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1 DERIVING THE EMPIRICAL BAYES ESTIMATOR (EBE)

In Appendix A we present known results as a background for the Empirical Bayes approach.
On our path to deriving an Empirical Bayes Estimator (EBE) for µ⃗ we first need to derive the appropriate Bayes estimator.
Recall L(A(X), µ⃗) is a loss square euclidean loss function, i.e, L(A(X), µ⃗) = ∥µ⃗− A(X)∥2l2.

Bayesian Estimator The Bayesian Estimator minimizes the Bayes risk which we will soon present, but first, we introduce
the notion of the Prior distribution.

Prior probability distribution The Bayesian framework assumes a known prior, this will later we will relax the known-
prior-assumption and estimate its parameters. First, we assume µ⃗ = (µ1, .., µm) is normally distributed, that is, we assume

µj ∼ N0 = N (µ0, σ
2
0)

For example we can think of a group of workers answering "what are the weights of the people is these images?", thus, the
underlying ground truth are weights of people which are close to a normal distribution.

Observations X⃗ = (X1, . . . , Xm) Assuming a prior distribution over µ⃗, (notice the difference from the preliminaries
where Xj ∼ N (µj , σ

2)), we now denote the conditional distribution Xj |µj ∼ N (µj , σ
2)

Posterior probability distribution µj |Xj can be viewed as an update for the assumed prior distribution after
viewing the observations. It is well known that the Bayesian Estimator (which we will later show that it is bet-
ter than the BLUE estimator shown in Theorem 2.1) for the square loss function is the posterior’s mean, that is,
Eµ∼N0,σ(µj |Xj) = minA(Xj)Eµ∼N0,σ(A(Xj)− µj)

2 where the latter expectation is under the Bayesian framework,
that is Eµ∼N0,σ(A(Xj)− µj)

2 =
∫
µ
Eµ⃗,σ⃗(A(Xj)− µ)2dµ, hence, to estimate µj via a Bayesian Estimator we first need

to calculate the posterior mean.

Theorem 1.1. The posterior distribution is µj |Xj ∼ N (µ̃j , σ̃
2),

µ̃j = Xj ∗
σ2
0

σ2
0 + σ2

+ µ0 ∗
σ2

σ2
0 + σ2

, σ̃2 =
σ2
0σ

2

σ2
0 + σ2

Proof.

P(µj |Xj) =
P(Xj |µj)P(µj)

P(Xj)
∝ P(Xj |µj)P(µj)

∝ e

(Xj−µj)
2

σ2 +
(µj−µ0)2

σ2
0

−2 ∝ e

µ2
j ( 1

σ2 + 1
σ2
0

)−2µj(
Xj

σ2 +
µ0
σ2
0

)

−2 ∝ e

( 1
σ2 + 1

σ2
0

)(µj−µ̃)2

−2
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Where the last proportional-to follows from completing-the-square technique and

µ̃j =
Xjσ

2
0 + µ0σ

2

σ2
0 + σ2

1.1 THE EMPIRICAL BAYES ESTIMATOR (EBE)

We now relax the previous known-prior-assumption, this subsection is the empirical part in Empirical Bayes. We will show
how to estimate the posterior mean using the observed data.
First we will derive the marginal distribution of Xj , that is, we evaluate the following expression:

Pµj∼N0,σ(Xj) =

∫
µj

Pµj ,σ(Xj |µj)P(µj)dµj

But we already saw on (1.1) that Pµj ,σ(Xj |µj)P(µj) is normally distributed, thus what is left is to calculate its mean and
variance.
By law of total expectation

Eµj∼N0,σ(Xj) = Eµj∼N0,σ(Eµj ,σ(Xj |µj)) = Eµj∼N0,σ(µj) = µ0

By law of total variance

V arµj∼N0,σ(Xj) = Eµj∼N0,σ(V arµj ,σ(Xj |µj)) + V arµj∼N0,σ(Eµj ,σ(Xj |µj)) = σ2 + σ2
0

Empirical Bayes Estimator Similarly to the work An introduction to Empirical Bayes Data Analysis [George Casella,
1985], we can construct an estimate for µ̃j at (1.1), denote X̄ = 1

m

∑m
j=1Xj

Proposition 1.2. Eµ∼N0,σ[
σ2+σ2

0∑m
j=1(Xj−X̄)2

] = 1
m−3

Proof. Notice that the expectation is over the marginal of Xj and thus, the Xj’s are i.i.d which means the expectation is of
an inverse-chi-squared distribution with m− 1 degrees of freedom.

An immediate corollaries of 1.2 are:

Corollary 1.2.1. Eµ∼N0,σ[
(m−3)σ2∑m

j=1(Xj−X̄)2
] = σ2

σ2+σ2
0

Corollary 1.2.2. An Empirical Bayes Estimator is

ϕEB(X⃗, σ) =
(m− 3)σ2∑m
j=1(Xj − X̄)2

X̄1+
[
1− (m− 3)σ2∑m

j=1(Xj − X̄)2

]
X⃗

2 PROOFS

2.1 THEOREM 2.2 (CASELLA, 1985’S THEOREM)

In the AWG model with a single worker and m > 3 questions,

Rµ⃗,σ(ϕ
σ
EB) < Rµ⃗,σ(ϕI) for all µ⃗ ∈ Rm, σ ∈ R+. (1)

Proof. Denote B̂ = (m−3)σ2

S2(X⃗)

Rµ⃗,σ(ϕEB) = Eµ⃗,σ[∥X̄ + (1− B̂)(X − X̄)− µ∥2]
= Σmj=1Eµ⃗,σ[(X̄ + (1− B̂)(Xj − X̄)− µj)

2]

= Σmj=1Eµ⃗,σ[(Xj − µj − B̂(Xj − X̄))2]

= Σmj=1Eµ⃗,σ[(Xj − µj)
2]− 2Eµ⃗,σ[B̂(Xj − µj)(Xj − X̄)] + Eµ⃗,σ[(B̂(Xj − X̄))2]

= Rµ⃗,σ(ϕI)− [Σmj=12Eµ⃗,σ[B̂(Xj − µj)(Xj − X̄)]] + σ4(m− 3)2Eµ⃗,σ[
1

S2(X⃗)
]



Lemma 2.1. Stein’s Lemma:
Let X ∼ N(µ, σ2) and Let g(X) be a function for which Eµ⃗,σ[g(X)(X − µ)] and Eµ⃗,σ[

d
dxg(X)] both exist, then

Eµ⃗,σ[g(X)(X − µ)] = σ2Eµ⃗,σ[
d
dxg(X)]

We now focus on the mixed term:
Denote g(Xj) =

Xj−X̄
S2(X⃗)

Eµ⃗,σ[B̂(Xj − µj)(Xj − X̄)] = σ2(m− 3)Eµ⃗,σ[
Xj − X̄

S2(X⃗)
(Xj − µj)]

= σ2(m− 3)Eµ⃗,σ[Eµ⃗,σ[
Xj − X̄

S2(X⃗)
(Xj − µj)|X1, . . . , Xj−1, Xj+1, . . . , Xm]]

= σ2(m− 3)Eµ⃗,σ[Eµ⃗,σ[g(Xj)(Xj − µj)|X1, . . . , Xj−1, Xj+1, . . . , Xm]]

=stein σ
4(m− 3)Eµ⃗,σ[Eµ⃗,σ[

d

dXj
g(Xj)|X1, . . . , Xj−1, Xj+1, . . . , Xm]]

= σ4(m− 3)Eµ,σ[
d

dXj
g(Xj)]

d

dXj
g(Xj) =

(1− 1
m )S2(X⃗)− 2(Xj − X̄)2(

S2(X⃗)
)2

The mixed term can now be rewritten as follows:

−Σmj=12Eµ⃗,σ[B̂(Xj − µj)(Xj − X̄)] = −2σ4(m− 3)Eµ⃗,σ[
(1− 1

m )mS2(X⃗)− 2S2(X⃗)(
S2(X⃗)

)2 ]

= −2σ4(m− 3)2Eµ⃗,σ[
1

S2(X⃗)
]

Summing up everything:

Rµ⃗,σ(ϕEB) =

= Rµ⃗,σ(ϕI)− 2σ4(m− 3)2Eµ⃗,σ[
1

S2(X⃗)
] + σ4(m− 3)2Eµ⃗,σ[

1

S2(X⃗)
]

= Rµ⃗,σ(ϕI)− σ4(m− 3)2Eµ⃗,σ[
1

S2(X⃗)
] ∀m > 3

2.2 PROPOSITION 3.1

Aσ
B(X) is a sufficient statistic for µ⃗ = (µ1, .., µm) under Pµ⃗,σ⃗ .

Proof. Since the regularity conditions hold for a multiplication of independent normal distributions, to prove sufficiency by
the Fisher-Neyman factorization theorem, we only need to show that the model can be represented as a multiplication of a
function h̃ of the observations and a function g̃ of a sufficient statistic and the unknown parameter as follows:

P(µ1,..,µm,σ1,...,σn)(X11, .., Xnm) = Πmj=1Π
n
i=1Pµj ,σi

(Xij)

= Πmj=1Π
n
i=1

1

σi
√
2π
e
− 1

2σ2
i

(Xij−µj)
2

= Πmj=1[C · e
− 1

2

∑n
i=1

X2
ij

σ2
i ] ∗ [e

− 1
2µ

2
j

∑n
i=1

1

σ2
i

+µj

∑n
i=1

Xij

σ2
i ]

= Πmj=1h(X1j , .., Xnj)g(δj(X), µj)

= h̃(X11, .., Xnm)g̃(δ(X), µ)

where C is a constant.



2.3 THEOREM 4.1

For any unbiased algorithm A, and m > 3,1

Rµ⃗(EBψA) < Rµ⃗(A) for all µ⃗ ∈ Rm

if and only if

2(m− 3)Σmj=1Cov
(
XA
j ,
ψ(X)(XA

j − X̄A)

∥X⃗A − X̄A1⃗∥2
)
− (m− 3)2Eµ⃗

( (ψ(X))2

∥X⃗A − X̄A1⃗∥2
)
> 0. (2)

For convenience we denote X⃗ = X⃗A

Proof.

Rµ⃗(EBψA) = Eµ⃗[∥X̄ + (1− ασ̂2

S2(X⃗)
)(X − X̄)− µ∥2]

= Eµ⃗[∥(X − µ)∥2]− 2Eµ⃗[
ασ̂2

S2(X⃗)
(X − µ)T (X − X̄)] + Eµ⃗[(∥

ασ̂2

S2(X⃗)
(X − X̄)∥2]

= Rµ⃗(A)− 2αEµ⃗[
σ̂2

S2(X⃗)
(X − µ)T (X − X̄)] + α2Eµ⃗[

σ̂4

S2(X⃗)
]

Focusing on the mixed term:

Eµ⃗[
σ̂2

S2(X⃗)
(X − µ)T (X − X̄)] =

m∑
i=1

Eµ⃗[
σ̂2

S2(X⃗)
(Xj − µj)(Xj − X̄)]

=Eµ⃗(Xj)=µj

m∑
i=1

Cov
(
Xj − µj ,

σ̂2(Xj − X̄)

S2(X⃗)

)
=

m∑
i=1

Cov
(
Xj ,

σ̂2(Xj − X̄)

S2(X⃗)

)
Therefore we get:

Rµ⃗(A)−Rµ⃗(EBψA) = 2α

m∑
i=1

Cov
(
Xj ,

σ̂2(Xj − X̄)

S2(X⃗)

)
− α2Eµ⃗[

σ̂4

S2(X⃗)
]

2.4 PROPOSITION 4.2

Denote ψ(X) = σ̂2

Choosing α∗ =
Σm

j=1Cov

(
XA

j ,
σ̂2(Xj−X̄)

S2(X⃗A)

)
Eµ⃗

(
σ̂4

S2(X⃗A)

) minimizes Rµ⃗(EBψA).

Proof. Denote C := Cov
(
XA
j ,

σ̂2(XA
j −X̄A)

S2(X⃗A)

)
and E := Eµ⃗

(
σ̂4

S2(X⃗A)

)
. Then from Theorem 4.1 We wish to maximize the

parabola 2αC − α2E which can be easily shown to maximized at α∗ = C
E .

1Since in this subsection we do not assume that the distribution of X follows the AWG model, we do not need a parameter for the
individual competence. Other than that, all definitions remain the same.



2.5 THEOREM 4.3

Denote ψ(X⃗) = σ̂2 as an estimator of σ2.

Rµ⃗,σ⃗(EBψA) = Rµ⃗,σ⃗(A)+
(m− 3)2

m− 1

(
Eµ⃗,σ⃗[

(ψ(X⃗A))2

S2(X⃗A)
]−2σ2

[
Eµ⃗,σ⃗[

ψ(X⃗A)

S2(X⃗A)
]+Eµ⃗,σ⃗

[Σmj=1
dψ(X⃗A)

dXA
j

(XA
j − X̄A)

(m− 3)S2(X⃗A)

]])
(3)

For convenience we denote X⃗ = X⃗A

Proof. Denote g(X) =
σ̂2(Xj−X̄)

S2(X⃗)

Rµ⃗,σ⃗(EBψA) = Eµ⃗,σ⃗[∥X̄ + (1− B̂)(X − X̄)− µ∥2]
= Σmj=1Eµ⃗,σ⃗[(Xj − µj)

2]− 2Eµ⃗,σ⃗[B̂(Xj − µj)(Xj − X̄)] + Eµ⃗,σ⃗[(B̂(Xj − X̄))2]

= Rµ⃗,σ⃗(A)− 2(m− 3)[Σmj=1Eµ⃗,σ⃗[
σ̂2(Xj − µj)(Xj − X̄)

S2(X⃗)
]] + (m− 3)2Eµ⃗,σ⃗[

σ̂4

S2(X⃗)
]

Eµ⃗,σ⃗[
σ̂2(Xj − µj)(Xj − X̄)

S2(X⃗)
] = Eµ⃗,σ⃗[g(X)(Xj − µj)]

=stein σ
2Eµ⃗,σ⃗[

d

dXj
g(X)]

d

dXj
g(X) =

d

dXj

σ̂2(Xj − X̄)

S2(X⃗)

=
[(1− 1

m )σ̂2 + dσ̂2

dXj
(Xj − X̄)]S2(X⃗)− 2σ̂2(Xj − X̄)2

S4

=
σ̂2[(1− 1

m )S2(X⃗)− 2(Xj − X̄)2] + dσ̂2

dXj
(Xj − X̄)S2(X⃗)(

S2(X⃗)
)2

Σmj=1Eµ⃗,σ⃗[
σ̂2(Xj − µj)(Xj − X̄)

S2(X⃗)
] = σ2(Eµ⃗,σ⃗[σ̂

2Σmj=1

(1− 1
m )S2(X⃗)− 2(Xj − X̄)2(

S2(X⃗)
)2 ]

+ Eµ⃗,σ⃗[
S2(X⃗)Σmj=1

dσ̂2

dXj
(Xj − X̄)(

S2(X⃗)
)2 ])

= σ2[(m− 3)Eµ⃗,σ⃗[
σ̂2

S2(X⃗)
] + Eµ⃗,σ⃗[

Σmj=1
dσ̂2

dXj
(Xj − X̄)

S2(X⃗)
]]

Also mind that:

Eµ⃗,σ⃗[
σ̂2(X − µ)T (X − X̄)

S2(X⃗)
] = cov(σ̂2,

(X − µ)T (X − X̄)

S2(X⃗)
) + Eµ⃗,σ⃗[σ̂

2]Eµ⃗,σ⃗(
(X − µ)T (X − X̄)

S2(X⃗)
]

=stein cov(σ̂
2,

(X − µ)T (X − X̄)

S2(X⃗)
) + (m− 3)σ2Eµ⃗,σ⃗[σ̂

2]Eµ⃗,σ⃗[
1

S2(X⃗)
]

Eµ⃗,σ⃗[
σ̂2

S2(X⃗)
] = cov(σ̂2,

1

S2(X⃗)
) + Eµ⃗,σ⃗[σ̂

2]Eµ⃗,σ⃗[
1

S2(X⃗)
]



And therefore we get that:

σ2Eµ⃗,σ⃗[
Σmj=1

dσ̂2

dXj
(Xj − X̄)

S2(X⃗)
]] = cov(σ̂2,

(X − µ)T (X − X̄)

S2(X⃗)
)

+ (m− 3)σ2Eµ⃗,σ⃗[σ̂
2]Eµ⃗,σ⃗[

1

S2(X⃗)
]− σ2(m− 3)Eµ⃗,σ⃗[

σ̂2

S2(X⃗)
]

= cov(σ̂2,
(X − µ)T (X − X̄)

S2(X⃗)
)

+ (m− 3)σ2Eµ⃗,σ⃗[σ̂
2]Eµ⃗,σ⃗[

1

S2(X⃗)
]− σ2(m− 3)(cov(σ̂2,

1

S2(X⃗)
) + Eµ⃗,σ⃗[σ̂

2]Eµ⃗,σ⃗[
1

S2(X⃗)
])

= cov(σ̂2,
(X − µ)T (X − X̄)

S2(X⃗)
)− σ2(m− 3)(cov(σ̂2,

1

S2(X⃗)
))

= cov(σ̂2,
(X − µ)T (X − X̄)− σ2(m− 3)

S2(X⃗)
)

Plugging everything:

Rµ⃗,σ⃗(µ̂, µ) = Rµ⃗,σ⃗(A)− 2σ2(m− 3)
(
(m− 3)Eµ⃗,σ⃗[

σ̂2

S2(X⃗)
] + Eµ⃗,σ⃗

[Σmj=1
dσ̂2

dXj
(Xj − X̄)

S2(X⃗)

])
+ (m− 3)2Eµ⃗,σ⃗[

σ̂4

S2(X⃗)
]

= Rµ⃗,σ⃗(A) + (m− 3)2
(
Eµ⃗,σ⃗[

σ̂4

S2(X⃗)
]− 2σ2

[
Eµ⃗,σ⃗[

σ̂2

S2(X⃗)
] + Eµ⃗,σ⃗[

Σmj=1
dσ̂2

dXj
(Xj − X̄)

(m− 3)S2(X⃗)
]
])

= Rµ⃗,σ⃗(A) + (m− 3)2(Eµ⃗,σ⃗[
σ̂4

S2(X⃗)
]− 2σ2Eµ⃗,σ⃗[

σ̂2

S2(X⃗)
])

− 2(m− 3)cov
(
σ̂2,

(X − µ)T (X − X̄)− σ2(m− 3)

S2(X⃗)

)

Denote by Ȳ := 1
m

∑
j Yj and S2(Y ) := 1

m−1

∑
j(Yj − Ȳ )2 its mean and its sample variance, respectively which yields

the result.

2.6 COROLLARY 4.3.2

Under the Normal model, if ψ is mean-adjusted then

Rµ⃗,σ⃗(EBψA) < Rµ⃗,σ⃗(A)

+
(m− 3)2

m− 1
(Eµ⃗,σ⃗[

(ψ(X⃗A))2

S2(X⃗A)
]− 2σ2Eµ⃗,σ⃗[

ψ(X⃗A)

S2(X⃗A)
])

Proof. From theorem 4.3:

Rµ⃗,σ⃗(EBψA) = Rµ⃗,σ⃗(A) +
(m− 3)2

m− 1

(
Eµ⃗,σ⃗[

(ψ(X⃗A))2

S2(X⃗A)
]− 2σ2

[
Eµ⃗,σ⃗[

ψ(X⃗A)

S2(X⃗A)
] + Eµ⃗,σ⃗

[Σmj=1
dψ(X⃗A)

dXA
j

(XA
j − X̄A)

(m− 3)S2(X⃗A)

]])



Under the assumptions made it is easy to see that:

Eµ⃗,σ⃗
[Σmj=1

dψ(X⃗A)

dXA
j

(XA
j − X̄A)

(m− 3)S2(X⃗A)

]]
= Eµ⃗,σ⃗

[Σmj=1
dψ(X⃗A)

dXA
j

(XA
j − X̄A)

(m− 3)S2(X⃗A)

]
1XA

j ≤X̄A

]

+ Eµ⃗,σ⃗
[Σmj=1

dψ(X⃗A)

dXA
j

(XA
j − X̄A)

(m− 3)S2(X⃗A)

]
1XA

j >X̄
A

]
> 0

And the result immediately follows.

2.7 ADDITIONAL COROLLARIES

Corollary 2.1.1. If σ̂2 is independent of XA
j (

dσ̂2

dXA
j

= 0) ∀j then directly from Theorem 4.3 we get that:

Rµ⃗,σ⃗(EBψA) = Rµ⃗,σ⃗(A) + Eµ⃗,σ⃗[
1

S2(X⃗A)
](m− 3)2(Eµ⃗,σ⃗[σ̂

4]− 2σ2Eµ⃗,σ⃗[σ̂
2])

and Rµ⃗,σ⃗(EBψA) < Rµ⃗,σ⃗(A) if

Eµ⃗,σ⃗[σ̂
4]

Eµ⃗,σ⃗[σ̂2]
< 2σ2 (4)

Corollary 2.1.2. Assume σ̂2 is independent of Xj ∀j and that ∃ϵ > 0 |σ̂2 − σ2| < ϵ w.p 1 then Rµ⃗,σ⃗(EBψA) < Rµ⃗,σ⃗(A) if

ϵ ∈ (0, σ2) (5)

Proof. From corollary 2.1.1, we found that Eµ⃗,σ⃗[σ̂4] < 2σ2Eµ⃗,σ⃗[σ̂
2] and therefore:

Eµ⃗,σ⃗[σ̂
4] < (σ2 + ϵ)Eµ⃗,σ⃗[σ̂

2] < 2σ2Eµ⃗,σ⃗[σ̂
2]

(σ2 + ϵ) < 2σ2

0 < ϵ < σ2

Corollary 2.1.3. Assume σ̂2 is independent of Xj ∀j and that ∃ϵ > 0 |σ̂2 − σ2| < ϵ w.p δ and ∃B s.t σ̂2 < B w.p 1 then
Rµ⃗,σ⃗(EBψA) < Rµ⃗,σ⃗(A) ∀µ ∈ Rm,m > 3 if{

B < δ
1−δσ

4

ϵ ∈
(
0,−2σ2 +

√
5σ4 +B(1− 1

δ )
) (6)

We know from corollary 2.1.1, under the norml model, when the competence estimator is independent of the observations
X , then EBE dominates BLUE if Eµ⃗,σ⃗[σ̂4] < 2σ2Eµ⃗,σ⃗[σ̂

2].

Denote the event G = {|σ2 − σ̂2| < ϵ}

Eµ⃗,σ⃗[σ̂
4] = Eµ⃗,σ⃗[σ̂

4|G]δ + Eµ⃗,σ⃗[σ̂
4|Gc](1− δ)

≤ (σ2 + ϵ)2δ +B(1− δ)

2σ2Eµ⃗,σ⃗[σ̂
2] = 2σ2Eµ⃗,σ⃗[σ̂

2|G]δ + 2σ2Eµ⃗,σ⃗[σ̂
2|Gc]

> 2σ2(σ2 − ϵ)δ



Figure 1: EBE for 5 aggregated workers with biased σ̂2 vs BLUE; each data point is a 100,000 iteration average, each iteration includes new GT and new workers’ responses

Therefore it is sufficient to require that:

(σ2 + ϵ)2δ +B(1− δ) < 2σ2(σ2 − ϵ)δ

0 < −ϵ2 − 4ϵσ2 + σ4 +B(1− 1

δ
)

Which is a parabola of ϵ with roots ϵ = −2σ2 ±
√
5σ4 +B(1− 1

δ ). Notice that B(1− 1
δ ) < 0 and thus, we require that

2σ2 <
√

5σ4 +B(1− 1
δ ) with simple algebra we derive the following conditions:{

B < δ
1−δσ

4

ϵ ∈
(
0,−2σ2 +

√
5σ4 +B(1− 1

δ )
)

Notice when δ −→ 1 we get that ϵ ∈ (0, σ2(
√
5− 2)), this upper bound is less than one forth of the case when δ = 1, this

stricter result is due to the bounds we had to use to derive it.

3 DETERMINISTIC ESTIMATORS FOR MULTIPLE WORKERS

On this model we assume some oracle guessed and told us all of the different σ̂2
i and thus, we treat them as constants (i.e.

independent of the data X), we would like to know how close the oracle has to be to the actual competences such that EBE
would still have lower risk than estimated BLUE by some algorithm A, i.e Rµ⃗,σ⃗(EBψA) < Rµ⃗,σ⃗(A).

Let Xij ∼ N (µj , σ
2
i ) i = 1, .., n j = 1, ..,m and denote σ̂2

i as an estimator which was somehow estimated for σ2
i ,∀i.

Notice that the BLUE estimator (BLUE-aggregated worker) for µj is:

X̂A
j = (Σni=1

1

σ̂2
i

)−1Σni=1

Xij

σ̂2
i

Then, notice that X̂A
j is a linear combination of independent normal random variables therefore normal, i.e, X̂j ∼ N(µj , σ

2)
where:

Eµ⃗,σ⃗(X̂
A
j ) = Eµ⃗,σ⃗((Σ

n
i=1

1

σ̂2
i

)−1Σni=1

Xij

σ̂2
i

) = µj

V arµ⃗,σ⃗(X̂
A
j ) = (Σni=1

1

σ̂2
i

)−2Σni=1

σ2

σ̂4
i

Therefore, we can reduce this case to the case of single worker where:

σ̂2 = (Σni=1

1

σ̂2
i

)−2Σni=1

σ̂2
i

σ̂4
i

= (Σni=1

1

σ̂2
i

)−1

Rµ⃗,σ⃗(EBψA)j =
ˆ̄XA + [1− (m− 3)σ̂2

S2(X⃗A)
](X̂A

j − ˆ̄XA)

S2(X⃗A) =

m∑
j=1

(X̂A
j − ˆ̄XA)2



Proposition 3.1. Under the Oracle model Rµ⃗,σ⃗(EBψA) < Rµ⃗,σ⃗(A) ∀µ ∈ Rm,m > 3 if:

σ̂2 < 2σ2 (7)

Proof. Since we assumed an Oracle model (constant guesses of σ2) and showed that X̂A is following a normal distribution
applying corollary 2.1.1 yields the result.
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