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This supplementary material contains the material that did not fit into the main paper because of space constraints. A
graphical illustration of the causal ordering algorithm applied to the equations of a cyclic model is provided in the first
section. The second section contains more details on the signaling cascade model. The third section contains the proofs of
the results in the main paper.

A CAUSAL ORDERING ALGORITHM APPLIED TO A CYCLIC MODEL

In this supplementary section we demonstrate how the causal ordering algorithm works on a set of equations for a cyclic
model. The algorithm is also presented graphically. Consider the following equations for endogenous variables X and
exogenous random variables U :

f1 : g1(Xv1 , Uw1
) = 0, (1*)

f2 : g2(Xv2 , Xv1 , Xv4 , Uw2
) = 0, (2*)

f3 : g3(Xv3 , Xv2 , Uw3
) = 0, (3*)

f4 : g4(Xv4 , Xv3 , Uw4
) = 0, (4*)

f5 : g5(Xv5 , Xv4 , Uw5
) = 0. (5*)

The associated bipartite graph in Figure 1*a consists of variable vertices V = {v1, . . . , v5} and equation vertices F =
{f1, . . . , f5}. There is an edge between a variable vertex and an equation vertex whenever that variable appears in the
equation. The associated bipartite graph has exactly two perfect matchings:

M1 = {(v1 − f1), (v2 − f2), (v3 − f3), (v4 − f4), (v5 − f5)},
M2 = {(v1 − f1), (v2 − f3), (v3 − f4), (v4 − f2), (v5 − f5)}.

Application of the first step of the causal ordering algorithm results either in the directed graph in Figure 1*b or that
in Figure 1*c, depending on the choice of the perfect matching. The segmentation of vertices into strongly connected
components, which takes place in the second step of the algorithm, results in the clusters {v1}, {f1}, {v2, v3, v4, f2, f3, f4},
{v5}, and {f5}. To construct the clusters of the causal ordering graph we add Si ∪M(Si) to a cluster set V for each Si in
the segmentation. The segmentation of vertices into strongly connected components is displayed in Figures 1*d and 1*e.
Notice that the segmentation in Figure 1*d is the same as that in Figure 1*e. It is known that the segmentation into strongly
connected components is unique (i.e. it does not depend on the choice of the perfect matching) [Pothen and Fan, 1990,
Blom et al., 2021]. The cluster set V for the causal ordering graph in Figure 1*f is constructed by merging clusters in the
segmented graph whenever two clusters contain vertices that are matched and by adding exogenous variables as singleton
clusters. The edge set E for the causal ordering graph is obtained by adding edges (v → C) from an endogenous vertex v to
a cluster C, whenever v /∈ C and there is an edge from v to f ∈ C in the directed graph. We also add edges from exogenous
vertices to clusters that contain equations in which the corresponding exogenous random variables appear.
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(c) Directed graph (M2).
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(f) Causal ordering graph.

Figure 1*: Graphical illustration of the causal ordering algorithm that was described in Section 1.1. Figure 1*a shows the
bipartite graph that is associated with equations (1*) to (5*). Application of the first step of the causal ordering algorithm
results in the directed graph in Figure 1*b for perfect matching M1 and that in Figure 1*c for perfect matching M2. The
blue and orange edges correspond to the edges in the perfect matchings M1 and M2, respectively. Figures 1*d and 1*e
show that the segmentation into strongly connected components does not depend on the choice of the perfect matching.
Exogenous vertices and edges from these vertices to clusters were added to the causal ordering graph in Figure 1*f.

B EXAMPLE: SIGNALING CASCADE MODEL

In this supplementary section we provide more details on the signaling cascade model that is discussed in Section 4.3.

We denote the concentrations of active (phosphorylated) RAS, RAF, MEK, and ERK proteins, respectively, by Xs(t), Xr(t),
Xm(t), and Xe(t), and denote by I(t) an external stimulus or perturbation. The system dynamics is modeled by differential
equations:

Ẋs(t) = I(t)
kIs (Ts −Xs(t))

(KIs + (Ts −Xs(t)))

(
1 +

(
Xe(t)
Ke

) 3
2

) − FskFss
Xs(t)

KFss +Xs(t)
(6*)

Ẋr(t) =
Xs(t)ksr(Tr −Xr(t))

Ksr + (Tr −Xr(t))
− FrkFrr

Xr(t)

KFrr +Xr(t)
(7*)

Ẋm(t) =
Xr(t)krm(Tm −Xm(t))

Krm + (Tm −Xm(t))
− FmkFmm

Xm(t)

KFmm +Xm(t)
(8*)

Ẋe(t) =
Xm(t)kme(Te −Xe(t))

Kme + (Te −Xe(t))
− FekFee

Xe(t)

KFee +Xe(t)
. (9*)

These dynamical equations correspond with a signaling pathway that goes from I(t) to Xs(t) to Xr(t) to Xm(t) to Xe(t)
with negative feedback from Xe(t) on Xs(t). We will study this system in a certain saturated regime; specifically, for
(Te −Xe(t))� Kme and Xe(t)� KFee the following approximation of (9*) holds:

Ẋe(t) ≈ Xm(t)kme − FekFee. (10*)

Thus, the saturated dynamical model that we consider consists of differential equations (6*), (7*), (8*) and (10*). The
corresponding equilibrium equations of the saturated model are given by:

0 = I
kIs (Ts −Xs)

(KIs + (Ts −Xs))

(
1 +

(
Xe

Ke

) 3
2

) − FskFss
Xs

KFss +Xs
(11*)

0 =
Xsksr(Tr −Xr)

Ksr + (Tr −Xr)
− FrkFrr

Xr

KFrr +Xr
(12*)

0 =
Xrkrm(Tm −Xm)

Krm + (Tm −Xm)
− FmkFmm

Xm

KFmm +Xm
(13*)

0 = Xmkme − FekFee, (14*)



where we also assume the input signal I to be stationary (constant in time).

Figure 2* shows the results of applying the causal ordering procedure to the full model, and to the partial model that
treats the equilibrium ERK concentration Xe as unobserved and assumes it to be exogenous with respect to the observed
concentrations Xs, Xr and Xm of RAS, RAF and MEK, respectively.
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(f) Markov ordering graph MO(Bext).

Figure 2*: Graphs associated with the saturated protein signaling pathway model, where indices s, r,m, e correspond to
concentrations of active RAS, RAF, MEK and ERK respectively, and I is an exogenous input signal. Top row: submodel for
RAS, RAF and MEK only. Bottom row: model extension with ERK.

C PROOFS

Theorem 1. Consider model equations F containing endogenous variables V with bipartite graph B. Suppose F is extended
with equations F+ containing endogenous variables in V ∪ V+, where V+ contains endogenous variables that are added by
the model extension (which may include parameters or exogenous variables that appear in F and become endogenous in the
extended model). Let Bext be the bipartite graph associated with Fext = F ∪ F+ and Vext = V ∪ V+, and B+ the bipartite
graph associated with the extension F+ and V+, where variables in V appearing in F+ are treated as exogenous variables
(i.e. they are not added as vertices in B+). If B and B+ both have a perfect matching then:

1. Bext has a perfect matching,

2. ancestral relations in CO(B) are also present in CO(Bext),

3. d-connections in MO(B) are also present in MO(Bext).

Proof. The causal ordering graph CO(B) is constructed from a perfect matching M for the bipartite graph B = 〈V, F,E〉.
LetM+ be a perfect matching for B+. Note thatMext =M∪M+ is a perfect matching for Bext = 〈V ∪ V+, F ∪ F+, Eext〉.
Following the causal ordering algorithm for B,M and Bext,Mext, we note that G(B,M) is a subgraph of G(Bext,Mext)
and hence clusters in CO(B) are fully contained in clusters in CO(Bext). Therefore ancestral relations in CO(B) are also
present in CO(Bext).

It follows directly from the definition [?] that σ-connections in a graph remain present if the graph is extended with additional
vertices and edges. The directed graphs G(B,M) and G(Bext,Mext) can be augmented with exogenous variables by adding
exogenous vertices to these graphs with directed edges towards the equations in which they appear. The σ-connections
in the augmentation of G(B,M) must also be present in the augmentation of G(Bext,Mext). By [Corollary 2.8.4, ?] and
[Lemma 43, Blom et al., 2021] we have that d-connections in MO(B) must also be present in MO(Bext).

Theorem 2. Let F , F+, Fext, V , V+, Vext, B, B+, and Bext be as in Theorem 1. If B and B+ both have perfect matchings
and no vertex in V+ is adjacent to a vertex in F in Bext then:

1. ancestral relations absent in CO(B) are also absent in CO(Bext),

2. d-connections absent in MO(B) are also absent in MO(Bext).



Proof. Since B and B+ both have perfect matchings the results of Theorem 1 hold. Let G(B,M), and G(Bext,Mext) be as
in the proof of Theorem 1. Note that in Mext vertices in F+ are matched to vertices in V+ and therefore edges between
f+ ∈ F+ and v ∈ adjBext

(F+) \ V+ are oriented as (f+ ← v) in G(Bext,Mext). By assumption, we therefore have that
vertices in V+ are non-ancestors of vertices in V ∪ F in G(Bext,Mext). Since M ⊆Mext we know that the same directed
edges between vertices in V and F appear in both G(B,M) and G(Bext,Mext). Notice that the subgraph of G(Bext,Mext)
induced by the vertices V ∪ F coincides with G(B,M). Hence CO(B) is the induced subgraph of CO(Bext) and MO(B) is
the induced subgraph of MO(Bext).

Lemma 1. Consider a first-order dynamical model in canonical form for endogenous variables V and let F be the
equilibrium equations of the model. If all variables in V are self-regulating then B has a perfect matching.

Proof. Recall that the equilibrium equation constructed from the derivative of a variable i is labelled fi according to the
natural labelling. When a variable in vi ∈ V is self-regulating then it can be matched to its equilibrium equation fi. If this
holds for all variables in V then B has a perfect matching.

Lemma 2. Let B be a bipartite graph and let M and M ′ be two distinct perfect matchings. The associated directed graphs
G(B,M) and G(B,M ′) that are obtained in step 1 of the causal ordering algorithm differ only in the direction of cycles.

Proof. This follows directly from the fact that the output of the causal ordering algorithm does not depend on the choice of
the perfect matching. This result is a direct consequence of Theorem 4 and Theorem 6 in Blom et al. [2021].

Theorem 3. Consider a first-order dynamical model in canonical form for endogenous variables V and an extension
consisting of canonical first-order differential equations for additional endogenous variables V+. Let F and Fext = F ∪ F+

be the equilibrium equations of the original and extended model respectively. Let B = 〈V, F,E〉 be the bipartite graph
associated with F and Bext = 〈Vext, Fext, Eext〉 the bipartite graph associated with Fext. Assume that B and Bext both
have perfect matchings. If the model extension does not introduce a new feedback loop with the original dynamical model,
then d-connections in MO(B) are also present in MO(Bext).

Proof. Let Enat be the set of edges (vi − fi) associated with the natural labelling of the equilibrium equations of the
extended dynamical model. Note that the feedback loops in the dynamical model coincide with cycles in the directed
graph G(Bnat,Mnat) that is obtained by applying step 1 of the causal ordering algorithm to the bipartite graph Bnat =
〈Vext, Fext, Eext ∪ Enat〉 using the perfect matching Mnat = Enat.

By Theorem 1, we know that if B and B+ (the subgraph of Bext induced by V+ ∪ F+) both have perfect matchings then
d-connections in MO(B) must also be present in MO(Bext). Therefore, if there exists a perfect matching Mext for Bext
so that each f ∈ F is Mext-matched to a vertex v ∈ V and each f+ ∈ F+ is Mext-matched to a vertex v+ ∈ V+ in Bext,
d-connections in MO(B) are also present in MO(Bext).

We will prove the contrapositive of the theorem, so we start with the assumption that the d-connections in MO(B) are not
preserved in MO(Bext). In that case, there must exist a perfect matching Mext for Bext so that there is an f ∈ F that is
Mext-matched to a v+ ∈ V+ and a v ∈ V that is Mext-matched to a f+ ∈ F+. Note that since Bext is a subgraph of Bnat,
this perfect matching Mext is also a perfect matching for Bnat. Lemma 2 says that G(Bnat,Mnat) and G(Bnat,Mext) only
differ in the direction of cycles. We know that vertices in V are only Mnat-matched to vertices in F , while vertices in V+ are
only Mnat-matched to vertices in F+. Therefore, the vertices v+ and f must be on a directed cycle in both directed graphs,
as well as v and f+. Hence the model extension F+ introduced a new feedback loop that includes variables in the original
model.
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