods and environments, while some components are
domain-specific, e.g. to accommodate the different structures of states and observations in the different environments. In this
section, we refer to the Heaven-Hell-3 and Heaven-Hell-4 environments as categorical environments; to the Car-Flag and
Cleaner environments as feature-vector environments; and to the GV-MemoryFourRooms-7x7 environment as a gridverse
environment. For a thorough description of each environment, refer to Appendix C of Baisero and Amato|[2022].

General Architecture The architecture components are shown in Figure[I] Action and observation features are concate-
nated to form the input to a 128-dimensional single-layer gated recurrent unit (GRU) |Cho et al.|[2014], which acts as the
history model ¢(h). The value NN is a feedforward model which varies in each type of environment.

Categorical POMDPs The action, observation, and state feature components are shown in Figure [Ta] Categorical
environments provide actions, observations, and states, as categorical indices, which we convert to parametric feature vectors
using 64-dimensional embedding models. The value NN model is a 2-layer feedforward network with 512 and 256 nodes,
and ReLU non-linearities.

Feature-Vector POMDPs The observations and states provided by the feature-vector environments already come in a
feature-vector form, which we do not process further. Actions are modeles as one-hot encodings. The value NN model is a
2-layer feedforward network with 512 and 256, and ReL.U non-linearities.

0 Embedding #(0) 0 —grid—->[Embedding]—){ Flatten]—) #(0)
s Embeddin s

=N
a Embedding ¢(a) ‘{agent_id_grid Stack NN > ¢(S)

agent

s
a —)‘ Embedding > ¢(a)

(b) Observation, state, and action models for gridverse POMDPs.

(a) Observation, state, and action models
for categorical POMDPs.

zg "I oru Ho s Qh,)

ola) —»{ GRU > 4(h))
#(o) o(s) '—)[Value NN]—) U(h,s,-)

oo (s,

(¢) DQN and ADQN architectures. Separate components are used for Q(h, a), U(h, s, a), and U(s,a). In
each case, the final layer returns an array of values, one for each action a € A.

Figure 1: For categorical and gridverse environments, the observation, state, and action models ¢(0), ¢(s), and ¢(a), are
those respectively depicted in Figure|laland Figure|lb| For the feature-vector environments, observation and state models
¢(0) and ¢(s) are directly provided as feature-vectors by the environment itself, while action models ¢(a) are implemented
as one-hot encodings. Figure shows the architecture for the DQN models Q(h, a), U (h, s, a), and U (s, a).

Gridverse POMDPs The gridverse environments provide observations and states in a dictionary format containing
different fields representing different aspects of the environment, see Appendix C of Baisero and Amato|[2022]. Because
observations and states already contain a lot of relevant information about the past, we use scalar 1-dimensional embedding
models for the actions. The 3 x 2 x 3 observations are first processed using an 8-dimensional embedding layer, and
then flattened, which produces a 144-dimensional observation feature ¢ (o). The states contain relevant information in
different forms, and require a more complex model. The grid component is processed using an embedding layer, which
is then stacked with the agent_id_grid component, and processed by a 1- or 2— layer feedforward network (this is
hyper-parameter L in Appendix[D) with ReLU non-linearities. All outputs of the grid and agent_id_grid components
are then concated to form the overall state feature ¢(s).

C TRAINING DETAILS

We perform fully episodic training, by which we mean that various aspects of the training involve and are measured based
on complete episodes:

» The replay buffer is more specifically an episode buffer which contains full episodes.

* The episode buffer is pre-populated using episodes sampled from a random policy. Episodes are sampled and inserted
into the episode buffer until the episode buffer contains a total of 50k timesteps.

* The main training loop iterates an environment interaction phase with an optimization phase.

* In the environment interaction phase, a full episode is sampled from the environment using an e-greedy policy based on
the current (). The sampled episode is then inserted into the episode buffer.

¢ Any time the episode buffer exceeds a total of 1M/ timesteps, old episodes are removed until that is no longer the case.

¢ In the optimization phase, a variable number of optimization steps are performed. Optimization steps are performed
until the total number of timesteps used for training exceeds the number of total timesteps sampled from the real
environment by a given factor. This factor is determined by hyper-parameter F' (usually 8 or 16). In each optimization
step, a number of full episodes are sampled from the episode buffer, and used fully to form the minibatch of transitions
used for the optimization step. Because each episode may contain a variable number of transitions, that means that
the size of the minibatch of transitions used for optimization is variable. The number of episodes which is sampled is
determined by hyper-parameter B (usually 1).

* The whole process is repeated until a given total number of timesteps have been sampled from the environment.
Although this form of training introduces correlations between the transitions in a minibatch {(h, s, a,7,s’,0); }}_,, it is

also significantly more efficient than if transitions were completely i.i.d, due to the shared computation between the features
of consecutive histories.

D HYPERPARAMETERS AND GRID SEARCH

For each combination of control problem and method, we perform a separate grid-search over hyper-parameters, and find
the combination of hyper-parameters which results in the best performance, in each case using statistics aggregated over
20 independent runs. The hyper-parameter grid is domain dependent. For Heaven-Hell-3, Heaven-Hell-4, Car-Flag, and
Cleaner, we search over the following:

* a € {0.0001,0.0003}, the learning rate.

* N, € {1M,2M}, the number of timesteps it takes for € to decay linearly from its initial value of 1.0 to its final value
of 0.1.

« F € {8, 16}, the ratio between number of training timesteps and number of simulation timesteps, used to determine
the frequency of optimization steps.

* B € {1,2}, the number of episodes sampled from the episode buffer for each optimization step.
For GV-MemoryFourRooms-7x7, we set « = 0.0001, and search over the following:

o N. € {1M,2M,4M}, the number of timesteps it takes for € to decay linearly from its initial value of 1.0 to its final
value of 0.1.

Table 1: Hyper-parameter grid search results.

Domain Method « N, F B L
Heaven-Hell-3 DQN 0.0003 2M 16 2 -
ADQN 0.0001 2M 16 2 -
ADQN-VR 0.0001 2M 16 2 -
ADQN-State 0.0001 2M 16 2 -
ADQN-State-VR 0.0001 2M 16 2 -
Heaven-Hell-4 DQN 0.0003 2M 16 1 -
ADQN 0.0001 2M 16 2 -
ADQN-VR 0.0001 2M 16 1 -
ADQN-State 0.0001 2M 16 2 -
ADQN-State-VR 0.0001 2M 16 2 -
Car-Flag DQN 0.0003 1M 16 2 -
ADQN 0.0003 1M 16 1 -
ADQN-VR 0.0003 1M 16 2 -
ADQN-State 0.0003 1M 16 2 -
ADQN-State-VR 0.0003 1M 16 1 -
Cleaner DQN 0.0001 2M 8 2 -
ADQN 0.0001 1M 16 2 -
ADQN-VR 0.0001 2M 16 2 -
ADQN-State 0.0001 1M 8 2 -
ADQN-State-VR 0.0001 2M 8 2 -
GV-MemoryFourRooms-7x7 DQN 0.0001 4M 16 2 1
ADQN 0.0001 1M 16 2 1
ADQN-VR 0.0001 1M 16 2 1
ADQN-State 0.0001 4M 16 2 1
ADQN-State-VR 0.0001 4M 16 2 1

» F € {8,16}, the ratio between number of training timesteps and number of simulation timesteps, used to determine
the frequency of optimization steps.

* B € {2,4}, the number of episodes sampled from the episode buffer for each optimization step.

» L € {1, 2}, the number of final linear layers in the state and observation representation models.

Factoring in the 4 control problems with 24 combinations of hyper-parameters, and 1 control problem with 3-23 combinations
of hyper-parameters, 5 methods for each, and 20 independent runs for each combination, we obtain a total number of 8800
independent runs necessary to present all the results of this work. Table[T|shows the hyper-parameters chosen from each grid
search, which are the ones used for the results depicted in Figure[I]

References

Andrea Baisero and Christopher Amato. Unbiased Asymmetric Reinforcement Learning under Partial Observability. In
Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems, pages 44-52, 2022.

Dimitri P. Bertsekas and John N. Tsitsiklis. Neuro-dynamic programming: an overview. In Proceedings of 1995 34th IEEE
conference on decision and control, volume 1, pages 560-564. IEEE, 1995.

Kyunghyun Cho, Bart Van Merriénboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties of neural machine
translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259, 2014.

	Proofs
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.3
	Proof of Lemma 4.2 (Asymmetric Bellman Equivalence)
	Proof of Theorem 4.4 (AQL Optimality)

	Model Architectures
	Training Details
	Hyperparameters and Grid Search

