
Lifting in Multi-agent Systems under Uncertainty (Supplementary Material)

Tanya Braun1 Marcel Gehrke2 Florian Lau3 Ralf Möller2

1Computer Science Department, University of Münster, Münster, Germany
2Institute of Information Systems, University of Lübeck, Lübeck, Germany

3Institute of Telematics, University of Lübeck, Lübeck, Germany

1 ADDITIVE COUNT CONVERSION

With additive semantics, the combination function becomes
summation, which applies to the join, which is usually done
using multiplication, as well as the count-conversion where
multiplication is replaced by summation as well. We need
some further definitions for the formal operator that is based
on the operator defined by Taghipour [2013]. We use the
framework of general parfactors under which reward func-
tions with PRVs and CRVs as inputs fall, which is also based
on the work cited above.

Definition 1 (Logvar, PRV, parfactor, model). Let R be
a set of random variable (randvar) names, L a set of lo-
gical variable (logvar) names, Φ a set of factor names,
and U a set of constants. All sets are finite. Each logvar
L has a domain dom(L) ⊆ U. A constraint is a tuple
(X , CX) of a sequence of logvars X = (X1, . . . , Xl) and a
set CX ⊆ ×l

i=1dom(Xi). The symbol > for C marks that
no restrictions apply, i.e., CX = ×l

i=1dom(Xi). A PRV
R(L1, . . . , Ll), l ≥ 0, is a construct of a randvar R ∈ R
possibly combined with logvars L1, . . . , Ll ∈ L. If l = 0,
the PRV is parameterless and forms a propositional rand-
var. The term ran(A) denotes the possible values (range)
of a PRV A. We use bold symbols for sets and calligraphic
symbols for sequences of PRVs or logvars. For a set A or
sequenceA, the range refers to all possible combinations of
range values of the PRVs therein. An event A = a denotes
the occurrence of PRV A with range value a ∈ ran(A). If
A is clear from the context, we write a.
We denote a parametric factor (parfactor) by φ(A)|C with
A a sequence of PRVs, φ : ran(A) 7→ R+ a function with
name φ ∈ Φ, and C a constraint on the logvars in g. A PRV
A or logvar L under constraint C is given by A|C or L|C ,
respectively. We may omit |> in A|>, L|>, or φ(A)|>. A
model G is a set of parfactors {gi}ni=1.
A utility parfactor gU maps to a utility PRV U(X) with a
signature of φU(X)(A)|C , i.e., stores the result of φ in U .

The term lv(Γ) refers to the logvars in Γ, which may be a
PRV, a constraint, a parfactor, or a model. The term rv(Γ)

refers to the set of PRVs in a parfactor or model. The term
gr(Γ) denotes the set of all instances of Γ w.r.t. given con-
straints. An instance is an instantiation (grounding) of Γ,
substituting the logvars in Γ with a set of constants from
given constraints. If Γ is a constraint, gr(Γ) refers to the
second component CX . We use the expression lvU (.) to
refer to the logvars of the utility PRV(s) in the input, which
can be a PRV, a parfactor, or a model.

We assume familiarity with operators of relational algebra
such as projection π and join on. An alignment replaces
the occurrences of one object with another. The notion of
count-normalisation says that each instance of one logvar
sequence Z needs to refer to the same number of instances
of another logvar sequence Y. If this number exists, we
refer to it as ncountY|Z.

Operator 1 Count-conversion for utility parfactors
Operator COUNT-CONVERT
Inputs:
(1) Utility parfactor gu = φU(X)(A)|C
(2) Logvar X ∈ lv(A) and X ∈X , to count in gu

Preconditions:
(1) There is exactly one atom Ai ∈ A with X ∈ lv(Ai).
(2) X is count-normalised w.r.t. Z = lv(A) \ {X} in C.
(3) For all counted logvars X# in g:

πX,X#(C) = πX(πX(C))× πX#(πX(C)).
Output: utility parfactor φ′U ′(A′)|C such that
(1) U ′ = #X [U(X)],
(2) A′ = (A1, . . . , Ai−1) ◦ A′i ◦ (Ai+1, . . . , An), A′i =

#X [Ai], and
(3) for each valuation a′ to A′ with a′i = h,

φ′U(X)(. . . , ai−1, h, ai+1, . . .)

=
∑

a∈ran(Ai)

h(ai)φU(X)(. . . , ai−1, ai, ai+1, . . .)

where h is a histogram as defined in Eq. (9)
Postcondition:
GU ≡ GU \ {gu} ∪ COUNT-CONVERT(gu, X)

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<tanya.braun@uni-muenster.de>?Subject=Your UAI 2022 paper

Operator 2 Additive join of utility parfactors
Operator JOIN
Inputs:
(1) Utility parfactor gu′ = φu′(Au′)|Cu′

(2) Utility parfactor gu′′ = φu′′(Au′′)|Cu′′

(3) Alignment θ = {Zu′′ → Zu′}, between the logvars
of gu′ and gu′′

Preconditions:
(1) for v = u′, u′′ : Y v = lv(Av) \ Zv is count-

normalised w.r.t. Zv in πXv (Cv)
Output: utility parfactor φu(Au)|C such that
(1) u = U(X),X = lv(u′) ∪ lv(u′′)θ,
(2) Au = Au′ on Au′′θ,
(3) C = Cu′ on Cu′′θ (component-wise), and
(4) for each valuation a ∈ ran(Au) with au′ = πAu′ (a)

and au′′ = πAu′′ (a)

φu(a) =
1

r′′u
φu′(au′) +

1

r′u
φu′′(au′′)

where r′u = ncountYu′ |Zu′ (πXu′ (Cu′)) and r′′u =
ncountYu′′ |Zu′′ (πXu′′ (Cu′′))

Postcondition: GU ≡ GU \ {gu′ , gu′′} ∪ JOIN(gu′ , gu′′ , θ)

Please refer to Taghipour [2013] for more details on count-
normalisation and count-conversions.

Operator 1 shows the additive count-conversion. The op-
erator transforms a parfactor with a logvar to be counted
directly into a parfactor with the logvar counted. That is, it
turns the PRV in which the logvar occurs into a CRV and
transforms the mapped values accordingly.

The long version of this calculation is grounding the lo-
gvar, joining the (partially) grounded parfactors, determ-
ining counting symmetry, and transforming the grounded
instances into CRVs. Joining parfactors with multiplicat-
ive semantics (mapping to probabilities or potentials) is
done using multiplication, which is also the name of the
operator that the following operator is based on [Taghipour,
2013]. Since rewards have additive semantics, combining
two parfactors does not work with multiplication but with
summation. Operator 2 shows a join for parfactors with
additive semantics.

2 FULL DECTIGER EXAMPLE

We use the specification of the DecTiger benchmark from
the MADP tool box.1. Listing 1 shows the original DecTiger
version in the MADP input format (on the last page). The
DecPOMDP model reads as follows:

• I = {agent1, agent2},

1https://github.com/MADPToolbox/MADP/
blob/master/problems/dectiger.dpomdp

• S, ran(S) = {tiger-left, tiger-right} = {tl, tr},
• A = {Ai}i∈I , ∀i : ran(Ai) = {listen, open-left,

open-right} = {li, ol, or}, and
• O = {Oi}i∈I , ∀i : ran(Oi) = {hear-left, hear-

right} = {hl, hr}.

with T , R, and Ω (= O in the listing) in tabular notation in
full below (lines are reordered compared to the listing to
match the order of the inputs in the definitions).

S A1 A2 Ttl Ttr

tl li li 1 0
tl li ol 0.5 0.5
tl li or 0.5 0.5
tl ol li 0.5 0.5
tl ol ol 0.5 0.5
tl ol or 0.5 0.5
tl or li 0.5 0.5
tl or ol 0.5 0.5
tl or or 0.5 0.5
tr li li 0 1
tr li ol 0.5 0.5
tr li or 0.5 0.5
tr ol li 0.5 0.5
tr ol ol 0.5 0.5
tr ol or 0.5 0.5
tr or li 0.5 0.5
tr or ol 0.5 0.5
tr or or 0.5 0.5

S A1 A2 R

tl li li −2
tl li ol −101
tl li or 9
tl ol li −101
tl ol ol −50
tl ol or −100
tl or li 9
tl or ol −100
tl or or 20
tr li li −2
tr li ol 9
tr li or −101
tr ol li 9
tr ol ol 20
tr ol or −100
tr or li −101
tr or ol −100
tr or or −50

S A1 A2 Ωhl,hl Ωhr,hl Ωhl,hr Ωhr,hr

tl li li 0.7225 0.1275 0.1275 0.0225
tl li ol 0.25 0.25 0.25 0.25
tl li or 0.25 0.25 0.25 0.25
tl ol li 0.25 0.25 0.25 0.25
tl ol ol 0.25 0.25 0.25 0.25
tl ol or 0.25 0.25 0.25 0.25
tl or li 0.25 0.25 0.25 0.25
tl or ol 0.25 0.25 0.25 0.25
tl or or 0.25 0.25 0.25 0.25
tr li li 0.7225 0.1275 0.1275 0.0225
tr li ol 0.25 0.25 0.25 0.25
tr li or 0.25 0.25 0.25 0.25
tr ol li 0.25 0.25 0.25 0.25
tr ol ol 0.25 0.25 0.25 0.25
tr ol or 0.25 0.25 0.25 0.25
tr or li 0.25 0.25 0.25 0.25
tr or ol 0.25 0.25 0.25 0.25
tr or or 0.25 0.25 0.25 0.25

with Ts′ = T (s′, s, a1, a2), s′ ∈ {tl, tr} and Ωo1,o2 =
Ω((o1, o2), s, a1, a2), o1, o2 ∈ {hl, hr}. The transition
function only states that as long as both agents only listen,
the state does not change (identity). When at least one agent

https://github.com/MADPToolbox/MADP/blob/master/problems/dectiger.dpomdp
https://github.com/MADPToolbox/MADP/blob/master/problems/dectiger.dpomdp

opens a door, the game basically restarts with the new state
being set according to a uniform distribution. It is basically
a way of keeping the game infinite by resetting the state
to an arbitrary one whenever the agents end the game by
opening a door (to either lose—tiger, or win—gold). One
could argue that opening a door only ends the game and
might not necessarily imply a restart. In that case, one would
keeping the state as is in all cases ((1, 0) distribution for
all tl lines, (0, 1) distribution for all tr lines) and re-spawn
the game with an arbitrary starting state, sampled from a
(0.5, 0.5) distribution, for do-overs.

The DecTiger model has the same action and observation
sets for both agents and exhibits a counting symmetry. Thus,
it can be rewritten into a counting model with K = 1. We
index the one partition with c to distinguish it from the later
case where we take an isomorphic viewpoint.

• Ic = {agent1, agent2},
• S̄ = S = {tl, tr},
• Āc = {#X [A(X)]}, ran(A(X)) = {li, ol, or},
• Tc(S′, S,A) = P (S′ | S,A),
• Rc(S,A),
• Ōc = {#X [O(X)]}, ran(O(X)) = {hl, hr}.
• Ωc(O, S) = P (O | S,A)

with T̄c, R̄c, and Ω̄c as follows (#A short for #X [A(X)];
histogram positions: [li, ol, or]):

S #A Tc,tl Tc,tr

tl [2, 0, 0] 1.0 0.0
tl [1, 1, 0] 0.5 0.5
tl [1, 0, 1] 0.5 0.5
tl [0, 1, 1] 0.5 0.5
tl [0, 2, 0] 0.5 0.5
tl [0, 0, 2] 0.5 0.5
tr [2, 0, 0] 0.0 1.0
tr [1, 1, 0] 0.5 0.5
tr [1, 0, 1] 0.5 0.5
tr [0, 1, 1] 0.5 0.5
tr [0, 2, 0] 0.5 0.5
tr [0, 0, 2] 0.5 0.5

S #A Rc

tl [2, 0, 0] −2
tl [1, 1, 0] −101
tl [0, 2, 0] −50
tl [0, 1, 1] −100
tl [0, 0, 2] 20
tl [1, 0, 1] 9
tr [2, 0, 0] −2
tr [1, 1, 0] 9
tr [0, 2, 0] 20
tr [0, 1, 1] −100
tr [0, 0, 2] −50
tr [1, 0, 1] −101

S #A Ωc,[2,0] Ωc,[1,1] Ωc,[0,2]

tl [2, 0, 0] 0.7225 0.1275 0.0225
tl [1, 1, 0] 0.25 0.25 0.25
tl [0, 2, 0] 0.25 0.25 0.25
tl [0, 1, 1] 0.25 0.25 0.25
tl [0, 0, 2] 0.25 0.25 0.25
tl [1, 0, 1] 0.25 0.25 0.25
tr [2, 0, 0] 0.7225 0.1275 0.0225
tr [1, 1, 0] 0.25 0.25 0.25
tr [1, 0, 1] 0.25 0.25 0.25
tr [0, 2, 0] 0.25 0.25 0.25
tr [0, 1, 1] 0.25 0.25 0.25
tr [0, 0, 2] 0.25 0.25 0.25

As the histogram [1, 1] in Ωc stands for two joint obser-
vations, (hl, hr) and (hr, hl), the probability for Ωc,[1,1]

counts twice. In general, a multinomial coefficient provides
the number of inputs represented by a histogram, i.e.,
nk!/

∏
l nl! in reference to Eq. (9).

For an isomorphic model, one would need to be able to
factorise T̄c, R̄c, and Ω̄c into identical functions per agent,
which is immediately possible for Ω̄c (and also provided
like this in the book by Oliehoek and Amato [2016]):

S A(X) Ωi,hl Ωi,hr

tl li 0.85 0.15
tl ol 0.5 0.5
tl or 0.5 0.5
tr li 0.85 0.15
tr ol 0.5 0.5
tr or 0.5 0.5

Functions T̄c and R̄c do not factorise accordingly. T̄c does
not factorise as we have this mix of uniform and identity
distributions, which would lead to identity distributions
whenever one listen operation is involved. However, the
ground case only has identity distributions when both agents
listen. If not encoding the reset into T , i.e., using identity
distributions in all lines, then T̄c would factorise trivially:

S A(X) Ti,tl Ti,tr

tl li 1 0
tl ol 1 0
tl or 1 0
tr li 0 1
tr ol 0 1
tr or 0 1

A factorisation of R̄c does not work out for all inputs. Match-
ing the peak-shaped histograms in their reward, we could
factorise parts of it as follows, leading to different values in
the lines marked with .

S A(X) Ri

tl li −1
tl ol −25
tl or 10
tr li −1
tr ol 10
tr or −25

S #X [A(X)] Rc

tl [2, 0, 0] −2
tl [1, 1, 0] −26
tl [0, 2, 0] −50
tl [0, 1, 1] −15
tl [0, 0, 2] 20
tl [1, 0, 1] 9
tr [2, 0, 0] −2
tr [1, 1, 0] 9
tr [0, 2, 0] 20
tr [0, 1, 1] −15
tr [0, 0, 2] −50
tr [1, 0, 1] −26

There are two other options. One option would be to match
the rewards for the histograms that represent combinations
of listening and opening a door:

S A(X) Ri

tl li −1
tl ol −100
tl or 10
tr li −1
tr ol 10
tr or −100

S #X [A(X)] Rc

tl [2, 0, 0] −2
tl [1, 1, 0] −101
tl [0, 2, 0] −200
tl [0, 1, 1] −90
tl [0, 0, 2] 20
tl [1, 0, 1] 9
tr [2, 0, 0] −2
tr [1, 1, 0] 9
tr [0, 2, 0] 20
tr [0, 1, 1] −90
tr [0, 0, 2] −200
tr [1, 0, 1] −101

The other option would be to match the rewards for those
histograms with combinations of opening different doors:

S A(X) Ri

tl li −1
tl ol −110
tl or 10
tr li −1
tr ol 10
tr or −110

S #X [A(X)] Rc

tl [2, 0, 0] −2
tl [1, 1, 0] −111
tl [0, 2, 0] −220
tl [0, 1, 1] −100
tl [0, 0, 2] 20
tl [1, 0, 1] 9
tr [2, 0, 0] −2
tr [1, 1, 0] 9
tr [0, 2, 0] 20
tr [0, 1, 1] −100
tr [0, 0, 2] −220
tr [1, 0, 1] −111

So, an isomorphic model using one of the three options
would not be able to capture that both agents agreeing on an
action, even though it opens the door to the tiger, costs them
less than opening different doors. Here, one would need
the expressiveness of a counting model. This limitation is
a direct consequence of what we observed in the proof on
Lemma 3: A non-peak-shaped histogram cannot map to a
larger value than a peak-shaped histogram when the CRV
came from a PRV as given here.

However, an isomorphic model would automatically exclude
any policy where one agent opens the door while the other
agent either listens or opens the other door. The first one is
sort of a waste of the listening operation as the game ends
nonetheless and the observation result cannot be used. The
second one means that the door to the tiger is definitely
opened, therefore, it should be avoided, highlighting how
isomorphic models can help to determine sensible policies.

Using the ground version, the counting version, and one of
the isomorphic versions, let us have a brief look at the be-
haviour of the example under the complexities given under
a rising N with one exception: We use the binomial coeffi-
cient to actually calculate the number of possible histograms
and do not use the upper bound of na and no. In addition,
we include artificial partitions of the same dimensions to see
the effect of rising K. So, a = 3, o = 2, s = 2, n = N if
K = 1. Otherwise, n = 100 and N = K · n. We set τ = 2
arbitrarily. Figures 1 to 4 show the behaviour according to
the complexities derived in the paper for T (as the worst
case of the three functions in this setup), the evaluation cost,
and the policy space. Please note the log-scale on the y-axis.
The figures highlight impressively the differences between
the different models in terms of complexity.

Number of agents N

Tr
an

si
tio

n
fu

nc
tio

n
si

ze

101

102

103

104

105

0 20 40 60 80 100

Ground
Counting
Isomorphic

Figure 1: The transition function size T under rising N

Number of agents N

E
va

lu
at

io
n

co
st

101

102

103

104

105

0 20 40 60 80 100

Ground
Counting
Isomorphic (with log n)
Isomorphic (only ranking)

Figure 2: The policy evaluation cost C under rising N

Number of Agents N

P
ol

ic
y

sp
ac

e
si

ze

101

102

103

104

105

0 20 40 60 80 100

Ground
Counting
Isomorphic

Figure 3: The policy space size P under rising N

Number of partitions K, n = 10

C
os

t /
 s

iz
e

100

103

106

109

1012

1015

2 4 6 8 10

Ground T
Ground C

Counting T
Counting C

Isomorphic T
Isomorphic C (log n)
Isomorphic C (ranking)
Isomorphic P

Figure 4: Transition function sizes and evaluation cost for
all settings and policy space sizes for the isomorphic setting
under rising K with n = 10

References

Frans A. Oliehoek and Christopher Amato. A Concise In-
troduction to Decentralised POMDPs. Springer, 2016.

Nima Taghipour. Lifted Probabilistic Inference by Variable
Elimination. PhD thesis, KU Leuven, 2013.

Listing 1 DecTiger specification in the MADP toolbox (without the comments from the source)

a g e n t s : 2
d i s c o u n t : 1
v a l u e s : reward
s t a t e s : t i g e r − l e f t t i g e r − r i g h t
s t a r t : un i fo rm
a c t i o n s :
l i s t e n open − l e f t open − r i g h t
l i s t e n open − l e f t open − r i g h t
o b s e r v a t i o n s :
hear − l e f t hear − r i g h t
hear − l e f t hear − r i g h t
T r a n s i t i o n p r o b a b i l i t i e s
T : * : un i fo rm
T : l i s t e n l i s t e n : i d e n t i t y
O b s e r v a t i o n p r o b a b i l i t i e s : <2 a c t i o n s > : < s t a t e > : <2 o b s e r v a t i o n s > : p r o b a b i l i t y
O: * : un i fo rm
O: l i s t e n l i s t e n : t i g e r − l e f t : hear − l e f t hear − l e f t : 0 .7225
O: l i s t e n l i s t e n : t i g e r − l e f t : hear − l e f t hear − r i g h t : 0 .1275
O: l i s t e n l i s t e n : t i g e r − l e f t : hear − r i g h t hear − l e f t : 0 .1275
O: l i s t e n l i s t e n : t i g e r − l e f t : hear − r i g h t hear − r i g h t : 0 .0225
O: l i s t e n l i s t e n : t i g e r − r i g h t : hear − l e f t hear − l e f t : 0 .7225
O: l i s t e n l i s t e n : t i g e r − r i g h t : hear − l e f t hear − r i g h t : 0 .1275
O: l i s t e n l i s t e n : t i g e r − r i g h t : hear − r i g h t hear − l e f t : 0 .1275
O: l i s t e n l i s t e n : t i g e r − r i g h t : hear − r i g h t hear − r i g h t : 0 .0225
Rewards : <2 a c t i o n s > : < s t a t e > : * : * : reward
R : l i s t e n l i s t e n : * : * : * : −2
R : open − l e f t open − l e f t : t i g e r − l e f t : * : * : −50
R : open − r i g h t open − r i g h t : t i g e r − r i g h t : * : * : −50
R : open − l e f t open − l e f t : t i g e r − r i g h t : * : * : 20
R : open − r i g h t open − r i g h t : t i g e r − l e f t : * : * : 20
R : open − l e f t open − r i g h t : t i g e r − l e f t : * : * : −100
R : open − l e f t open − r i g h t : t i g e r − r i g h t : * : * : −100
R : open − r i g h t open − l e f t : t i g e r − l e f t : * : * : −100
R : open − r i g h t open − l e f t : t i g e r − r i g h t : * : * : −100
R : open − l e f t l i s t e n : t i g e r − l e f t : * : * : −101
R : l i s t e n open − r i g h t : t i g e r − r i g h t : * : * : −101
R : l i s t e n open − l e f t : t i g e r − l e f t : * : * : −101
R : open − r i g h t l i s t e n : t i g e r − r i g h t : * : * : −101
R : l i s t e n open − r i g h t : t i g e r − l e f t : * : * : 9
R : l i s t e n open − l e f t : t i g e r − r i g h t : * : * : 9
R : open − r i g h t l i s t e n : t i g e r − l e f t : * : * : 9
R : open − l e f t l i s t e n : t i g e r − r i g h t : * : * : 9

	Additive Count Conversion
	Full DecTiger Example

