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Abstract

We consider an online optimization problem in a
bandit setting in which a learner chooses decisions
from a continuous decision set at discrete decision
epochs, and receives noisy rewards from the envi-
ronment in response. While the noise samples are
assumed to be independent and sub-Gaussian, the
mean reward at each epoch is a fixed but unknown
linear function of a feature vector, which depends
on the decision through a known (and possibly non-
linear) feature map. We study the problem within
the framework of best-arm identification with fixed
confidence, and provide a template algorithm for
approximately learning the optimal decision in
a probably approximately correct (PAC) setting.
More precisely, the template algorithm samples
the decision space till a stopping condition is met,
and returns a subset of decisions such that, with the
required confidence, every element of the subset
is approximately optimal for the unknown mean
reward function. We provide a sample complexity
bound for the template algorithm and then special-
ize it to the case where the mean-reward function
is a univariate polynomial of a single decision vari-
able. We provide an implementable algorithm for
this case by explicitly instantiating all the steps in
the template algorithm. Finally, we provide exper-
imental results to demonstrate the efficacy of our
algorithms.

1 INTRODUCTION

Multi-arm bandits have proved to be a fertile setting for
studying various aspects of exploration and exploitation
in sequential decision-making problems. While the regret
minimization setting probes trade-offs between exploration
and exploitation [Bubeck and Cesa-Bianchi, 2012], the pure

exploration setting examines efficient exploration for max-
imizing information gain [Even-Dar et al., 2002, Bubeck
et al., 2009]. Best arm identification (BAI) is one example
of a pure exploration task where the learner seeks to identify
the best arm through exploration. BAI is itself studied in
two settings, namely, the fixed budget setting and the fixed
confidence setting. In the fixed budget setting, the learner
seeks to minimize the probability of misidentifying the opti-
mal arm over a fixed number of trials [Audibert et al., 2010].
In contrast, in the fixed confidence setting, the aim of the
learner is to minimize the number of trials needed to identify
the optimal arm with a given level of confidence [Even-Dar
et al., 2003].

Inclusion of additional structure in the reward environment
adds a new dimension to the bandit problem. One structured
bandit setting that has been widely considered in the liter-
ature is that of linear bandits. In a multi-arm linear bandit
problem, each arm is associated with a feature vector in a
finite-dimensional real vector space, and the mean reward of
the arm is an unknown linear function of the feature vector.
A more general version of the linear bandit problem results
when the set of “arms" is a subset, not necessarily finite,
of a real vector space. Unlike in the case of a multi-arm
bandit where pulling one arm provides no information about
another, the linear structure of the mean reward in a linear
bandit problem opens up the possibility of learning optimal
decisions even while sampling suboptimal ones.

The linear bandit problem has received significant attention
in the regret minimization setting, both the case of finite
arms as well as continuous decision sets [Auer, 2002, Dani
et al., 2008, Agrawal and Goyal, 2013, Bartlett et al., 2008].
In contrast, the pure exploration setting for linear bandit
problems has started gaining attention only relatively re-
cently [Soare et al., 2014, Degenne et al., 2020, Garivier
and Kaufmann, 2016, Yang and Tan, 2021, Karnin, 2016,
Xu et al., 2018, Tao et al., 2018, Jedra and Proutiere, 2020].
What is more, except for the specific case of a spherical
decision set considered in Jedra and Proutiere [2020], the
literature on pure exploration in linear bandits has so far
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focused on the case of finite decision sets only.

In this paper, we consider a bandit problem in which the
mean reward is an unknown linear function of a feature
vector that depends on the decision through a known, but
possibly nonlinear, feature map. Furthermore, we do not
assume the decision set to be finite. The motivation for
our problem comes from real-life applications where the
decision variable takes a large number of real values at a
fine resolution, and the mean reward depends continuously
on the decision variable. In such cases, it is more efficient
to model the decision set as a continuum rather than a finite
set. A prime example is that of dynamic pricing [Den Boer,
2015, Ganti et al., 2018, Keskin and Zeevi, 2014], where the
seller of a product faces an unknown product demand that
depends (possibly non-linearly) on the selling price of the
product. The seller seeks to learn the selling price that results
in the maximum revenue. In this case, it is common to model
the selling price as a continuous variable and the revenue
as a continuous function of the selling price. Additionally,
approximating the revenue function as an unknown linear
combination of a finite number of known basis functions
yields a linear-in-parameter bandit model with a continuous
decision variable.

While BAI algorithms in the finite arm case seek to find
the best arm with high confidence, finding the best decision
from a continuum of decisions can be prohibitively expen-
sive. Hence we consider a (ε, δ)-probably-approximately-
correct (PAC) formulation, where the goal of the learner is
to find a set of points which are ε-optimal with probability
at least 1−δ. By building on the work of Soare et al. [2014],
Jedra and Proutiere [2020], Kaufmann et al. [2016], we pro-
vide a lower bound on the sample complexity of (ε, δ)-PAC
algorithms in Section 3. Next, we use the notion of volumet-
ric spanners [Hazan and Karnin, 2016] to devise VSBAI, a
simple algorithm template for BAI in our setting in Section
4. We prove VSBAI to be (ε, δ)-PAC, and provide upper
bounds on its sample complexity.

In Section 5, we consider the case where the mean reward is
a polynomial function of a single decision variable. We show
that, in this case, a volumetric spanner can be computed us-
ing convex optimization, and indicate how the algorithm
template VSBAI can be instantiated for BAI under polyno-
mial rewards. Finally, we present experimental results in
Section 6.

Before describing the problem setup in Section 2, we in-
troduce some notation used throughout the paper. We use
R and Z+ to denote the set of real numbers and positive
integers, respectively, and AT to denote the transpose of the
matrix A. The 1-norm and 2-norm on Rn are denoted by
∥·∥1 and ∥·∥2, respectively. Given a function g : D → R
and ε > 0, s ∈ D is ε-optimal for g if g(s′) ≤ g(s) + ε
for all s′ ∈ D. A set D′ ⊆ D is ε-optimal for g if every
element of D′ is ε-optimal for g. Finally, ∥g∥∞ denotes the

sup norm of a real-valued function when its domain is clear
from the context.

2 PROBLEM SETUP

We consider a bandit optimization setting in which a learner
interacts with an environment at discrete decision epochs
t = 1, 2, . . .. At each period t ∈ Z+, the learner chooses
a decision st from a compact decision set D ∈ Rd and
receives a noisy reward yt = µTxt + ηt, where the f -
dimensional feature vector xt = ϕ(st) is related to the
decision st through a continuous feature map ϕ : D −→ Rf ,
µ ∈ Rf is a parameter vector, and {ηt}t∈Z+

is a noise
sequence. Our reward model is thus given by

yt = gµ(st) + ηt, t ∈ Z+, (1)

where, for each θ ∈ Rf , gθ : D → R is defined by gθ(s) =
θTϕ(s).

Without any real loss of generality, we assume that ϕ(D)
is not contained in any proper linear subspace of Rf . In
addition, our results make use of one or the other of the
following two assumptions on the noise sequence.

Assumption 1. The noise sequence {ηt}t∈Z+
is a sequence

of zero mean i.i.d σ-sub Gaussian random variables for
some σ > 0. Specifically, for each i ∈ Z+, ηi satisfies
E(etηi) ≤ e

σ2t2

2 for all t ∈ R.

Assumption 2. The noise sequence {ηt}t∈Z+ is a sequence
of zero mean i.i.d. Gaussian random variables with variance
σ2 for some σ > 0.

Note that Assumption 2 is a special case of Assumption 1.
We assume that, in the case of either of the two assumptions
above, the learner knows σ. In addition, she also has access
to the feature map ϕ. However, the parameter vector µ is
unknown to the learner.

In a best-arm identification setting, the learner’s goal is to
identify a maximizer s∗ of gµ by using the observations
{(si, yi)}Ti=1 collected over a decision horizon T . However,
the presence of noise makes it impossible to identify an
optimizer with certainty over a finite horizon. Hence it is
standard practice in the literature to seek an algorithm that
returns a set that contains the desired optimizer to a high
level of confidence. Such an algorithm typically comprises
of a sampling rule π that determines the decision st ∈ D
to explore at time t given the history of observations up
to t − 1, a stopping rule that decides if the exploration
conducted so far is sufficient, and an estimation rule that
computes a set that contains the desired optimizer to a high
level of confidence. We make these ideas more precise in
the next section.
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3 (ε, δ)-PAC ALGORITHMS AND THEIR
SAMPLE COMPLEXITY

Complexity lower bounds on algorithms for best arm iden-
tification in a PAC setting have been studied before for the
case where the decision set is finite Soare et al. [2014], Je-
dra and Proutiere [2020], Degenne et al. [2020], Kaufmann
et al. [2016], Xu et al. [2018]. While the analysis we present
below follows similar ideas, the continuous nature of the de-
cision set makes it necessary to formally define the elements
mentioned above using a little more machinery.

To this end, we note that a sampling rule could also make
use of internal randomization in addition to the past his-
tory of decisions and rewards. It is easy to see that any
randomization scheme requiring n random variables at each
decision epoch can be implemented using n i.i.d. samples of
a random variable uniformly distributed on the unit interval.
Hence, to represent a general sampling rule more formally,
we consider the Cartesian product S def

= D × R × [0, 1]n,
where n ≥ 0 is a fixed integer. S is the set of triplets of
decision, reward, and a set of n auxiliary quantities used for
internal randomization. For each t, we denote by Ωt the set
of sequences in S of length t, and by Ω the set of all infinite
sequences in S. We use ht = {(si, yi, ui)}ti=1 to denote a
general sequence in Ωt. We assume that D is a Borel set.
By forming products of the Borel σ-algebras of D, R and
[0, 1]n, we obtain a σ-algebra Ft on Ωt for each t, as well
as a σ-algebra F on Ω. Moreover, on letting F0 denote the
trivial σ-algebra on Ω, we obtain a filtration {Ft}∞t=0 on Ω.

Next, we define a sampling rule π to be a sequence {πt}t∈Z+

along with a Borel measure λ on [0, 1]n, where π1 is a
stochastic kernel on D given [0, 1]n and, for each t > 1,
πt is a stochastic kernel on D given Ωt−1 and [0, 1]n. In
other words, for each t > 1, the following holds: for each
ht−1 ∈ Ωt−1 and u ∈ [0, 1]n, πt(·|ht−1, u) is a measure
on the Borel σ-algebra of D, while for each Borel subset A
of D, πt(A|·, ·) is a Borel-measurable function on Ωt−1 ×
[0, 1]n. Informally speaking, λ is the measure used to sample
an element of [0, 1]n for any internal randomization used
by the sampling rule while, for every t > 1, the measure
πt(·|ht−1, u) describes the conditional distribution of the
decision sampled at time t given the history ht−1 ∈ Ωt−1

up to time t− 1 and the randomly sampled u ∈ [0, 1]n. A
similar interpretation applies for t = 1.

Any algorithm used by the learner can be represented by the
tupleA = (n, λ, π, τ,F), where n, λ and π are as described
above, τ is a stopping time with respect to the filtration
{Ft}∞t=0 representing the stopping condition of the algo-
rithm, and F is a set-valued map that maps each finite his-
tory in Ω to a subset of D. The algorithm terminates at the
random time τ and returns the set F(hτ ) upon terminating.

It is natural to represent the environment as a stochastic
kernel Qµ on R given D, such that the measure on R given

by Qµ(·|s) describes the conditional distribution of the re-
ward (1) given the decision s ∈ D. The interaction between
the algorithm and the environment induces Borel measures
PA,µ on Ω and PA,µ

t on Ωt for each t ∈ Z+ (see Proposition
7.28 of Bertsekas and Shreve [1996]).

Finally, given ε > 0 and ζ ∈ Rf , we let Oε(ζ) ⊆ D denote
the set of decisions that are ε-optimal for the function gζ .
We seek an algorithm (n, λ, π, τ,F) such that, given ε > 0
and δ ∈ (0, 1), the set F(hτ ) returned by the algorithm on
termination is ε-optimal for gµ and contains the true optimal
decision together with probability at least 1− δ. We make
this class of algorithms more precise in the next definition.

Definition 3.1. Given ε > 0 and δ ∈ (0, 1), an algo-
rithm A = (n, λ, π, τ,F) is (ε, δ)-PAC for the environment
(1) if the stopping time τ is finite PA,µ-almost-surely and
PA,µ({argmaxs∈D gµ(s) ⊆ F(hτ ) ⊆ Oε(µ)}) ≥ 1− δ.

The expected sample complexity of an algorithm A =
(n, λ, π, τ,F) is the expected number of decisions explored
by the algorithm till termination, and is simply given by
EA,µ(τ), where EA,µ(·) denotes expectation under PA,µ.
Next, we provide a lower bound for the expected sample
complexity of a (ε, δ)-PAC algorithm. To do so, we need one
more notation. Given ζ ∈ Rf and ε > 0, the ε-alternative
of ζ is the set Altε(ζ) = {ζ ′ ∈ Rf : Oε(ζ)∩Oε(ζ

′) = ∅}.
We are now ready to state our lower bound. The proof,
which builds on ideas given in Soare et al. [2014], Jedra
and Proutiere [2020], Kaufmann et al. [2016], is given in
Appendix A in the supplementary material.

Theorem 3.2. Suppose Assumption 2 holds. Let ε > 0 and
δ ∈ (0, 1), and suppose A = (n, λ, π, τ,F) is a (ε, δ)-PAC
algorithm for (1). Then

EA,µ(τ) ≥
2σ2 ln

(
1

2.4δ

)
inf

ζ∈Altε(µ)
∥gµ − gζ∥∞

. (2)

4 VSBAI: AN ALGORITHM TEMPLATE

In this section, we present VSBAI, a general template for an
(ε, δ)-PAC algorithm for the bandit optimization problem
described in Section 2, and provide a sample complexity
bound for it. We prefer to use the term template rather than
an algorithm as some of the steps of the template can only
be implemented if D and ϕ are specified.

VSBAI combines two ideas, namely,

1. obtain a ε-optimal set for gµ from a uniform approxi-
mation for gµ, and

2. with high probability, obtain a uniform approximation
of gµ by regressing the rewards obtained for decisions
sampled at points of a suitable exploration basis for D.

We elaborate on each of these two aforementioned ideas
next.
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4.1 APPROXIMATE OPTIMIZERS FROM
UNIFORM APPROXIMATIONS

The intuition behind the first idea listed above is illustrated
in Figure 1 for the case where d = 1. The thick solid curve
in the figure depicts the graph of a uniform approximation
q̂ of an unknown function q represented by the thin solid
curve. Suppose the uniform approximation error does not
exceed ε

4 for some ε > 0, that is, ∥q − q̂∥∞< ε
4 holds.

The two dashed curves are graphs of the functions q̂ ± ε
4 ,

which serve as upper and lower bounds on the unknown
function q. In other words, the graph of q must lie within
the region bounded by the two dashed curves. In the figure,
the approximation q̂ achieves its maximum at ŝ, while s∗

is the maximizer of q. The horizontal segment shown in
the figure represents a set D′ such that the approximation q̂
does not fall below its maximum value q̂(ŝ) by more than
ε
2 on D′. One can intuitively see from the figure that the set
D′ must contain the maximizer s∗ of the unknown function
q. Moreover, the absolute difference between the values
of the unknown function q at any two points in the set D′

cannot exceed the difference ε between the maximum and
minimum values onD′ of the upper and lower dashed curve,
respectively. In other words, the set D′ is ε-optimal for q.

gmuhat

gpe

gme

shat s

gmu

dp

ve

fve

ve

Figure 1: Obtaining ε-optimal points for q from its uniform
ε
4 -approximation q̂

The next proposition formalizes the intuition reflected in
Figure 1. The proof is given in Appendix B in the supple-
mentary material.

Proposition 4.1. Let ε > 0, and suppose q, q̂ : D → R are
such that ∥q̂ − q∥∞≤ ε

4 . Let ŝ ∈ argmaxs∈D q̂(s). Then

the set D′ def
= {s ∈ D : q̂(s) ≥ q̂(ŝ) − ε

2} is ε-optimal for
q, and contains argmaxs∈D q(s).

4.2 UNIFORM APPROXIMATION OF THE
REWARD FUNCTION

The Cauchy-Schwarz inequality gives |gµ̂(s) − gµ(s)|≤
∥ϕ(s)∥2∥µ̂ − µ∥2 for every s ∈ D and µ̂ ∈ Rf . The com-

pactness of D now shows that any estimate µ̂ of µ yields
an uniform approximation gµ̂ of gµ. Hence, an obvious and
popular means of obtaining an approximation to the un-
known reward function gµ is to estimate µ from observed
decisions and rewards using least-squares regression. It is
not surprising, therefore, that either ordinary least squares
(OLS) or regularised least squares forms a part of almost
every algorithm available for linear bandit problems in the
stochastic as well as adversarial settings with finite arms or
continuous arms. We briefly review OLS before proceeding.

At the end of t decision epochs, the learner has access to
observations {(xi, yi)}ti=1, where xi = ϕ(si) is the fea-
ture vector of the ith decision si, and yi is the correspond-
ing observed reward. Letting Xt

def
= [x1, . . . , xt] ∈ Rf×t

and yt
def
= [y1, . . . , yt]

T ∈ Rt, the OLS estimate µ̂t of
µ, based on the data {(xi, yi)}ti=1, is obtained by solving
minµ̂∈Rf ∥yt −XT

t µ̂∥22, and is given by

µ̂t = (XtX
T
t )

−1Xty
t. (3)

For deriving (3), it is assumed that Xt has rank f , which
necessarily implies that t ≥ f .

The parameter error µ̂t − µ clearly depends on the choice
of the decisions s1, . . . , st. Indeed, on letting ηt =
[η1, . . . , ηt]

T denote the vector of noise samples till time t,
it is easy to use (1) and (3) to show that

µ̂t − µ = (XtX
T
t )

−1Xtη
t. (4)

In a regret minimization setting, the decisions need to be
chosen in an adaptive manner so that the required trade-off
between exploration and exploitation can be achieved. Even
in the pure exploration setting of best-arm identification
in a finite multi-arm bandit problem, decisions have to be
adaptive so that the exploration budget is diverted away
from arms as and when they are revealed to be sub-optimal,
since exploring one arm gives no information about another
arm. In contrast, in the pure exploration setting that we are
considering for the linear bandit problem, each decision that
improves the estimate of µ also improves the accuracy of
the approximation of gµ over the whole decision domain
D. This suggests the possibility of using non-adaptive (that
is, deterministic) sampling of the decision space for the
purpose of constructing an OLS-based approximation of gµ.

In this case, it is natural to consider a volumetric spanner as
a low variance exploration basis (as defined in Hazan and
Karnin [2016]) for sampling the reward function. We review
the necessary background next.

4.3 VOLUMETRIC SPANNERS

Suppose L > 0 and m ≥ f . A (L,m)-volumetric spanner
for ϕ(D) ⊆ Rf is a subset {x1, . . . , xm} of ϕ(D) such that,
for every z ∈ D, there exists c1, . . . , cm ∈ R satisfying
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z = c1x1 + · · · + cmxm and c21 + · · · + c2m ≤ L2. Recall
that, for every z ∈ Rf and X ∈ Rf×m with m ≥ f ,
c = XT(XXT)−1z is the minimum-2-norm solution of the
equation Xc = z. Hence, it follows from the definition that,
if {x1, . . . xm} is a (L,m)-volumetric spanner for ϕ(D) ⊆
Rf , then ∥XT(XXT)−1z∥2≤ L for all z ∈ ϕ(D), where
X = [x1, . . . , xm] ∈ Rf×m. In particular, if m = f , then
∥X−1z∥2≤ L for every z ∈ ϕ(D). The last observation
implies that there exists no (L, f)-volumetric spanner for
ϕ(D) for L < 1. A (1,m)-volumetric spanner was called a
volumetric spanner in Hazan and Karnin [2016] irrespective
of m. Since the cardinality of the volumetric spanner will
be required in our algorithm, we choose not to suppress it.

It will be convenient to define p1, . . . , pm ∈ D to be (L,m)-
volumetric points for the pair (ϕ,D) if {ϕ(p1), . . . , ϕ(pm)}
is a (L,m)-volumetric spanner for ϕ(D).

Since a volumetric spanner forms a critical component of
the algorithm that we present in the next subsection, it is
important to consider the existence of such spanners as well
as algorithms for computing them. We start with an easy
observation. Our assumption that the set ϕ(D) of feature
vectors is not contained in a proper linear subspace of Rf

implies that ϕ(D) contains a set of f linearly independent
vectors. Since ϕ(D) is compact, it is easy to see that any
linearly independent subset of cardinality f will serve as a
(L, f) volumetric spanner for sufficiently large L. It is sepa-
rately known that, being compact, ϕ(D) possesses a (1,m)-
volumetric spanner for some m ≤ 12f . In addition, if ϕ(D)
is finite, then the aforementioned volumetric spanner can be
constructed in polynomial time (see Theorem 3 of Hazan
and Karnin [2016] for both facts above as well as additional
details). We will see later that the sample complexity of our
algorithm grows as L2m, and can be improved if a (L,m)-
volumetric spanner with lower values of L and m is chosen.
It is easy to see that the union of two (L,m)-volumetric
spanners yields a (L/

√
2, 2m)-volumetric spanner, indicat-

ing that it is possible to reduce L by considering volumetric
spanners with more elements. In this context, the following
bound proved in Appendix B in the supplementary material
is of interest.

Lemma 4.2. If L > 0 and m ≥ f are such that there exists
a (L,m)-volumetric spanner for ϕ(D), then L2m ≥ f .

The lower bound in Lemma 4.2 is achieved by a (1, f)-
volumetric spanner.

4.4 VSBAI: DESCRIPTION AND ANALYSIS

The template algorithm VSBAI that we present requires a
set of (L,m)-volumetric points {p1, . . . , pm} for the pair
(ϕ,D), for some L ≥ 1 and m ≥ f . The algorithm proceeds
in rounds with each round consisting of m decision epochs.
In each round, the algorithm picks the points {p1, . . . , pm}
in sequence as the decisions for that round. In the notation

of section 3, the template algorithm is given by a tupleA∗ =
(n∗, λ∗, π∗, τ∗,F∗) whose sampling rule π∗ is defined by

π∗
t (·|u) = δpi

(·), i = 1 + (t mod m), (5)

for every t ∈ Z+ and u ∈ [0, 1]n
∗
, where δs(·) denotes the

Dirac measure at s ∈ D. Note that the sampling rule π∗

is deterministic, and hence the choices of n∗ and λ∗ are
immaterial.

As described in subsection 4.2, our template algorithm A∗

involves obtaining successively better uniform approxima-
tions of gµ using a sequence of OLS estimates of µ obtained
through (3). Our next result gives a high probability bound
on the uniform error with which the estimate gµ̂km

obtained
after k rounds approximates gµ. The proof is given in Ap-
pendix C in the supplementary material.

Proposition 4.3. Consider an algorithm A∗ whose sam-
pling rule is described by (5). Let k ∈ Z+ and ε > 0, and
suppose Assumption 1 holds. Then

PA∗,µ(∥gµ̂km
− gµ∥∞> ε) ≤ β

(
k,

ε

L

)
, (6)

where

β(k, ε)
def
= 2

f
2 exp

(
− kε2

4σ2

)
. (7)

Propositions 4.1 and 4.3 immediately suggest the stopping
criterion that yields an (ε, δ)-PAC algorithm under the sam-
pling rule described by (5). Indeed, by Proposition 4.3,
choosing

τ∗ = inf
{
km : β

(
k,

ε

4L

)
< δ
}

(8)

ensures that, with probability at least 1 − δ, the uniform
approximation condition required by Proposition 4.1 holds
with q = gµ and q̂ = gµ̂τ∗ . Letting Dτ∗ = F(hτ∗) to be the
set D′ in Proposition 4.1 then ensures that Dτ∗ is ε-optimal
for gµ with the same probability. The resulting algorithm is
given as Algorithm 1 below.

In Algorithm 1, β is taken to be given by (7). Also, the steps
at lines 10 and 12 in the algorithm come from (20) in the
supplementary material.

The main result of this section given below states that VS-
BAI is (ε, δ)-PAC.

Theorem 4.4. Suppose Assumption 1 holds. Then Algorithm
1 terminates in at most τ∗ ≤ m[1− 64L2σ2ε−2 ln(2−

f
2 δ)]

decision epochs. Furthermore, with PA∗,µ-probability at
least 1 − δ, the set Dτ∗ returned by the algorithm is ε-
optimal for gµ and contains all the maximizers of gµ. In
particular, Algorithm 1 is (ε, δ)-PAC.

Proof. Let τ∗ be as computed by Algorithm 1, and let
k = τ∗/m. The upper bound for τ∗ comes from using
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Algorithm 1 VSBAI

1: Input: ε > 0, δ ∈ (0, 1), sub-Gaussianity parameter σ,
(L,m)-volumetric points p1, . . . , pm for (ϕ,D)

2: Set BL,m = [ϕ(p1), . . . , ϕ(pm)]
3: Initialize k ← 1, r ← 0
4: Set STOP = False
5: while STOP == False do
6: Initialize reward vector ȳk = []
7: for t = 1, . . . ,m, do
8: Apply decision s(k−1)m+t ← pt
9: Observe reward y(k−1)m+t

10: Augment reward vector
ȳk ← [(ȳk)T; y(k−1)f+t]

T

11: end for
12: Update total reward vector r ← r + ȳk

13: if β(k, ε
4L ) < δ then

14: STOP = True
15: else
16: k = k + 1
17: end if
18: end while
19: τ∗ ← km
20: µ̂τ∗ ← 1

k (BL,mBT
L,m)−1BL,mr

21: Pick ŝ ∈ argmaxs∈D gµ̂τ∗ (s).
22: Dτ∗ = {s ∈ D : gµ̂τ∗ (s) ≥ gµ̂τ∗ (ŝ)− ε

2}
23: Output: Dτ∗

(7) in the stopping condition (8). Next, consider the event
E = {∥gµ̂τ

− gµ∥∞> ϵ
4}. By Proposition 4.3 and the defi-

nition (8) of τ∗, it follows that PA∗,µ(E) < β(k, ε
4L ) < δ.

Proposition 4.1 now implies that, on the complement of
the event E , Dτ∗ is ε-optimal for gµ and contains all the
maximizers of gµ. This completes the proof.

Note that three critical steps in the algorithm depend on the
pair (ϕ,D), namely, computation of the (L,m) volumetric
points used as inputs to the algorithm, computation of an
optimizer ŝ for the approximation gµ̂τ∗ at line 21, and com-
putation of the setDτ∗ at line 22 of the algorithm. Hence we
view the algorithm more as a template requiring the three
aforementioned steps to be worked out for specific problem
instances. We present a simple example considered in Jedra
and Proutiere [2020] to illustrate these steps.

4.5 LINEAR BANDIT ON THE UNIT SPHERE

Let f > 1, and chooseD to be the unit sphere Sf−1 def
= {s ∈

Rf : ∥s∥2= 1}. Let ϕ : Sf−1 → Rf be the inclusion map.
Then the reward function in (1) becomes gµ(s) = µTs.

Any set of f orthonormal vectors is seen to be a set of (1, f)-
volumetric points for the pair (ϕ, Sf−1). For every non-zero
θ ∈ Rf , argmaxs∈Sf−1 gθ(s) equals {∥θ∥−1

2 θ}. Line 21 of
Algorithm 1 thus returns ŝ = ∥µ̂τ∗∥−1

2 µ̂τ∗ , while the set

Dτ∗ at line 22 of Algorithm 1 is given by the “spherical cap”
{s ∈ Sf−1 : ŝTs ≥ 1− ε

2∥µ̂τ∥2
}.

Under Assumption 2, Theorem 4 of Jedra and Proutiere
[2020] gives a lower bound for the sample complexity of
any (ε, δ)-PAC algorithm A for the case of the unit sphere
considered here. On using inequality (3) of Kaufmann et al.
[2016], the lower bound given by Jedra and Proutiere [2020]
may be written as

EA,µ(τ) ≥ σ2(f − 1)

20ε∥µ∥2
ln

(
1

2.4δ

)
(9)

for ε < ∥µ∥2/5. Jedra and Proutiere [2020] also provide an
algorithm for this case, and show that the sample complexity
of their algorithm recovers the dependence on ε, f and δ
seen in the lower bound (9) asymptotically as δ → 0 (see
Theorem 5 of Jedra and Proutiere [2020]). Interestingly,
the sampling rule given by Jedra and Proutiere [2020] for
their algorithm involves choosing f orthogonal vectors in
a round-robin manner just as mentioned above. However,
their stopping rule is more intricate.

On using L = 1 and m = f , the upper bound provided by
Theorem 4.4 for Algorithm 1 under Assumption 2 reduces
to

τ∗ ≤ f

[
1 +

64σ2

ε2
ln

(
2

f
2

δ

)]
. (10)

On comparing (9) and (10), we see that while the depen-
dence of the sample complexity of Algorithm 1 on δ com-
pares favourably with the lower bound (9), the dependence
on ε does not, at least for small values of ε. This could indi-
cate that either the lower bound is conservative (for δ > 0),
or that Algorithm 1 is sub-optimal. Closing this gap remains
an open problem.

Before proceeding, we comment on the possible reason for
the suboptimality of VSBAI in relation to the sample com-
plexity lower bound (9), as well as the difference in the
sample complexities of VSBAI and the algorithm of Jedra
and Proutiere [2020]. As mentioned above, while the sam-
pling rule used in both algorithms is the same, the stopping
rules are different. The stopping rule in Jedra and Proutiere
[2020] is designed to stop the exploration as soon as the
accumulated data is sufficient to confidently distinguish the
true linear function from the closest linear function that has
a completely different set of approximate optimizers (that
is, functions corresponding to parameter vectors from the
so called alternative set). In contrast, the stopping rule in
VSBAI stops the exploration only when, with high probabil-
ity, the true linear function is approximated sufficiently well
uniformly everywhere by the OLS estimate without any ref-
erence to the alternative set. We believe that this difference
in the nature of the stopping rules is the reason for both, the
superiority of the asymptotic sample complexity (as δ → 0)
of the algorithm of Jedra and Proutiere [2020] over that of
VSBAI, as well as the suboptimality of VSBAI. We add,
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however, that the stopping rule from Jedra and Proutiere
[2020] requires solving an optimization problem at every
decision epoch, and is therefore difficult to implement.

It is easy to see from Theorem 4.4 that the best sample
complexity for Algorithm 1 results when L = 1 and m = f ,
that is, when a set of (1, f)-volumetric points is available
for the pair (ϕ,D). The unit sphere example considered in
this subsection provided a simple setting in which a set of
(1, f)-volumetric points is available. In the next section, we
will see a nontrivial setting where such a set of volumetric
points exists, and can be computed easily.

5 UNIVARIATE DECISION VARIABLE
WITH POLYNOMIAL REWARD

As a concrete instance of the general problem setup de-
scribed in Section 2, we consider the case where the re-
ward function gµ in (1) is a univariate polynomial of de-
gree f − 1 > 0 on an interval [pmin, pmax] ⊂ R for some
pmax > pmin. To cast this case of polynomial rewards in
our general setup, we let D def

= [pmin, pmax] and define
ϕ : [pmin, pmax]→ Rf by ϕ(s)

def
= [1, s, . . . , sf−1]T. Then,

for each θ ∈ Rf , gθ is the univariate polynomial in s of de-
gree f − 1 with coefficients given by the parameter vector θ.
Our next result shows that a set of (1, f) volumetric points
for the pair (ϕ,D) exists. The proof is given in Appendix D
in the supplementary material.

Proposition 5.1. Suppose pmin ≤ p1 ≤ · · · ≤ pf ≤ pmax.
Then the following two statements are equivalent.

1. The points p1, . . . , pf ∈ D are (1, f) volumetric points
for the pair (ϕ,D).

2. The points p1, . . . , pf satisfy pmin = p1 < p2 · · · <
pf = pmax and∑

1≤j≤f,j ̸=i

1

pi − pj
= 0, i = 2, . . . , f − 1. (11)

Equations (11) also appear in Amballa et al. [2021], where
it is shown that (11) provide necessary and sufficient con-
ditions for the points ϕ(p1), . . . , ϕ(pf ) to form a barycen-
tric spanner for the set ϕ(D). Proposition 5.1 above thus
implies that, in the case of univariate polynomial reward
functions, a barycentric spanner is also a volumetric span-
ner. Amballa et al. [2021] also show that the equations (11)
possess a unique solution, and this solution may be com-
puted efficiently either by numerically solving the algebraic
equations (11) or by solving a convex optimization prob-
lem. Furthermore, volumetric points for the general case
D = [pmin, pmax] can be easily recovered from volumet-
ric points for the special case D = [0, 1]. This means that,
effectively, the solution of (11) needs to be computed just
once for a given f .

Proposition 5.1 enables us to implement the initialisa-
tion step on line 1 of Algorithm 1. The optimization
argmaxs∈D gµ̂τ∗ (s) at line 21 of the algorithm may be
performed by finding the roots of the derivative of the poly-
nomial gµ̂τ∗ and picking the maximizer of gµ̂τ∗ among
them by evaluation. Note that the set Dτ∗ at line 22 may be
a disjoint union of multiple closed intervals. The endpoints
of these intervals may be found by numerically computing
roots of the polynomial s 7→ gµ̂τ∗ (s) − gµ̂τ∗ (ŝ) +

ε
2 . A

sequence of easy checks can then be used to pair the roots
to yield the actual intervals whose union equals Dτ∗ . Thus,
VSBAI can be implemented rather easily for the case where
the mean reward is a polynomial function of a single de-
cision variable. The algorithm VSBAI-Poly in Appendix
E of the supplementary material provides an instantiation
of VSBAI for the case of polynomial rewards and a single
decision variable.

6 EXPERIMENTAL RESULTS

In this section we present experiments comparing VSBAI
with other recent algorithms in various settings described
below. We first consider the toy example considered in Fiez
et al. [2019] and Jedra and Proutiere [2020], and compare
the sample complexities along with run-times in different
scenarios. We also present in Appendix G in the supplemen-
tary material some experimental results for the polynomial
setting described in Section 5. All the results that we present
were computed on an AMD Ryzen 5 2500U CPU with
Radeon Vega mobile gfx × 8 with 12GB memory.

6.1 MULTI-ARM SETTING

We consider the “finitely many arms with moderate gaps”
example first presented in Fiez et al. [2019] and further
used in Jedra and Proutiere [2020]. The decision set is
a finite collection of n 2-dimensional unit vectors given
by D = {[0, 1]T, [cos(3π/4), sin(π/4)]T} ∪ {[cos(π/4 +
ϕi), sin(π/4 + ϕi)]

T : i = 3, . . . , n}, where n ≥ 3. Each
choice of the angles {ϕi}ni=3 represents a problem instance.
In order to examine robustness across different problem
instances, our experiments involve randomly sampling sets
of these angles to generate different problem instances. The
results we present below use N (0, .09) for generating the
angles {ϕi}ni=3. We also report the results from using the
uniform distribution on the interval [0, 0.1] in Appendix G
in the supplementary material. Typical arm configurations
obtained by sampling the angles are depicted in figures 3
and 4 in Appendix F (see the supplementary material).

The feature map ϕ is taken to be the identity map, and the
reward is given by (1) with µ = [1, 0]T. Also, Assumption
2 holds with σ = 1. To implement VSBAI on a problem in-
stance, we first find the index j of the arm which has the least
inner product with the arm [cos(3π/4), sin(π/4)]T. We then
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find a value of L such that the arms [cos(3π/4), sin(π/4)]T

and j form a set of (L, 2)-volumetric points for the decision
set. These (L, 2) volumetric points are used to initialize
VSBAI, which is run with ε = 0.1 and δ = 0.05.

For drawing a comparison, we consider the LAZYTS (av-
eraged) algorithm proposed in algorithm 1 in Jedra and
Proutiere [2020], the RAGE algorithm given as algorithm 1
in Fiez et al. [2019], and the ORACLE algorithm given by
equations (4) and (5) of Soare et al. [2014]. For each choice
of the size of the decision set, we generate 20 instances of
the problem by sampling as many sets of the angles using
either the normal distribution or the uniform distribution as
described above. In addition to comparing sample complex-
ities, we also compare run-times as a measure of efficiency.
The results that we present below for sample complexity
and run time were obtained by averaging these quantities
over all 20 problem instances for each algorithm.

Table 1 gives the sample complexities of the three base-
lines along with the VSBAI algorithm as the number of
arms increase. We observe that, for all the baselines, the
sample complexity grows with the number of arms, but
the sample complexity of VSBAI remains almost constant.
This is not surprising. While the other algorithms need to
know the number of arms, VSBAI is independent of the
number of arms. We also note the standard deviation (over
the randomly generated problem instances) of the sample
complexity for VSBAI decreases as the number of arms in-
crease. In contrast, it increases for the baselines. This can be
explained by observing that the value of L used by VSBAI
can be expected to be closer to 1 as the number of arms
increase.

In Table 2, we present the run-times of the algorithms com-
pared in Table 1. As in Table 1, the run-times are aver-
aged over 20 problem instances. We note that VSBAI takes
roughly a constant time to terminate whereas the run time
of all the other algorithms increases as the number of arms
increase. This is because all the three baselines attempt to
find the best arm among all the arms. As a consequence,
they can end up sampling the best two arms a large number
of times in a scenario where the best two arms are very close
to each other. VSBAI does not suffer from this drawback
as it seeks to find the best arm only to a certain degree of
approximation, and this is a task that does not increase in
difficulty with the number of arms. Also, in situations where
the run-time is of importance, VSBAI makes it possible to
use ε as an additional tuning parameter to balance accuracy
and speed.

6.2 POLYNOMIAL SETTING

Next, we present results for the case of polynomial rewards
considered in section 5 with the decision set chosen to be
the interval [1, 10]. As described in that section, the algo-
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Figure 2: Run-time of VSBAI for polynomial reward func-
tions

rithm template VSBAI specializes to VSBAI-Poly, which is
given as Algorithm 2 in Appendix E (see the supplementary
material).

To implement VSBAI-Poly, we computed (1, f)-volumetric
points for this problem using (11) of Proposition 5.1 and
the numerical technique suggested in Amballa et al. [2021].
We ran the VSBAI-Poly for various degrees ranging from
3 to 10. Although the noise sequence used was Gaussian
(that is, satisfying Assumption 2) with σ = 10, VSBAI-Poly
was run using the sub-Gaussian tail bound (7). The error
tolerance ε was fixed to be 6 while the confidence parameter
δ was chosen to be 0.1.

Figure 2 represents the run-time of VSBAI-Poly as the de-
gree of the polynomial increases. The plot shows the run
time averaged over 20 polynomials all having their maxi-
mum values around 350, but otherwise chosen randomly.
As expected, the run time increases with the degree.

7 CONCLUSION

We have considered a bandit problem in which the mean
reward is a linearly parametrized (but possibly nonlinear)
function on a continuous decision set. We have used a (ε, δ)-
PAC formulation in which the goal is to find a set of points
that are ε-optimal with probability at least 1− δ. We have
given a lower bound on the sample complexity of (ε, δ)-
PAC algorithms. We have used the notion of volumetric
spanners to devise a simple (ε, δ)-PAC algorithm template
and provided an upper bound on its sample complexity. As a
special case of our general setting, we have also considered
the case where the mean reward is a polynomial function of
a single decision variable, and indicated how all the problem-
specific steps in VSBAI can be instantiated to apply to this
case. VSBAI showed advantages in experiments in terms of
run time and sampling complexity when compared to recent
algorithms proposed for the BAI problem in linear bandits
with finite arms.
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Algorithm LazyTS Rage Oracle VSBAI
No. of Arms Mean Std Mean Std Mean Std Mean Std

10 3490.05 1121.99 7617.4 2989.33 3470.05 1102.36 48919.8 487.87
20 72081.1 65078.96 103903.1 85734.65 47876.4 41692.63 48075.9 226.94

100 146331.55 64260.81 623143.05 366464.09 217162.25 111605.07 47381.3 44.41
1000 1218591.27 39881.14 16235680.31 5974249.14 7500331.73 2882866.47 47239.8 3.87

Table 1: Average sample complexity for the setting described in subsection 6.1

Algorithm LazyTS Rage Oracle VSBAI
No. of Arms Mean Std Mean Std Mean Std Mean Std

10 1.75 0.48 0.27 0.05 0.01 0 1.46 0.04
20 26.79 23.58 0.81 0.2 0.2 0.18 1.38 0.03

100 63.38 27.19 2.34 0.3 2.02 0.86 1.44 0.04
1000 39141.2 1270.31 120.92 6.01 116.56 38.37 1.4 0.03

Table 2: Run-time in seconds for the setting described in subsection 6.1
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