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A PROOF OF THEOREM 3.2

We begin by recalling properties of the measures EA,µ and
EA,µt introduced in Section 3. By Proposition 7.28 in Bert-
sekas and Shreve [1996], the measures PA,µt , t ∈ Z+, and
PA,µ satisfy the following properties (see also Proposition
V.1.1 of Neveu [1965]):

1. For every real-valued function q that is integrable on
(Ω1,F1,PA,µ1 ), we have∫

Ω1

q(h1)PA,µ1 (dh1) =

∫
[0,1]n

∫
D

∫
R

q(u, s, y)

×Qµ(dy|s)π1(ds|u)λ(du)

(12)

2. For every t > 1 and every integrable real-valued func-
tion q on (Ωt,Ft,PA,µt ), we have∫
Ωt

q(ht)PA,µt (dht)

=

∫
Ωt−1

∫
[0,1]n

∫
D

∫
R

q(ht−1, u, s, y)

×Qµ(dy|s)π1(ds|u)λ(du)PA,µt−1(dht−1).

(13)

3. For every t ∈ Z+ and every Borel subset A of Ωt, we
have PA,µt (A) = PA,µ(A× S × S × · · ·).

Next, suppose Assumption 2 holds, and let ρz,ν(·) denote
the Gaussian density on R with mean z ∈ R and standard
deviation ν > 0. Then, for every ζ ∈ Rf and s ∈ D, the
measure Qζ(·|s) is a Gaussian measure on R having density

ρgζ(s),σ(·) w.r.t. the Lebesgue measure on R. Consequently,
for every ζ ∈ Rf and s ∈ D, the measures Qζ(·|s) and
Qµ(·|s) are mutually absolutely continuous, and

dQµ(·|s)
dQζ(·|s)

∣∣∣∣
y

=
ρgµ(s),σ(y)

ρgζ(s),σ(y)
. (14)

We are now ready to begin the proof of Theorem 3.2.

Proof of Theorem 3.2 Consider an alternative reward
model given by ζ ∈ Altε(µ). For each t ∈ Z+, define

the log-likelihood ratio Lµ,ζt
def
= ln

dPA,µt

dPA,ζt

, and note that

Lµ,ζt is a random variable on (Ωt,Ft,PA,µt ). It is now easy
to see from (12), (13) and (14) that, for each t ∈ Z+ and
each ht = {(si, yi, ui)}ti=1 ∈ Ωt, we have

Lµ,ζt (ht) =

t∑
i=1

[ln ρgµ(si),σ(yi)− ln ρgζ(si),σ(yi)]. (15)

Next, define the event Eµ def
= {arg maxs∈D gµ(s) ⊆

F(hτ ) ⊆ Oε(µ)}, and note that Eµ is contained in the
σ-algebra Fτ generated by the stopping time τ . It follows
from Lemma 19 of Kaufmann et al. [2016] that

EA,µ(Lµ,ζτ ) ≥ kl(PA,µ(Eµ),PA,ζ(Eµ)), (16)

where kl(ν1, ν2) is the KL-divergence between two
Bernoulli distributions having parameters ν1, ν2 ∈ [0, 1].

Next, define the event Eζ by replacing µ in the defini-
tion of Eµ with ζ. Since A is a (ε, δ)-PAC algorithm, we
have PA,µ(Eµ) ≥ 1 − δ and PA,ζ(Eζ) ≥ 1 − δ. By our
choice of ζ, we have Eµ ∩ Eζ ⊆ {F(hτ ) ⊆ Oε(µ) ∩
Oε(ζ)} = ∅. As a result, we infer that PA,ζ(Eµ) < δ.
Monotonicity properties of the KL divergence now im-
ply that kl(PA,µ(Eµ),PA,ζ(Eµ)) ≥ kl(δ, 1 − δ) By in-
equality (3) in Kaufmann et al. [2016], we further have
kl(δ, 1− δ) ≥ ln(1/2.4δ). Using this in (16), we get

EA,µ(Lµ,ζτ ) ≥ ln

(
1

2.4δ

)
. (17)
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Combining (17) with (18) from Lemma A.1 below yields

1

2σ2
EA,µ(τ)‖gµ − gζ‖2∞≥ ln

(
1

2.4δ

)
.

Inequality (2) now follows by taking an infimum over ζ ∈
Altε(µ) on the left hand side in the inequality above and
rearranging the resulting inequality. �

Lemma A.1. Let algorithm A and µ, ζ ∈ Rf be as in the
proof of Theorem (4.2). Suppose {Lµ,ζt }∞t=1 is defined as
in (15), and let τ be a stopping time with respect to the
filtration {Ft}∞t=0. Then we have

EA,µ(Lµ,ζτ ) ≤ 1

2σ2
EA,µ(τ)‖gµ − gζ‖2∞. (18)

Proof. For each t ∈ Z+, denote `t = ln ρgµ(st),σ(yt) −
ln ρgζ(st),σ(yt), and let Gt denote the σ-algebra on Ω gen-
erated by (ht−1, ut, st). Note that, for each t ∈ Z+, `t is a
Ft-measurable random variable, while Ft−1 ⊆ Gt ⊆ Ft.

Next, define the process {Mt}∞t=0 by M0 = 0 and Mt =∑t
i=1[`i − EA,µ(`i|Gi)] for each t ∈ Z+. The inclusions

Ft−1 ⊆ Gt ⊆ Ft along with the tower property of con-
ditional expectations show that the process {Mt}∞t=0 is
adapted to the filtration {Ft}∞t=0 and is a martingale un-
der the measure PA,µ. The optional stopping theorem now
implies that EA,µ(Mτ ) = EA,µ(M0) = 0. This immedi-
ately yields

EA,µ
[

τ∑
i=1

`i

]
= EA,µ

[
τ∑
i=1

EA,µ(`i|Gi)

]
. (19)

Substituting the expression for a Gaussian density in the
expression for `i yields 2σ2`i = 2yi[gµ(si) − gζ(si)] +
[gζ(si)]

2 − [gµ(si)]
2 for each i ∈ Z+. Using the fact that

EA,µ(yi) = gµ(si) gives 2σ2EA,µ(`i|Gi) = [gζ(si) −
gµ(si)]

2 ≤ maxs∈D[gµ(s)− gζ(s)]2 for each i ∈ Z+. Us-
ing the last inequality in (19) and recognizing the left hand
side of (19) to be EA,µ(Lµ,ζτ ) yields (18).

B PROOFS FOR SUBSECTIONS 4.1 AND
4.3

Proof of Proposition 4.1. Choose s∗ ∈ arg maxs∈D q(s),
and consider s ∈ D′. We have q(s∗) ≤ q̂(s∗) + ε

4 ≤
q̂(ŝ) + ε

4 ≤ q̂(s) + 3ε
4 ≤ q(s) + ε, where the first and last

inequalities follow from ‖q̂ − q‖∞≤ ε
4 , the second inequal-

ity follows from the definition of ŝ, and the third follows
from the definition of D′ and our choice s ∈ D′. We have
thus shown that every s ∈ D′ is ε-optimal for q.

Next, we have q̂(s∗) ≥ q(s∗) − ε
4 ≥ q(ŝ) − ε

4 ≥
q̂(ŝ) − ε

2 , where the first and the last inequalities follow

from ‖q̂ − q‖∞≤ ε
4 while the second inequality follows

from the fact that s∗ is a maximizer of q. We have thus
shown that s∗ ∈ D′. Since s∗ ∈ arg maxs∈D q(s) was
chosen arbitrarily, the last assertion of the result follows. �

Proof of Lemma 4.2. First, we recall a definition from the
theory of optimal designs. A design is a probability measure
on the Borel σ-algebra of D. Given a design ξ on D, we
denote Vξ =

∫
D φ(s)φT(s)ξ(ds). Note that the integral is

defined since D is compact and φ is continuous.

Next, suppose C = {φ(p1), . . . , φ(pm)} is a (L,m)-
volumetric spanner for some L > 0 and m ≥ f . Consider
the design ξ which places mass 1/m at each of the points
of C, and let X = [φ(p1), . . . , φ(pm)] ∈ Rf×m. Note that
XXT = mVξ.

By the definition of a (L,m)-volumetric spanner, we
have maxz∈φ(D)‖XT(XXT)−1z‖22≤ L2. A simple cal-
culation shows that, for each z ∈ φ(D), we have
‖XT(XXT)−1z‖22= zT(XXT)−1z = m−1zTVξz. The
Keifer-Wolfowitz theorem [Kiefer and Wolfowitz, 1960],
[Lattimore and Szepesvári, 2020, Thm. 21.1] implies that
maxz∈φ(D) x

TVξx ≥ f . Putting everything together, we
have L2 ≥ m−1 maxz∈φ(D) z

TVξz ≥ f/m. This com-
pletes the proof. �

C PROOF OF PROPOSITION 4.3

By way of preparation for the proof of Proposition 4.3,
we will find it convenient to rewrite (3) and (4) by group-
ing together observations made during each round. To this
end, let BL,m = [φ(p1), . . . , φ(pm)] ∈ Rf×m and, for
each j ∈ Z+, let ȳj = [y(j−1)m+1, . . . , yjm]T ∈ Rm and
η̄j = [η(j−1)m+1, . . . , ηjm]T ∈ Rm denote the vectors of
rewards and noise samples, respectively, encountered in the
jth round. The decision epoch at the end of k > 0 rounds is
t = km. In the notation of (3), we have

Xt = [BL,m|· · · |BL,m︸ ︷︷ ︸
k times

].

Equations (3)-(4) now become

µ̂km = (BL,mB
T
L,m)−1BL,m

1

k

k∑
j=1

ȳj

 ,(20)

µ̂km − µ = (BL,mB
T
L,m)−1BL,m

1

k

k∑
j=1

η̄j

 .(21)

The proof of the sub-Gaussian part of Proposition 4.3 es-
sentially applies to the right hand side of (21) the tail con-
centration inequality below for the norm of the average
of k random vectors having independent σ-sub-Gaussian
components. The proof is given later in this appendix.



Proposition C.1. Suppose ξ1, . . . , ξk are f -dimensional
random vectors such that the random variables {ξji : i =
1, . . . , f, j = 1, . . . , k} are independent and σ-sub Gaus-
sian. Let Sk =

(
ξ1 + · · ·+ ξk

)
. Then the following state-

ments hold.

1. exp
(
λ‖Sk‖22

)
is integrable for each λ ∈(

0, 1/2σ2k
)
.

2. For every ε > 0, we have P
(

1
k‖Sk‖2> ε

)
≤ β(k, ε),

where β is given by (7).

We are now ready to prove Proposition 4.3.

Proof of Proposition 4.3. First, suppose Assumption 1
holds. We have

‖gµ̂km − gµ‖∞= max
s∈D
|φT(s)(µ̂km − µ)|

= max
s∈D

∣∣∣∣φT(s)(BL,mB
T
L,m)−1BL,m

[
1

k
Sk

]∣∣∣∣ ,(22)

where Sk =
∑k
j=1 η̄

j , and the last equality uses (21). Since
the columns of BL.m form a (L,m)-volumetric spanner
for φ(D), it follows that ‖BT

L,m(BL,mB
T
L,m)−1φ(s)‖2≤

L for all s ∈ D. Using this fact along with the Cauchy-
Schwarz inequality in (22) gives ‖gµ̂km − gµ‖∞≤ L

k ‖Sk‖2.
The assertion of the proposition now follows immediately
from Proposition C.1. �

For proving Proposition C.1, we first recollect a few prelim-
inary results. Though these results are known, we state them
to make the constants explicit, and provide proofs for easy
reference.

Lemma C.2. Suppose X is σ-sub Gaussian for some σ >
0. If λ ∈ (0, 1/2σ2), then exp

(
λX2

)
is integrable, and

E
[
exp

(
λX2

)]
≤ 22σ2λ(1− 2σ2λ)−1.

Proof. Let λ ∈ (0, 1/2σ2). Since X is σ-sub Gaussian, we
have P (|X|> t) ≤ 2 exp

(
− t2

2σ2

)
for all t > 0 Next, note

that exp
(
λX2

)
≥ 1. Let s ≥ 1. Then

P
(
exp

(
λX2

)
> s
)

= P

(
|X|>

√
ln s

λ

)

≤ 2 exp

(
− 1

2σ2

ln s

λ

)
= 2s−

1
2σ2λ .

Thus, we conclude that

P
(
exp

(
λX2

)
> s
)
≤

{
1, if s ≤ 22σ2λ,

2s−
1

2σ2λ , if s > 22σ2λ.
(23)

Since 2σ2λ < 1, the integral
∫∞

0
P
(
exp

(
λx2

)
> s
)

ds

exists. Indeed, (23) implies that∫ ∞
0

P
(
exp

(
λx2

)
> s
)

ds

≤
∫ 22σ2λ

0

1ds+

∫ ∞
22σ2λ

2s−
1

2σ2λ ds

= 22σ2λ(1− 2σ2λ)−1.

Since exp
(
λx2

)
is a non-negative random variable, it fol-

lows that E
[
exp

(
λx2

)]
=
∫∞

0
P
(
exp

(
λx2

)
> s
)

ds, and
the result follows.

Lemma C.3. Suppose ζ is a random vector of dimension f
such that ζ1, . . . , ζf are independent σ-sub Gaussian ran-

dom variables. Then E
[
exp

(
λxTζ

)]
≤ exp

(
λ2‖x‖22σ

2

2

)
for all x ∈ Rf and λ ∈ R. Furthermore, if λ ∈ (0, 1/2σ2),
then exp

(
λ‖ζ‖22

)
is integrable, and E

[
exp

(
λ‖ζ‖22

)]
≤(

22σ2λ

1−2σ2λ

)f
.

Proof. By independence and σ-sub Gaussianity, we have

E
[
exp

(
λxTζ

)]
=

f∏
i=1

E [exp (λxiζi)]

≤
f∏
i=1

exp

(
λ2x2

iσ
2

2

)
= exp

(
λ2‖x‖22σ2

2

)
.

This proves the first assertion. To prove the second asser-
tion, let λ ∈

(
0, 1/2σ2

)
. By Lemma C.2, exp

(
λζ2
i

)
is

integrable for each i. Hence it follows by independence
that exp

(
λ‖ζ‖22

)
is also integrable, and E

[
exp

(
λ‖ζ‖22

)]
=∏f

i=1 E
[
exp

(
λζ2
i

)]
≤
(

22σ2λ

1−2σ2λ

)f
.

The next lemma, which we state without proof, is a condi-
tional version of the first part of Lemma C.3.

Lemma C.4. Suppose ζ is a random vector of dimension f
such that ζ1, . . . , ζf are independent, σ-sub Gaussian ran-
dom variables. Let Y be a G-measurable f -dimensional
random vector, where G is a σ-algebra such that ζ is inde-
pendent of G. Then

E
[
exp

(
λY Tζ

)
|G
]
≤ exp

(
λ2‖Y ‖22σ2

2

)
a.s.

The proof of Proposition C.1 follows next.

Proof of Proposition C.1. The ith component of Sk is a
sum of k independent σ-sub Gaussian random variables.
Applying the first part of Lemma C.3 with ζ =

[
ξ1
i , . . . , ξ

k
i

]
and x = [1, . . . , 1] lets us conclude that the ith element
of Sk is σ

√
k-sub Gaussian. Applying the second part of



Lemma C.3 with ζ = Sk shows that exp
(
λ‖Sk‖22

)
is inte-

grable for λ ∈
(
0, 1/2σ2k

)
. This proves the first assertion.

To prove the second statement, choose x ∈ Rf , and define
the process {Mj(x)}kj=0 by M0(x) = 1 and

Mj(x) = exp

(
xTSj − j

σ2

2
‖x‖22

)
, j = 1, . . . , k,

where Sj = ξ1 + · · · + ξj for each j. It follows from the
first part of Lemma C.3 that Mj(x) is integrable for each j.
Next, let Gj denote the σ-algebra generated by ξ1, . . . , ξj ,
with G0 denoting the trivial σ-algebra, and note that Mj(x)
is Fj-measurable. For each j = 1, . . . , k, we have

E [Mj(x)|Gj−1]

= E
[
Mj−1(x) exp

(
xTξj − σ2

2
‖x‖22

)∣∣∣∣Gj−1

]
= Mj−1(x)E

[
exp

(
xTξj − σ2

2
‖x‖22

)]
≤ Mj−1(x),

where the second equality follows from the Gj−1-
measurability of Mj−1(x) and the Gj−1-independence of
ξj (see Lemma C.4), while the last inequality follows by
applying the first part of Lemma C.3 with ζ = ξj . Thus,
{Mj(x)}kj=0 is a supermartingale with respect to the filtra-
tion {Gj}kj=0.

Next, define {M̄j}kj=0 by

M̄j =

(
kσ2

2π

)f/2 ∫
Rf
Mj(x) exp

(
−kσ2

2
xTx

)
dx,

(24)
and note that M̄0 = 1. Substituting for Mj(x) in (24),
completing the square in the exponent and rearranging terms
yields

M̄j =

[(
k

(j + k)

) f
2

exp

(
‖Sj‖22

2(j + k)σ2

)]
× J, (25)

where J is the integral over x of the F -dimensional Gaus-
sian density over x with mean [(j + k)σ2]−1Sj and covari-
ance matrix [(j + k)σ2]−1I , with I denoting the f × f
identity matrix. Thus, J evaluates to 1. Next, Sj is a random
vector with independent σ

√
j-sub Gaussian components.

Also, 1
2(j+k)σ2 <

1
2jσ2 . Hence, by Lemma C.3, M̄j is inte-

grable. In addition, it follows from Lemma 20.3 in Lattimore
and Szepesvári [2020] that {M̄j}kj=1 is a submartingale.

Letting j = k in (25) gives M̄k = 2−
f
2 exp(

‖Sk‖22
4kσ2 ). By

Ville’s maximal inequality (see Theorem 3.9 in Lattimore

and Szepesvári [2020]), we have

P (‖Sk‖2> ε) = P
(
M̄k >

1

2f/2
exp

(
ε2

4kσ2

))
≤ P

(
max
j
M̄j >

1

2f/2
exp

(
ε2

4kσ2

))
≤

E
[
M̄0

]
1

2f/2
exp

(
ε2

4kσ2

)
= 2f/2 exp

(
−ε2

4kσ2

)
.

Replacing ε by kε in the last inequality completes the proof
of the second assertion. �

D PROOF OF PROPOSITION 5.1

The proof of Proposition 5.1 uses the following lemma.

Lemma D.1. Let s ∈ [pmin, pmax] and suppose
p1, . . . , pf ∈ [pmin, pmax] are such that pi 6= pj for all
i 6= j. Then c1, . . . , cn+1 ∈ R satisfy

c1φ(p1) + · · ·+ cn+1φ(pf ) = φ(s) (26)

if and only if ci = li(s,p) for each i = 1, . . . , f where
p = [p1, . . . , pf ]T, and li(·,p) is the ith Lagrange basis
polynomial for the points {p1, p2, . . . , pf} given by

li(s,p)
def
=

∏
j 6=i

(s− pj)∏
j 6=i

(pi − pj)
. (27)

Proof. Equation (26) may be rewritten as

V (p)c(s) = φ(s), (28)

where V (p)
def
= [φ(p1), . . . , φ(pf )] ∈ Rf×f . Note that

V (p) is a Vandermonde matrix, and its determinant is given
by (see Fact 7.18.5 from Bernstein [2018])

det(V (p)) =
∏

1≤i<j≤f

(pj − pi), (29)

The determinant of V (p) in (29) is nonzero since pi 6=
pj for j 6= i. Equation (28) thus has a unique solution.
Applying Cramer’s rule (see Fact 3.16.12 from Bernstein
[2018]) gives this solution to be

ci =
det(V (psi ))

det(V (p))
(30)

where psi is the vector obtained by replacing the ith element
of p by s. Using (29) to expand the determinants of the two
Vandermonde matrices in (30) and canceling common terms
gives ci = li(s,p).



The proof of Proposition 5.1 follows.

Proof of Proposition 5.1. To show 1) implies 2), suppose
p1, . . . , pf ∈ D are (1, f)-volumetric points for the pair
(φ,D). Choose s ∈ D = [pmin, pmax] arbitrarily. Apply-
ing the definition of (1, f)-volumetric points, it follows
that there exist c1, . . . , cf ∈ R such that c1φ(p1) + · · · +
cfφ(pf ) = φ(s) and c21 + . . . + c2f ≤ 1. Clearly, |ci|≤ 1
for all i = 1, . . . , f . Since s ∈ D was chosen arbitrarily, it
follows that {φ(p1), . . . , φ(pf )} is a barycentric spanner for
φ(D) (see Amballa et al. [2021] for a definition). Theorem
1 of Amballa et al. [2021] now implies that 2) holds.

To prove that 2) implies 1), suppose pmin = p1 ≤ p2 ≤
· · · ≤ pf = pmax satisfy (11). Define p as in Lemma D.1.
The Lagrange polynomials defined in Lemma D.1 satisfy

li(pi,p) = 1, i = 1, . . . , f, (31)
li(pj ,p) = 0, i, j = i = 1, . . . , f, i 6= j, (32)

dli
ds

(pi,p) = 0, i = 2, . . . , f − 1, (33)

dl1
ds

(p1,p) < 0 <
dlf
ds

(pf ,p). (34)

Equations (31), (32) and the inequalities in (34) follow
by substituting appropriate values for s in (27), while (33)
follows by differentiating (27) with respect to s, substituting
appropriately for s, and then using (11).

Next, define the functionG : D → R byG(s)
def
= l21(s,p)+

· · ·+ l2f (s,p)−1. We claim that G(s) ≤ 0 for all s ∈ D. In
light of Lemma D.1 and the definition of (1, f)-volumetric
points, our claim implies that 1) holds. Hence, to complete
the proof, it is sufficient to prove our claim.

To prove our claim, note that G is a polynomial of degree
2(f − 1). Also, we observe from (31), (33) and (34) that p1

and pf are roots of G of multiplicity 1, while each pi is a
root of G of multiplicity at least 2 for i 6= 1, f . Thus, the
polynomial H(s)

def
= (s−p1)(s−p2)2 · · · (s−pf−1)2(s−

pf ) divides G. Since H also clearly has degree 2(f − 1), it
follows that there exists K ∈ R such that G(s) = KH(s)
for all s ∈ D. The value of K may be computed as K =
G′(p1)
H′(p1) , where ′ indicates the derivative. It is easy to use

(31) and (32) to verify that G′(p1) = 2dl1
ds (p1,p), which is

negative by (34). An easy calculation also yields H ′(p1) =
(p1−p2)2 · · · (p1−pf−1)2(p1−pf ) which is negative since
p1 < pf . These arguments show that K > 0. Our claim
now follows by noting thatH takes only non-positive values
on D. This completes the proof. �



E ALGORITHM 2

Algorithm 1 VSBAI-Poly: Best Arm Identification for Poly-
nomial Rewards

1: Input: ε > 0, δ ∈ (0, 1), sub-Gaussianity parameter σ,
(1, f)-volumetric points p1, . . . , pf for (φ,D)

2: Set B1,f = [φ(p1), . . . , φ(pf )]
3: Initialize k ← 1, r ← 0
4: Set STOP = False
5: while STOP==False do
6: ȳk = []
7: for t = 1, . . . , f do
8: y(k−1)m+t = gµ(pt) + ηt
9: ȳk ← [(ȳk)T; y(k−1)f+t]

T

10: end for
11: r = r + ȳk

12: if β(k, ε
4L ) < δ then

13: STOP = True
14: else
15: k = k + 1
16: end if
17: end while
18: τ∗ = kd
19: µ̂τ∗ = 1

kB1,f
−Tr

20: ŝ = global_optimizer(µ̂τ∗ , pmin, pmax)
21: Dτ∗ = get_dtau(µ̂τ∗ , ŝ, pmin, pmax, ε)
22: Output: Dτ∗

23: Function global_optimizer(µ̂τ∗ , pmin, pmax)
24: µ̂

′

τ∗ = differentiate(µ̂τ∗ )
25: roots = find_roots(µ̂

′

τ∗ )
26: roots.add(pmin, pmax)
27: values = gµ̂τ∗ (roots)
28: opt_value = argmax(values)
29: return opt_value

30: Function get_dtau(µ̂τ∗ , ŝ, pmin, pmax, ε)
31: d_tau = []
32: find_roots(gµ̂τ∗ (s)− gµ̂τ∗ (ŝ) + ε/2)
33: roots.add(pmin, pmax)
34: roots = sort(roots)
35: root_left = get_closest_left_root_to_ŝ(roots, ŝ)
36: root_right = get_closest_right_root_to_ŝ(roots, ŝ)
37: d_tau.add(root_left, root_right)
38: d_tau.add(every_pair_to_the_left_of_root_left)
39: d_tau.add(every_pair_to_the_right_of_root_right)
40: return d_tau



F MULTI-ARM SETTING
CONFIGURATIONS
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Figure 3: 10 arm setting when the angles φ of the arms (3
to 10) are sampled from N (0, .09). (ε, δ) = (0.1, 0.05) for
the VSBAI algorithm
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Figure 4: 10 arm setting when the angles φ of the arms
(3 to 10þ) are sampled uniformly from [0, 0.1]. (ε, δ) =
(0.1, 0.05) for the VSBAI algorithm



G OTHER EXPERIMENTS

We consider the setting outlined in subsection 6.1 and
present results for a different configuration of the problem
instances. We first note that the implementation of the base-
line algorithms presented in Fiez et al. [2019], Jedra and
Proutiere [2020a], and Soare et al. [2014] for the setting in
subsection 6.1 is true when the angles φi for i = 3, . . . , n
are sampled from a uniform distribution [0, 0.1] rather than
a Gaussian distribution as in subsection 6.1. We therefore
present experimental results for this uniform setting and
provide a comparison of sample complexity and run time
as in subsection 6.1. Note that we are able reproduce the
results reported in Jedra and Proutiere [2020b] (see Table 2
and Table 3 of Jedra and Proutiere [2020b]).

We observe from tables 3 that the sample complexity of
VSBAI is greater than the other baselines. However, we
argue that the instances generated in this setting are simple
and in situations where it is difficult to separate out the
best-arm from the next best (like when the angles φi of the
arms are sampled from Gaussian Gaussian setting in 6.1),
all these baselines suffer from huge sample complexities
and run-times. In other words VSBAI is independent of
the way the instances are generated but on the other hand
all the other baselines are not robust, hence can potentially
perform badly in adversarial environments. Table 4 gives
a comparison of the run-times for this setting. The results
shown are obtained after averaging over 20 seeds.



Algorithm LazyTS Rage Oracle VSBAI
Arms Mean Std Mean Std Mean Std Mean Std

10 335.1 22.71 524.1 33.84 347.1 32.22 47693.4 105.32
20 423.05 28.92 683.05 92.07 356.15 32.31 47424.1 41.32

100 421.75 32.11 1038.75 148.01 426.4 39.76 47271.4 13.49
1000 419.65 28.43 1152.7 50.23 476.45 40.74 47222.7 1.27
2500 446.15 29.06 1447.3 150.46 481.8 41.33 47219.8 0.37
5000 431.65 32.23 1546.9 160.17 510.05 48.87 47219.9 0.41

Table 3: Expected sample complexity for the setting described in Appendix G

Algorithm LazyTS Rage Oracle VSBAI
Arms Mean Std Mean Std Mean Std Mean Std

10 0.27 0.01 0.05 0.001 0.001 0.0 1.30 0.02
20 0.33 0.02 0.06 0.00 0.001 0.00 1.39 0.04
100 0.39 0.02 1.09 0.07 0.02 0.00 1.41 0.04

1000 34.78 1.06 27.61 0.33 0.69 0.02 1.44 0.04
2500 211.24 8.22 335.82 2.46 0.65 0.02 1.56 0.04
5000 422.35 22.45 884.32 3.85 0.89 0.03 2.17 0.03

Table 4: Run-time in seconds for the setting described in Appendix G
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