
Equilibrium Aggregation: Encoding Sets via Optimization
(Supplementary material)

Sergey Bartunov1,2,* Fabian B. Fuchs1,* Timothy P. Lillicrap1

1DeepMind, London, United Kingdom
2Now at CHARM Therapeutics, London, United Kingdom,

*Joint first authorship

A EQUILIBRIUM AGGREGATION AS
MAP INFERENCE

Here we provide another useful perspective on Equilibrium
Aggregation which is connecting the method to prior work
in Bayesian inference and continuing one of the arguments
made by Zaheer et al. [2017].

Consider a joint distribution over a sequence of random vari-
ables x1,x2, The sequence is called infinitely exchange-
able if, for any N the joint probability p(x1,x2, . . . ,xN) is
invariant to permutation of the indices. Formally speaking,
for any permutation over indices π we have

p(x1,x2, . . . ,xN) = p(xπ(1),xπ(2), . . . ,xπ(N)).

According to De Finetti’s theorem (see, for example, [Di-
aconis and Freedman, 1987]), the sequence x1,x2, . . . is
infinitely exchangeable iff, for all N , it admits the following
mixture-style decomposition:

p(x1,x2, . . . ,xN) =

∫ N∏
i=1

p(xi|y)p(y)dy.

Since the existence of this model for exchangeable se-
quences is guaranteed, one can consider the posterior distri-
bution p(y|x1,x2, . . . ,xN) which effectively encodes all
global information about the observed inputs.

Since full and exact posterior inference is often infeasible
(and the theorem does not guarantee at all that the prior p(y)
and the likelihood p(x|y) are conjugate or otherwise admit
closed-form inference), in practice maximum a posteriori
probability (MAP) estimates are used when a point estimate
is sufficient:

ŷ = argmax
y

log p(y|x1, . . . ,xN)

= argmax
y

 N∑
i=1

log p(xi|y)︸ ︷︷ ︸
=−F (xi,y)

+ log p(y)︸ ︷︷ ︸
=−R(y)

 . (A.1)

Informally speaking, this means that MAP encoding of
sets under a probabilistic model with a global hidden vari-
able (which must exists albeit potentially in a complicated
form) amounts to the optimization problem (A.1) which
is almost the same as the Equilibrium Aggregation formu-
lation (2). Allowing the potential F (x,y) to be a flexible
neural network, it is possible to recover the desired negative
log-likelihood − log p(x|y) (up to an additive constant).

This observation provides an additional theoretical argument
in support of Equilibrium Aggregation and also suggests a
number of interesting extensions one can imagine by further
exploring the vast toolset of probabilistic inference.

B ATTENTION AS EQUILIBRIUM
AGGREGATION

We have already outlined how simple pooling methods can
be recovered as special cases of Equilibrium Aggregation.
Here, we demonstrate how Equilibrium Aggregtaion can
learn to model the popular attention mechanism.

We denote the interaction or query vector as h. Note that
we consider many-to-one aggregation and therefore only
have one query vector. Here, the query vector is learned and
independent of the input set. For brevity, we will ignore the
commonly used distinction between keys and values over
which the attention is computed and will simply consider
a set of vectors X = {xi}Ni=1 serving as both. Now, we
split the aggregation result as y = [yr, ys] and define the
potential function as follows:

F (x,y) = exp(hTx)||x− yr||22 + (ys − exp(hTx))2.

Assuming no prior, the optimization problem (3) would then
lead to the following solution:

yr =
1

N

N∑
i=1

exp(hTxi)xi, ys =
1

N

N∑
i=1

exp(hTxi),

from which the normalized result can be recovered trivially

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<sbos.net@gmail.com>?Subject=Equilibrium Aggregation

as
yr

ys
=

N∑
i=1

exp(hTxi)∑N
j=1 exp(h

Txj)
xi.

C PRACTICAL IMPLEMENTATION OF
EQUILIBRIUM AGGREGATION

While we generally found Equilibrium Aggregation to be
robust to various aspects of implementation, in this appendix
we share the best practices discovered in our experiments.

C.1 POTENTIAL FUNCTION

The potential function F (x,y) in experiments has been
implemented as a two-layer ResNet with tanh activations,
layer normalization [Ba et al., 2016] and, importantly, sum-
of-the-squares output. The Jax implementation can be found
in Listing 1.

tanh activations and layer normalization ensured numeri-
cally stable gradients with respect to y. At the same time,
sum of the squares allowed the potential to exhibit more rich
behaviour, especially when all of the potentials are summed
in the total energy.

C.2 SCALED ENERGY

The number of elements in the set N may vary significantly
across different data points in a dataset which ultimately
would make it difficult to set the single optimization sched-
ule (learning rate and momentum) that would work equally
well for all values of N . This is because energy (2) is a sum
over all elements in the set and so the gradient ∇yE(X,y)
is scaled linearly with N .

A potential solution to this problem would be to simply
average the potentials instead of summing them, but this
would make it very difficult if not impossible to reason about
the number of elements in the set from y. Thus, we use a
different solution where we still scale the energy so that
it does increase in magnitude as N grows but does so at a
sublinear rate:

E(X,y) =
R(y) +

∑N
i=1 F (xi,y)

(N + ϵ)
log2(N + 1), (C.1)

where ϵ = 10−8 is a small constant to prevent division by
zero in the case of an empty set.

C.3 INITIALIZATION

In all experiments y(0) has been set to a zero vector which,
as we found, facilitated faster training.

0 1 2 3 4 5
Iterations 1e6

10 4

10 3

10 2

10 1

100

L2 regularizer weight
Learning rate
Momentum

Figure C.1: Evolution of various trainable parameters of the
inner-loop optimizer.

C.4 INNER-LOOP OPTIMIZATION ALGORITHM

We used gradient descent with Nesterov-accelerated momen-
tum [Nesterov, 1983] as an algorithm for optimizing (3). We
provide the full code in Listing 2.

Figure C.1 shows the evolution of the trainable learning
rate and momentum parameters of the optimizer on the
MOLPCBA-GIN experiment, as well as the regularization
weight. One can see that all three parameters largely stabi-
lize after first 106 training steps.

C.5 IMPLICIT DIFFERENTIATION

In the course of this work we briefly explored the possibil-
ity of employing implicit differentiation. However, in this
regime it is not trivial to allow e.g. the learning rate to be
trained together with the model end-to-end and we found
it difficult to propose an optimization schedule that would
work well in all phases of training. Larger step sizes led to
unstable training and smaller step sizes required too many
iterations to converge making implicit differentiation less
efficient computationally than the straightforward explicit
differentiation which we ended up using for all the experi-
ments.

D FURTHER EXPERIMENTAL DETAILS

D.1 MEDIAN ESTIMATION

Data Creation The data is created indefinitely on the fly.
For each sample, first, one of three probability distributions
is selected by chance: uniform (between 0 and 1), gamma
(scale 0.2, shape 0.5), or normal (mean 0.5, standard devi-
ation 0.4). Then, 100 values are randomly drawn from the
selected distribution. The label is the median value of the
set of these 100 values.

1 from typing import Callable, Sequence
2 import haiku as hk
3 import jax.numpy as jnp
4 import numpy as np
5

6

7 class SuperMLP(hk.Module):
8

9 def __init__(self, hidden: Sequence[int],
10 activation: Callable[[jnp.ndarray], jnp.ndarray],
11 activate_final: bool = False,
12 normalize: bool = False,
13 spectral_norm: bool = False,
14 residual: bool = False, name=None):
15 super().__init__(name=name)
16

17 self._hidden = hidden
18 self._activation = activation
19 self._activate_final = activate_final
20 self._normalize = normalize
21 self._residual = residual
22

23 def __call__(self, x, conditional=None, is_training=True):
24 for i, size in enumerate(self._hidden):
25 if conditional is not None:
26 x = jnp.concatenate([x, conditional], axis=-1)
27 h = hk.Linear(size)(x)
28

29 if i < len(self._hidden)-1 or self._activate_final:
30 if self._normalize:
31 h = hk.LayerNorm(-1, True, True)(h)
32 h = self._activation(h)
33 else:
34 pass
35

36 if self._residual:
37 if size != x.shape[1]:
38 x = hk.Linear(size)(x)
39

40 x += h
41 else:
42 x = h
43

44 return x
45

46 def potential_net(x, y, hidden_size):
47 z = jnp.concatenate([x, y], axis=-1)
48 h = utils.SuperMLP([hidden_size * 2, hidden_size, 32], activation=jax.nn.tanh,
49 activate_final=False, residual=True,
50 normalize=True)(z)
51 h = jnp.square(h)
52 return jnp.mean(h, axis=1)

Listing 1: Potential function implementation in Jax.

1 from typing import Any, Callable, Optional
2

3 import haiku as hk
4 import jax
5 import jax.numpy as jnp
6 import jax.scipy as jsp
7

8 def inverse_softplus(x):
9 return np.log(np.exp(x) - 1.)

10

11 class MomentumOptimizer(hk.Module):
12 def __init__(self, learning_rate: float = 0.125,
13 momentum: float = 0.9,
14 name: Optional[str] = None):
15 super().__init__(name=name)
16

17 self._mu = hk.get_parameter(
18 "momentum", [], jnp.float32,
19 hk.initializers.Constant(jsp.special.logit(momentum)))
20 self._lr = hk.get_parameter(
21 "lr", [], jnp.float32,
22 hk.initializers.Constant(inverse_softplus(learning_rate)))
23

24 @property
25 def learning_rate(self):
26 return jax.nn.softplus(self._lr)
27

28 @property
29 def momentum(self):
30 return jax.nn.sigmoid(self._mu)
31

32 def __call__(self, f: Callable[[Any, jnp.ndarray, Any], jnp.ndarray],
33 y_init: jnp.ndarray, x: Any, theta: Any, max_iters: int = 5,
34 gtol: float = 1e-3, clip_value: Optional[float] = None):
35 """
36 Args:
37 f: objective that takes y (optimization argument) of shape
38 [batch_size, ...], x (conditioning input) of shape [batch_size, ...],
39 and theta (shared params) and outputs a vector of objective values of
40 shape [batch_size].
41 y_init: the initial value for y of shape [batch_size, ...].
42 x: Conditioning parameters.
43 theta: shared parameters for the objective.
44 max_iters: maximum number of optimization iterations.
45 gtol: tolerance level for stopping optimization (in terms of gradient
46 max norm).
47 clip_value: if specified, defines an inverval [-clip_value, clip_value]
48 to project each dimension of the state variable on.
49

50 Returns:
51 (y_optimal, optimizer_results).
52 """
53 def combined_objective(y, x, theta):
54 fval = f(y, x, theta)
55 return jnp.sum(fval), fval
56

57 grad_fn = jax.grad(combined_objective, argnums=0, has_aux=True)
58 y = y_init
59

60 grad_norm = jnp.zeros([y.shape[0]], dtype=y.dtype)
61 fval = jnp.zeros([y.shape[0]], dtype=y.dtype)
62 max_norm = jnp.zeros([y.shape[0]], dtype=y.dtype)
63 momentum = jnp.zeros_like(y)
64

65 def loop_body(_, args):
66 y, grad_norm, momentum, max_norm, f_val = args
67 grad, f_val = grad_fn(y + self.momentum * momentum, x, theta)
68 max_norm = jnp.max(jnp.abs(grad), axis=1)
69 grad_mask = jnp.greater_equal(max_norm, gtol)
70 grad_mask = grad_mask.astype(y.dtype)
71 momentum = self.momentum * momentum - self.learning_rate * grad
72 y += grad_mask[:, None] * momentum
73 if clip_value is not None:
74 y = jnp.clip(y, 0. - clip_value, clip_value)
75

76 grad_norm += jnp.square(grad).mean(axis=1)
77

78 return jax.lax.fori_loop(0, max_iters, loop_body, (y, grad_norm, momentum, max_norm, fval))

Listing 2: Optimizer code in Jax.

Evaluation For average performance (bold lines in Fig.
3), we average across seeds, do exponential smoothing and
report the performance after 10 million training steps. Equi-
librium Aggregation is roughly one order of magnitude
better. For best performing seed (faded lines in Fig. 3), we
report the best performing evaluation step (each evaluation
step uses 80000 samples) across all seeds.

D.2 MOLPCBA

As mentioned in the main text, we performed a brief hy-
perparameter search for the weight of the Laux (5). Based
on these results, we proceeded with the weight of 1 with
both of the architectures. We did not optimize this hyperpa-
rameter for local aggregation and simply used the value of
10−4 as in the rest of the experiments. Both local and global
aggregations used 15 iterations of energy minimization.

E ABLATION STUDIES

We performed several ablation studies that we hope add
helpful context.

E.1 NUMBER OF GRADIENT STEPS &
PERFORMANCE

The model takes gradient steps to find the minimum of the
energy function in the aggregation operator. More gradient
steps should help find a more accurate approximation of
the minimum and could therefore be expected to increase
overall model performance. The following is an ablation
on MOLPCBA + GCN + EA showing how the number of
gradient steps influences the performance:

Gradient Steps Best Valid. Performance

1 0.235
2 0.257
5 0.263
10 0.268

This shows increasing performance with increasing num-
ber of steps, with an expected levelling-off at higher step
numbers.

E.2 COMPUTE TIME & NUMBER OF GRADIENT
STEPS

The performance benefits of additional gradient steps
observed above raise the question of how high their
computational cost is. In the following, we measure how
much time it takes for different networks with the same
number of embeddings and layers to complete 2 million

training steps on MOLPCBA:

Method Time

Sum/Deep Sets 5h30min
EA with 2 gradient steps 7h50min
EA with 5 gradient steps 10h8min
EA with 10 gradient steps 15h44min

We see two research directions for increasing the speed of
EA: 1) Exploiting the implicit function theorem. 2) Using
less gradient steps during training than at test time.

E.3 AUXILIARY LOSS & PERFORMANCE

Here, we examine the influence of the weighting of the
auxiliary loss in (5) on the performance. We found this loss
to be generally helpful for performance. It encourages the
network to find a minimum as tracked by the norm of the
final gradient step in figure 5. This is an ablation study on
MOLPCBA + GIN + EA:

Auxiliary Loss Weight Best Valid. Performance

10−4 0.250
10−3 0.261
10−2 0.257
10−1 0.254
1 0.263

This shows a relatively stable behavior across different loss
weightings, with higher weightings leading to slightly better
performance on average.

E.4 CAPACITY OF EA & PERFORMANCE

Furthermore, we provide an ablation on MOLPCBA + GCN
+ EA where the first column specifies the relative number of
embeddings in the energy function compared to the one in
Section 5.3 (number of weights roughly scales quadratically
with that). We made the rest of the graph network smaller to
reduce the computational cost, hence the scores are overall
lower.

Embeddings in Energy Function Best Valid.

10% 0.208
30% 0.218
60% 0.228
100% 0.233
130% 0.222

This shows a drop in performance when going to 30% and

10% of the original network capacity. For larger capacities,
the performance differences seem less significant.

References

J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization.
arXiv:1607.06450, 2016.

P. Diaconis and D. Freedman. A dozen de finetti-style results
in search of a theory. In Annales de l’IHP Probabilités et
statistiques, volume 23, pages 397–423, 1987.

Y. E. Nesterov. A method for solving the convex program-
ming problem with convergence rate o (1/kˆ 2). In Dokl.
akad. nauk Sssr, volume 269, pages 543–547, 1983.

M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Póczos,
R. Salakhutdinov, and A. J. Smola. Deep sets. NeurIPS,
2017.

	Equilibrium aggregation as MAP inference
	Attention as equilibrium aggregation
	Practical implementation of Equilibrium Aggregation
	Potential function
	Scaled energy
	Initialization
	Inner-loop optimization algorithm
	Implicit differentiation

	Further experimental details
	Median Estimation
	MOLPCBA

	Ablation Studies
	Number of Gradient Steps & Performance
	Compute Time & Number of Gradient Steps
	Auxiliary Loss & Performance
	Capacity of EA & Performance

