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Here we provide complete proofs for the results in the main paper, as well as additional empirical results.

1 GRADIENT FLOW - ASSUMPTIONS

When gradient flow is implemented on non-differentiable functions (e.g., ReLU) the implementation can choose from
among a set of possible sub-differentials. Here we define which of these our analysis will use. This choice corresponds to
the common way gradient methods are implemented in practice for the ReLU function.

Recall that the gradient flow step is dθ(t)

dt ∈ −∂
◦L(θ(t)) for a.e. t, where:

∂◦f(x) = conv
{

lim
k→∞

∇f(xk) | xk → x and f is differentiable at xk

}
(7)

is the Clarke’s subdifferential.

As discussed in the main text, we will assume that the gradient flow step selects a specific vector in the subdifferential.
This is done by setting the subgradient of ReLU at 0 in advance to a constant value a ∈ [0, 1]. Namely, this value of the
subgradient is used for all neurons and in all iterations. Usually a is set to be either 0 or 1.

Formally, for each i ∈ r we denote dw
(t)
i

dt = 1
m

∑
x∈S

dw
(t)
i (x)

dt . Here, dw
(t)
i (x)

dt is the gradient update of w(t)
i restricted to

the summand that depends on x in L (Eq. (2) of the main paper). Similarly, we denote db
(t)
i

dt = 1
m

∑
x∈S

db
(t)
i (x)

dt . For our
result, we need the following technical assumption.

Assumption 1.1. There exists an a ∈ [0, 1] such that for every step t > 0, every neuron i ∈ [r], and every sample x ∈ S if

w
(t)
i · x+ b

(t)
i = 0 then dw

(t)
i (x)

dt = ayℓ′
(
yN(x;θ(t))

)
x and db

(t)
i

dt = ayℓ′
(
yN(x;θ(t))

)
.

2 PROOF OF THEOREM 5.1

We first need the following notation and recall the KKT conditions in our context. Let ∂◦σ(wi · xl + b) ⊆ RD+1 be the
subdifferential of neuron i given input xl. It holds that:

∂◦σ(wi · xl + b) =


{(xl, 1)} if wi · xl + bi > 0

{(0, 0)} if wi · xl + bi < 0

[0, 1]D+1 if wi · xl + bi = 0

KKT conditions: A feasible point θ = (W , b, c) of the min norm problem (Eq. (4) of the main paper) is a KKT point if
there exist λ1, . . . λm ≥ 0 such that:
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1. Stationarity:

∀i ∈ [r], wi =
∑
l∈[m]

λlylhil and bi =
∑
l∈[m]

λlylgil (8)

and
c =

∑
j∈[m]

λjyj (9)

where (hil, gil) ∈ ∂◦σ(wi · xl + b).

2. Complementary slackness: if yiN(xi, θ) > 1, then λi = 0.

We now proceed to prove the theorem. In the first part, we show that by Assumption 1.1, we can restrict the possible values
of hil, gil for a KKT point that GF converges to. In the second part, we prove properties of neurons that memorize samples.
In the third part, we use the previous parts to show that memorizing solutions cannot be KKT points.

Part 1: In this part we prove the following lemma.

Lemma 2.1. Assume that Assumption 1.1 holds and GF converges to a KKT point with parameters hil and gil for 1 ≤ i ≤ r
and 1 ≤ l ≤ n, as defined in Eq. (8). Then, (hil, gil) ∈ {(xl, 1), (axl, a), (0, 0)}.

Proof. For each 1 ≤ l ≤ n, 1 ≤ i ≤ r and t > 0 let
(
h
(t)
il , g

(t)
il

)
∈ ∂◦σ

(
w

(t)
i · xl + b

(t)
i

)
be the corresponding values of

the GF step at time t in the subdifferential ∂◦σ
(
w

(t)
i · xl + b

(t)
i

)
. By inspecting the proofs of Lyu & Li (2020) and Dutta

et al. (2013), we see that (hil, gil) is equal to the limit of a convergent subsequence of
{(

h
(tj)
il , g

(tj)
il

)}∞

j=0
.

By assumption 1.1, we know that for each j,
(
h
(tj)
il , g

(tj)
il

)
∈ {(xl, 1), (axl, a), (0, 0)}. Therefore, the limit also satisfies

(hil, gil) ∈ {(xl, 1), (axl, a), (0, 0)}.

Part 2: We will first need the following definition.

Definition 2.1. Given a sample x̂ ∈ X and index j ∈ [D], the sample with Hamming distance one from x̂ at index j is
defined asH(x̂, j) ∈ X and satisfies the following:

H(x̂, j)j = −xj and ∀j′ ∈ [D]\{j} H(x̂, j)j′ = xj′ (10)

The set of all samples with Hamming distance one from x̂ is defined as: Ψ(x̂) = {x′ ∈ X | ∃j ∈ [D] H(x̂, j) = x′}. Note,
|Ψ(x)| = D

Using this definition, we rephrase Lemma 5.1 of the main text and prove those properties of memorizing neurons (Definition
5.1 of the main paper):

Lemma 2.2. Let D > 2. If a neuron i ∈ [r] memorizes a sample x̂ ∈ Sx, then it satisfies the following properties:

1. x̂j = sign(wij) for all 1 ≤ j ≤ D.

2. For x ∈ X if wi · x+ bi = 0 then x ∈ Ψ(x̂).

3. bi < 0

Proof. Property 1: Assume by contradiction that there exists j ∈ [D] such that sign(wij) ̸= x̂j . Then wi · H(x̂, j) + bi ≥
wi · x̂+ bi > 0, in contradiction to the memorization assumption in Eq. (5) of the main paper.

Property 2: Assume by contradiction that there exists x ∈ X\ (Ψ(x̂) ∪ {x̂}) such that wi · x + bi = 0. We define
J = {j ∈ [D] | xj = −x̂j} and j′ ∈ J for some index in J . By Property 1, the sample x̃ = H(x̂, j′) satisfies the



following:

wi · x−wi · x̃ =
∑

j∈[D]\J

wijxj +
∑
j∈J

wijxj −
∑

j∈[D]\{j′}

wij x̃j − wij′ x̃j

=
∑

j∈[D]\J

wij x̂j −
∑
j∈J

wij x̂j −
∑

j∈[D]\{j′}

wij x̂j + wij′ x̂j (11)

=
∑

j∈[D]\J

|wij | −
∑
j∈J

|wij | −
∑

j∈[D]\{j′}

|wij |+ |wij′ | = −2
∑

j∈J\{j′}

|wij |

Since x /∈ Ψ(x̂), it holds that J\{j′} ̸= ∅. Furthermore, by Property 1, ∀j ∈ J\{j′} wij ̸= 0. Thus,
∑

j∈J\{j′}
|wij | > 0

which implies that wi · x < wi · x̃. We know that wi · x + bi = 0, therefore wi · x̃ + bi > 0. This contradicts the
memorization assumption in Eq. (5) of the main paper.

Property 3: Assume by contradiction that bi ≥ 0. We define j′ = argminj∈[D]{|wij |}. For the sample x̃ = H(x̂, j′), the
following holds by Property 1:

wi · x̃ =
∑

j∈[D]\{j′}

wij x̂j − wij′ x̂j′ =
∑

j∈[D]\{j′}

|wij | − |wij′ | > 0 (12)

Since D > 2, we have
∑

j∈[D]\{j′}
|wij | − |wij′ | > 0. Thus, wi · x̃+ bi > 0 which contradicts the memorization assumption

in Eq. (5) of the main paper.

Part 3: Now, we can proceed to prove Theorem 5.1.

Consider a network with parameters θ̄ = (W̄ , b̄, c̄), neuron i ∈ [r] and a sample (x̂, ŷ) ∈ S such that Eq. (5) of the main
paper holds (i.e., the neuron i memorizes the sample x̂). We assume by contradiction that there exists an initialization θ(0)

such that if we run gradient flow from θ(0) using µ then the weights θ(t) will converge to θ̄. According to the results of Lyu
& Li (2020); Ji & Telgarsky (2020), we know that there exists α > 0 such that θ = (W , b, c) = αθ̄ is a KKT point of Eq.
(4) of the main paper and Eq. (8) holds for θ. Note that for θ, neuron i memorizes the sample (x̂, ŷ) as well.

Given a sample xl ∈ Sx we can see that the following holds:

1. If xl = x̂ then (hil, gil) = {(x̂, 1)}.

2. If xl ∈ Ψ(x̂) then (hil, gil) = {(axl, a)} where a ∈ [0, 1] by Assumption 1.1.

3. If xl /∈ Ψ(x̂) then (hil, gil) = {(0, 0)} by Property 2 of Lemma 2.2.

We will show that for every λ1, . . . , λ|S| ≥ 0, Eq. (8) does not hold. We can assume without loss of generality that all the
samples in xl ∈ Ψ(x)∩Sx are support vectors and (hil, gil) = (xl, 1). This is because if one of the samples is not a support
vector then we can take λl = 0. Furthermore, if (hil, gil) = (0, 0) then we can take λl = 0 and if (hi, gi) = (axl, a) for
a > 0 we can set λl

a instead of λl. Under this assumption we can write Eq. (8) for θ̃ using only λ1, . . . , λD and λ̂ that
correspond to the samples of Ψ(x̂) and x̂, respectively:

wi =
∑

xl∈Ψ(x̂)∩Sx

λlylxl + λ̂ŷx̂ and bi =
∑

xl∈Ψ(x̂)∩Sx

λlyl + λ̂ŷ (13)

Assume by contradiction that there exists xl′ = H(x̂, j′) such that xl′ = Ψ(x̂)\Sx. The following holds by Eq. (13) and
Definition 2.1:

(1) wij′ = λ̂ŷx̂j′ +
∑

xl∈Ψ(x̂)∩Sx

λlylx̂j′

(2) bi = λ̂ŷ +
∑

xl∈Ψ(x̂)∩Sx

λlyl (14)



Using the first property in Lemma 2.2:

(1) wij′ = λ̂ŷ sign(wij′) +
∑

xl∈Ψ(x̂)∩Sx

λlyl sign(wij′)

(2) bi = λ̂ŷ +
∑

xl∈Ψ(x̂)∩Sx

λlyl (15)

Therefore,

(1) |wij′ | = λ̂ŷ +
∑

xl∈Ψ(x̂)∩Sx

λlyl

(2) bi = λ̂ŷ +
∑

xl∈Ψ(x̂)∩Sx

λlyl (16)

This means that 0 ≤ |wij′ | = bi, which is in contradiction to the third property of Lemma 2.2. Therefore, we can assume
from now on that Ψ(x̂) ⊆ Sx, and we can write the KKT conditions as follows:

wi =
∑

xl∈Ψ(x̂)

λlylxl + λ̂ŷx̂ and bi =
∑

xl∈Ψ(x̂)

λlyl + λ̂ŷ (17)

Given xl′ = H(x̂, j′), the following holds by Eq. (17) and Definition 2.1:

(1) wij′ = λ̂ŷx̂j′ +
∑

xl∈Ψ(x̂)\{xl′}

λlylx̂j′ − λl1yl1 x̂j′

(2) bi = λ̂ŷ +
∑

xl∈Ψ(x̂)

λlyl (18)

Using the first property in Lemma 2.2:

(1) wij′ = λ̂ŷ sign(wij′) +
∑

xl∈Ψ(x̂)\{xl′}

λlyl sign(wij′)− λl1yl′ sign(wij′)

(2) bi = λ̂ŷ +
∑

xl∈Ψ(x̂)

λlyl (19)

Therefore,

(1) |wij′ | = λ̂ŷ +
∑

xl∈Ψ(x̂)\{xl′}

λlyl − λl′yl′

(2) bi = λ̂ŷ +
∑

xl∈Ψ(x̂)

λlyl (20)

The result of subtracting (2)− (1) is:
bi − |wij′ | = 2λl′yl′ (21)

Next we show that it must hold that yl′ = −1. To see this, note that the third property of Lemma 2.2 implies bi < 0 and
therefore bi − |wij′ | < 0. Assuming in contradiction that yl′ = 1, the RHS of Eq. (21) satisfies 0 ≤ 2λl′yl′ . But we just saw
that the LHS satisfies bi − |wij′ | < 0. We therefore have a contradiction and conclude that yl′ = −1. We can conclude that
Ψ(x̂) contains only negative samples.

Next we argue that ŷ = −1. To see this, assume in contradiction that ŷ = 1. Then there exists a n ∈ [K] such that x̂ satisfies
the term t∗n. Due to the fact that K ≥ 2, we know that there exists j ∈ [D]\An. Then,H(x̂, j) ∈ Ψ(x̂) is a positive sample
in contradiction to the fact that Ψ(x̂) contains only negative samples, and therefore ŷ = −1

By Eq. (21) we know that for every j ∈ [D] a sample xl = H(x̂, j) satisfies the following: λl =
1
2 (|wij | − bi). If we assign

this in Eq. (20), we get:

|wij′ | = λ̂ŷ +
∑

xl∈Ψ(x̂)\{xl′}

1

2
(bi − |wij |)−

1

2
(bi − |wij′ |) (22)



Therefore,

0 = λ̂ŷ +
1

2
(D − 2)bi −

1

2
||wi||1 (23)

But this results in a contradiction, because we know that λ̂ŷ ≤ 0, 1
2 (D − 2)bi < 0 and − 1

2 ||wi||1 < 0.

Thus, we conclude that gradient flow cannot converge to memorizing solutions.

3 PROOF OF THEOREM 6.1

We prove the theorem in several parts. We first prove properties of a perfect solution (Section 3.1). In Section 3.2 we prove
several results regarding the bias threshold. In Section 3.3 we prove auxiliary lemmas and in Section 3.4 we prove the
alignment of the neurons of the optimal solutions to the terms of the DNF. We conclude the proof in Section 3.5.

3.1 A SIMPLE PROPERTY OF PERFECT SOLUTIONS

Recall the definitions, S+ = {x | (x, 1) ∈ S} and S− = {x | (x,−1) ∈ S}. We first need the following definitions. We
say that a solution (W , b) satisfies the MIN+ property if for any positive point x ∈ S+ there exists I ⊆ [r] such that∑
i∈I

wi · x+ bi ≥ 2. We say that a solution satisfies the MIN− property if for any negative point x ∈ S− and for all i ∈ [r],

wi · x+ bi ≤ 0.

Lemma 3.1. (W , b) is a perfect solution if and only if (W , b) satisfies MIN+ and MIN−.

Proof. If θ = (W , b) is a perfect solution, then for all (x, y) ∈ S, yN(x;W , b) ≥ 1. Therefore, if y = 1,
∑
i∈[r]

σ(wi · x+

bi) ≥ 2. Thus, there exists I ⊆ [r] such that
∑
i∈I

wi ·x+ bi ≥ 2 and the MIN+ holds. If y = −1, then
∑
i∈[r]

σ(wi ·x+ bi) ≤ 0

and therefore for all i ∈ [r], wi · x+ bi ≤ 0. The other direction follows similarly.

We note that one direct consequence of Lemma 3.1 is that given θ if a negative x ∈ S− is activated by a neuron i ∈ [r], i.e.,
wi · x+ bi > 0, then the MIN− property doesn’t hold, and θ is not a perfect solution.

3.2 PROOF OF LEMMA 6.1

In this section we show that when Sx = X , the bias of any neuron in a perfect solution is upper bounded by a certain value
which we call the bias threshold. To simplify the formulation of this section we define the following:

Definition 3.1. We define the set of indices which are not active in any term as the noisy indices and denote them by
AK+1 = [D]\ ∪n∈[K] An.

Definition 3.2. For each term n ∈ [K] of f∗ and i ∈ [r] define Vn(wi) = max

{
min
j∈An

{wij} , 0
}

.

Definition 3.3. The bias threshold for a weight w is BT (w) = −||w||1 + 2
∑

n∈[K]

Vn(w).

Note, BT (w) ≤ 0 because every term includes at least 2 literals. Using those definitions we rephrase Lemma 6.1 and prove
it:

Lemma 3.2. Assume that Sx = X . (W , b) satisfies that ∀i ∈ [r] bi ≤ BT (wi) and satisfies the MIN+ property if and
only if the network is a perfect solution.

Proof. We will show that given a neuron (w, b), there is a negative sample x ∈ X for which w · x+ b > 0 if and only if
b > BT (w). By showing that and using the assumption: Sx = X , we can conclude that ∀i ∈ [r] bi ≤ BT (wi) if and only
if the MIN− property holds. By Combining this with Lemma 3.1, we can prove our claim.



Given neuron (w, b), we define the minimum index of a term n ∈ [K] as Jn = argmin
j∈An

{wj}. Consider a sample x̂ ∈ X

that is defined by:

x̂j =

{
− sign(wj) ∃n ∈ [K] : Vn(w) > 0 ∧ j = Jn

sign(wj) otherwise
(24)

For every term n ∈ [K], if Vn(w) > 0 then x̂Jn
= − sign(wJn

) = −1. Otherwise, Vn(w) = 0 and there exists j ∈ An

such that wj < 0, i.e., x̂j = sign(wj) = −1. In any case, x̂ · t∗n < |An|. Therefore, the label of this sample is negative and
denote it by ŷ = −1.

We show that w · x̂ = −BT (w) by,

w · x̂ =
∑
j∈[D]

wj · x̂j =
∑

n∈[K+1]

[∑
j∈An

wj · x̂j

]

=
∑

n∈[K] and Vn(w)>0

[ ∑
j∈An\{Jn}

wj · sign(wj)− wJn
· sign(wJn

)

]

+
∑

n∈[K] and Vn(w)=0

[∑
j∈An

wj · sign(wj)

]
+

∑
j∈AK+1

wj · sign(wj) (25)

=
∑

n∈[K] and Vn(w)>0

[ ∑
j∈An\{Jn}

|wj | − |wJn
|

]
+

∑
n∈[K] and Vn(w)=0

[∑
j∈An

|wj |

]
+

∑
j∈AK+1

|wj |

=
∑

n∈[K] and Vn(w)>0

[∑
j∈An

|wj | − 2Vn(w)

]
+

∑
n∈[K] and Vn(w)=0

[∑
j∈An

|wj | − 2Vn(w)

]
+

∑
j∈AK+1

|wj |

=
∑

n∈[K]

[∑
j∈An

|wj | − 2Vn(w)

]
+

∑
j∈AK+1

|wj | =
∑
j∈[D]

|wj | − 2
∑

n∈[K]

Vn(w)

= ||w||1 − 2
∑

n∈[K]

Vn(w) = −BT (w)

For the first direction, if b > BT (w) then w · x̂+ b = BT (w) + b > 0, as desired.

In the second direction, assume that there is a negative sample x ∈ X such that w · x + b > 0. We will show that
x ·w ≤ x̂ ·w. Every term n ∈ [K] satisfies for all j ∈ An\{Jn}:

xjwj ≤ |wj | = sign(wj)wj = x̂jwj (26)

If Vn(w) = 0, then the index j = Jn also satisfies Eq. (26), by the definition of x̂. Otherwise Vn(w) > 0 and we know
that there exists j′ ∈ An such that xj′ = −1 (since x is negative), and wJn

, wj′ > 0. If Jn = j′, then xj′wj′ = x̂Jn
wJn

.
Otherwise, the following holds:

xj′wj′ + xJn
wJn
≤ −wj′ + wJn

≤ 0 ≤ wj′ − wJn
≤ x̂j′wj′ + x̂Jn

wJn
(27)

Note that every index in j ∈ AK+1 satisfies Eq. (26) as well. Therefore, x ·w ≤ x̂ ·w. We can conclude that:

0 < x ·w + b ≤ x̂ ·w + b = −BT (w) + b (28)

which implies that b > BT (w) as desired.

From this point, we will assume Sx = X without mentioning it explicitly.



3.3 AUXILIARY LEMMAS

We first define a special positive sample for every term. The special sample is a sample where all indices corresponding to
the term will have positive values, and all other indexes will have negative values. The special samples will be used as the
hardest positive samples to satisfy the MIN+ property.

Definition 3.4. For a term n ∈ [K], we define the special sample x(n) ∈ Sx of this term as follows:

∀j ∈ An x
(n)
j = 1 and ∀j ∈ [D]\An x

(n)
j = −1 (29)

We denote the set of all the special samples by O =
{
x ∈ S+ | ∃n ∈ [K] x = x(n)

}
Lemma 3.3. Given θ = (W , b), assume the following conditions are satisfied:

1. ∀i ∈ [r], ∀j ∈ [D] wij ≥ 0.

2. For every x ∈ O there exists I ⊆ [r] such that
∑
i∈I

wi · x+ bi ≥ 2.

Then θ satisfies the MIN+ property.

Proof. Let x ∈ S+. Then ∃n ∈ [K] such that ∀j ∈ An xj = 1. By the second assumption, ∃I ⊆ [r] such that∑
i∈I

wi · x(n) + bi ≥ 2.

For every i ∈ [r] the following holds:

wi · x =
∑
j∈[D]

wijxj =
∑
j∈An

wij +
∑

j∈[D]\An

xjwij (30)

From the first condition of the claim we can deduce that∑
j∈An

wij +
∑

j∈[D]\An

xjwij ≥
∑
j∈An

wij −
∑

j∈[D]\An

wij =
∑
j∈[D]

wijx
(n)
j = wi · x(n) (31)

Then: ∑
i∈I

σ(wi · x+ bi) ≥
∑
i∈I

σ(wi · x(n) + bi) ≥ 2 (32)

and θ satisfies the MIN+ property for x as required.

The following definition will be very useful in our analysis.

Definition 3.5. Given a min-norm solution θ∗ = (W ∗, b∗), we say that the a solution θ̂ = (Ŵ , b̂) is an i-modified solution
if the following holds:

∀i′ ∈ [r]\{i} ŵi′ = w∗
i′ and b̂i′ = b∗i′ (33)

Thus, given a min-norm solution, to define an i-modified solution, we only need to define the neuron (wi, bi).

Lemma 3.4. Given a min-norm solution θ∗ = (W ∗, b∗), every i ∈ [r] satisfies:

1. b∗i = BT (w∗
i ).

2. ∀j ∈ [D] w∗
ij ≥ 0.

3. ∃n ∈ [K] such that ∀j ∈ An w∗
ij ≥ 0 and ∀j ∈ [D]\An w∗

ij = 0.

Proof. Property 1: Assume by contradiction that b∗i ̸= BT (w∗
i ). By Lemma 3.2, bi has to be smaller than BT (w∗

i ),
because otherwise θ∗ is not a perfect solution. Now consider the i-modified solution, θ̂, which is defined by:

ŵi = w∗
i , b̂i = BT (ŵ) (34)



By the assumption b̂i > b∗i . Then, every x ∈ Sx satisfies the following:

x ·w∗
i + b∗i < x · ŵi + b̂i (35)

Since θ∗ satisfies the MIN+ property, the above implies that θ̂ satisfies it as well.

From Definition 3.5 every x ∈ S− satisfies:

∀i′ ∈ [r]\{i} 0 > x ·w∗
i′ + bi′ = x · ŵi′ + b̂i′ (36)

In addition, we saw in the proof of Lemma 3.2 that if b̂i = BT (ŵ) then 0 ≥ x · ŵi + b̂i. Therefore, θ̂ satisfies the MIN−
property. By Lemma 3.1, θ̂ is a perfect solution.

From Definition 3.3 the bias threshold is nonpositive and therefore b∗i < b̂i ≤ 0 implies that |b̂i| < |b∗i |. We know that
ŵi = w∗

i and therefore ||(ŵi, b̂i)||22 < ||(w∗
i , b

∗
i )||22 which contradicts the optimally of θ∗.

Property 2: Assume by contradiction that ∃j′ ∈ [D] such that w∗
ij′ < 0. Consider the following i-modified solution θ̂:

∀j ∈ [D]\{j′} ŵij = w∗
ij ∧ ŵij′ = 0 ∧ b̂i = BT (ŵi) (37)

We want to show that: ∑
n∈[K]

Vn(w
∗
i ) =

∑
n∈[K]

Vn(ŵi) (38)

If ∃n′ ∈ [K] such that j′ ∈ An′ , then it follows that Vn′(w∗
i ) = Vn′(ŵi) = 0 and Eq. (38) is satisfied. Otherwise,

j′ ∈ AK+1, by Definition 3.1, the indices of AK+1 don’t affect the value of the sums in Eq. (38). Therefore, this equation is
satisfied in this case as well.

We know that b∗i = BT (w∗
i ) according to Property 1 above, thus every x ∈ Sx satisfies the following:

x ·w∗
i + b∗i =

∑
j∈[D]

xjw
∗
ij +BT (w∗

i ) (39)

=
∑

j∈[D]\{j′}

xjw
∗
ij + xj′w

∗
ij′ − |w∗

ij′ | −
∑

j∈[D]\{j′}

|w∗
ij |+

∑
n∈[K]

2Vn(w
∗
i )

We can see that xj′w
∗
ij′ − |w∗

ij′ | ≤ 0. Then,∑
j∈[D]\{j′}

xjw
∗
ij + xj′w

∗
ij′ − |w∗

ij′ | −
∑

j∈[D]\{j′}

|w∗
ij |+

∑
n∈[K]

2Vn(w
∗
i )

≤
∑

j∈[D]\{j′}

xjw
∗
ij −

∑
j∈[D]\{j′}

|w∗
ij |+

∑
n∈[K]

2Vn(w
∗
i ) (40)

=
∑
j∈[D]

xjŵij − ||ŵi||1 +
∑

n∈[K]

2Vn(ŵi) = x · ŵi +BT (ŵi) = x · ŵi + b̂i

Using the fact that x ·w∗
i + b∗i ≤ x · ŵi + b̂i with the fact that θ∗ satisfies the MIN+ property, we can conclude that θ̂

satisfies this property too.

According to Property 1 above and Definition 3.5 we have:

∀i′ ∈ [r]\{i} BT (ŵi′) = BT (w∗
i′) = b∗i′ = b̂i′ (41)

In addition, we know that b̂i = BT (ŵi) by Eq. (37). According to Lemma 3.2, we know that θ̂ is a perfect solution.

From Eq. (37), we know that |w∗
ij′ | > |ŵij′ | → ||w∗

i ||1 > ||ŵi||1. Combining this with Eq. (38) and the fact that the bias
threshold is nonpositive we can conclude that

−||w∗
i ||1 + 2

∑
n∈[K]

Vn(w
∗
i ) < −||ŵi||1 + 2

∑
n∈[K]

Vn(ŵi)→ |BT (w∗
i )| > |BT (ŵi)| → |b∗i | >

∣∣∣b̂i∣∣∣ (42)



Therefore, ||(ŵi, b̂i)||22 < ||(w∗
i , b

∗
i )||22 in contradiction to the optimality of θ∗.

Property 3: Assume by contradiction that there exists i ∈ [r] such that:

∃n1 ̸= n2 ∈ [K + 1] such that ∃j ∈ An1 w∗
ij > 0 and ∃j ∈ An2 w∗

ij > 0 (43)

Without loss of generality we assume: ∑
j∈An1

w∗
ij ≥

∑
j∈An2

w∗
ij (44)

Let’s look on the following i-modified θ̂ which is defined by:

∀j ∈ An2
ŵij = 0 and ∀j ∈ [D]\An2

ŵij = w∗
ij and b̂i = BT (ŵi) (45)

First, we will show that b̂i ≥ b∗i . If n2 ̸= K +1, from Definition 3.3 and the assumption that |An2 | > 1, the following holds:

b̂i = BT (ŵi) = BT (w∗
i ) +

∑
j∈An2

|wij | − 2Vn2
(w∗

i ) = b∗i +
∑

j∈An2

∣∣w∗
ij

∣∣− 2Vn2
(wi) ≥ b∗i (46)

Otherwise n2 = K + 1 and from Definition 3.3 the following holds:

b̂i = BT (ŵi) = BT (w∗
i ) +

∑
j∈An2

|wij | = b∗i +
∑

j∈An2

∣∣w∗
ij

∣∣ ≥ b∗i (47)

In both cases b̂i ≥ b∗i as required.

Given ñ ∈ [K], we know that θ∗ is a perfect solution and thus it satisfies the MIN+ property. Then, for x(ñ) there exists
I ⊆ [r] such that: ∑

i′∈I
w∗

i′ · x(ñ) + b∗i′ ≥ 2 (48)

We will show that there exists I′ ⊆ [r] such that:∑
i′∈I′

ŵi′ · x(ñ) + b̂i′ ≥ 2 (49)

Recall, by Definition 3.5, for any i′ ∈ [r]\{i} we know that ŵi′ · x(ñ) + b̂i′ = w∗
i′ · x(ñ) + b∗i′ .

If ñ ̸= n2, due to Property 1 and Property 2 above and the fact that b̂i ≥ b∗i the following holds:

w∗
i · x(ñ) + b∗i =

∑
j∈[D]\An2

w∗
ijx

(ñ)
j −

∑
j∈An2

w∗
i + b∗i <

∑
j∈[D]\An2

w∗
ijx

(ñ)
j + b∗i ≤

∑
j∈[D]

ŵijx
(ñ)
j + b̂i

= ŵi · x(ñ) + b̂i (50)

Therefore, ∑
i′∈I

ŵi′ · x(ñ) + b̂i′ ≥
∑
i′∈I

w∗
i′ · x(ñ) + b∗i′ ≥ 2 (51)

Otherwise, ñ = n2. By the fact that b∗i = BT (w∗
i ) ≤ 0, Property 2 above and Eq. (44) the following holds:

w∗
i · x(ñ) + b∗i =

∑
j∈An2

w∗
ij −

∑
j∈[D]\An2

w∗
ij + b∗i ≤

∑
j∈An2

w∗
ij −

∑
j∈An1

w∗
ij + b∗i ≤

∑
j∈An2

w∗
ij −

∑
j∈An1

w∗
ij ≤ 0 (52)

Therefore, using Definition 3.5, θ̂ satisfies the following:∑
i′∈I\{i}

ŵi′ · x(ñ) + b̂i′ =
∑

i′∈I\{i}

w∗
i′ · x(ñ) + b∗i′ ≥

∑
i′∈I

w∗
i′ · x(ñ) + b∗i′ ≥ 2 (53)

We can conclude that θ̂ satisfies Eq. (49). Combining this with Property 2 above, we can see that θ̂ meets the condition of
Lemma 3.3 and then it satisfies the MIN+ property.



According to Property 1 above and Definition 3.5:

∀i′ ∈ [r]\{i} BT (ŵi′) = BT (w∗
i′) = b∗i′ = b̂i′ (54)

In addition, we know that b̂i = BT (ŵi) by Eq. (45). According to Lemma 3.2, the solution θ̂ is a perfect solution.

As we saw 0 ≥ b̂i ≥ b∗i →
∣∣∣b̂i∣∣∣ ≤ |b∗i |, ∀j ∈ An2 w∗

ij ≥ 0 = ŵij and ∃j ∈ An2 w∗
ij > 0 = ŵij and therefore

||(w∗
i , b

∗
i )||22 > ||(ŵi, b̂i)||22 which contradicts the optimality of θ∗.

3.4 ALIGNMENT LEMMAS

The following three lemmas show the alignment properties of the min-norm solution.

Lemma 3.5. Given a min-norm solution θ∗ = (W ∗, b∗), every i ∈ [r] either aligns with some term n ∈ [K] or it holds
that w∗

i = 0, b∗i = 0

Proof. Given i ∈ [r], if w∗
i = 0 the claim is true by Property 1 of Lemma 3.4. Otherwise, by Property 3 of Lemma 3.4,

∃n ∈ [K] such that:
∀j ∈ An w∗

ij ≥ 0 and ∃j ∈ An w∗
ij > 0 and ∀j ∈ [D]\An w∗

ij = 0 (55)

Assume by contradiction that:
∃j1, j2 ∈ An such that w∗

ij1 ̸= w∗
ij2 (56)

Without loss of generality, we assume w∗
ij1

> w∗
ij2

and w∗
ij2

= min
j∈An

{w∗
ij}.

Define the following i-modified solution θ̂:

∀j ∈ An ŵij = w∗
ij2 and ∀j ∈ [D]\An ŵij = w∗

ij and b̂i = BT (ŵi) (57)

Note that Vn(w
∗
i ) = Vn(ŵi) = w∗

ij2
.

Given x ∈ S+, we know that θ∗ satisfies the MIN+ property. Then, ∃I ⊆ [r] such that:∑
i′∈I

w∗
i′ · x+ b∗i′ ≥ 2 (58)

Recall, by Definition 3.5, for any i′ ∈ [r]\{i} we know that ŵi′ · x+ b̂i′ = w∗
i′ · x+ b∗i′

If x · t∗n = ||t∗n||1, due to Property 3 of Lemma 3.4 the following holds:

w∗
i · x+ b∗i =

∑
j∈An

w∗
ij +BT (w∗

i ) =
∑
j∈An

w∗
ij −

∑
j∈An

∣∣w∗
ij

∣∣+ 2Vn(w
∗
i ) = 2w∗

ij2 (59)

=
∑
j∈An

ŵij −
∑
j∈An

ŵij + 2w∗
ij2 =

∑
j∈An

ŵij − ||ŵ||1 + 2Vn(ŵi) = ŵi · x+ b̂i

Then we can conclude: ∑
i′∈I

ŵi′ · x+ b̂i′ =
∑
i′∈I

w∗
i′ · x+ b∗i′ ≥ 2 (60)

Otherwise, x · t∗n < ||t∗n||1 and by Definition 3.3:

w∗
i · x+ bi =

∑
j∈An

w∗
ijxj +BT (w∗

i ) ≤
∑

j∈An\{j2}

w∗
ij − w∗

ij2 −
∑

j∈An\{j2}

w∗
ij − w∗

ij2 + 2w∗
ij2 = 0 (61)

Therefore, ∑
i′∈I\{i}

ŵi′ · x+ b̂i′ =
∑

i′∈I\{i}

w∗
i′ · x+ b∗i′ ≥

∑
i′∈I

w∗
i′ · x+ b∗i′ ≥ 2 (62)



We can conclude that θ̂ satisfies the MIN+ property.

According to Property 1 of Lemma 3.4 and Definition 3.5:

∀i′ ∈ [r]\{i} BT (ŵi′) = BT (w∗
i′) = b∗i′ = b̂i′ (63)

In addition, we know that b̂i = BT (ŵi) by Eq. (57). According to Lemma 3.2, the solution θ̂ is a perfect solution.

Finally, we can see that, ||w∗
i ||1 > ||ŵi||1 implies that |BT (w∗

i )| > |BT (ŵi)| and ∀j ∈ [D] : w∗
ij ≥ ŵij . Thus, we have

||(w∗
i , b

∗
i )||22 > ||(ŵi, b̂i)||22. This is in contradiction to the optimally of θ∗, as desired.

We can now define λi = Vn(w
∗
i ) and we know that the neuron i satisfies:

∀j ∈ An w∗
ij = λi and ∀j ∈ [D]\An w∗

ij = 0 (64)

Therefore, w∗
i = λit

∗
n, b

∗
i = λi(2− ||t∗n||1) and we can say that neuron i aligns the term n.

Lemma 3.6. Given a min-norm solution θ∗ = (W ∗, b∗), every 2 neurons i1, i2 ∈ [r] that align with term n ∈ [K] satisfy
λi1 = λi2 .1

Proof. Given i1, i2 ∈ [r] that align with term n ∈ [K] we have w∗
i1

= λi1t
∗
n and w∗

i2
= λi2t

∗
n. Assume by contradiction

that λi2 ̸= λi1 . Define the following solution θ̂:

∀i ∈ [r]\{i1, i2} ŵi = w∗, b̂i = b∗i

ŵi1 =
λi1 + λi2

2
t∗n, b̂i1 = BT (ŵi1) (65)

ŵi2 =
λi1 + λi2

2
t∗n, b̂i2 = BT (ŵi2)

Note, ∀i′ ∈ [r]\{i1, i2} we know that ŵi′ · x+ b̂i′ = w∗
i′ · x+ b∗i′

Given x ∈ S+, we know that θ∗ satisfies the MIN+ property. Then, ∃I ⊆ [r] such that:∑
i′∈I

w∗
i′ · x+ b∗i′ ≥ 2 (66)

If x · t∗n = ||t∗n||1 we can calculate the following:

w∗
i1 · x+ b∗i1 +w∗

i2 · x+ b∗i2 = 2λi1 + 2λi2 = ŵi1 · x+ b̂∗i1 + ŵi2 · x+ b̂∗i2 (67)

Therefore, ∑
i′∈I

ŵi′ · x+ b̂∗i′ =
∑
i′∈I

w∗
i′ · x+ b∗i′ ≥ 2 (68)

Otherwise, x · t∗n < ||t∗n||1 thus w∗
i1
· x+ b∗i1 ≤ 0, w∗

i2
· x+ b∗i2 ≤ 0. Then,∑

i′∈I\{i1,i2}

ŵi′ · x+ b̂∗i′ =
∑

i′∈I\{i1,i2}

w∗
i′ · x+ b∗i′ ≥

∑
i′∈I

w∗
i′ · x+ b∗i′ ≥ 2 (69)

Combining this with Property 2 of Lemma 3.4 we can see that θ̂ meets the condition of Lemma 3.3 and then it satisfies the
MIN+ property.

According to Property 1 of Lemma 3.4:

∀i′ ∈ [r]\{i1, i2} BT (ŵi′) = BT (w∗
i′) = b∗i′ = b̂i′ (70)

In addition, we know that b̂i1 = BT (ŵi1) and b̂i2 = BT (ŵi2) by Eq. (65). According to Lemma 3.2, the solution θ̂ is a
perfect solution.

1λi were defined in the proof of the previous lemma.



We will prove that
∑

i∈[r] ||(w∗
i , b

∗
i )||22 >

∑
i∈[r] ||(ŵi, b̂i)||22. This will contradict the optimality of (w∗

i , b
∗
i ). Note that

||(w∗
i1
, b∗i1)||

2
2 = λ2

i1
|An|+ λ2

i1
(|An| − 2)2. Then:∑

i∈[r]

||(w∗
i , b

∗
i )||22 −

∑
i∈[r]

||(ŵi, b̂i)||22 = ||(w∗
i1 , b

∗
i1)||

2
2 + ||(w∗

i2 , b
∗
i2)||

2
2 − ||(ŵi1 , b̂i1)||22 − ||(ŵi2 , b̂i2)||22

=

(
λ2
i1 + λ2

i2 − 2

(
λi1 + λi2

2

)2
)(
|An|+ (|An| − 2)2

)
=

(
1

2
λ2
i1 − λi1λi2 +

1

2
λ2
i2

)(
|An|+ (|An| − 2)2

)
=

(
1√
2
λi1 −

1√
2
λi2

)2 (
|An|+ (|An| − 2)2

)
For λi1 ̸= λi2 , we get

∑
i∈[r] ||(w∗

i , b
∗
i )||22 −

∑
i∈[r] ||(ŵi, b̂i)||22 > 0, as needed.

Lemma 3.7. Given a min-norm solution θ∗ = (W ∗, b∗), if I ⊆ [r] is the set of all neurons that align with term n ∈ [K],
then

∑
i∈S

λi = 1.

Proof. Assume by contradiction that
∑

i∈I λi ̸= 1. If
∑

i∈I λi < 1, then ∀i′ ∈ [r]\I, by Lemma 3.5 we know that the
neuron i′ aligns with another term or is equal to 0, then x(n) ·w∗

i ≤ 0. By Property 1 of Lemma 3.4, b∗i′ = BT (w∗
i′) ≤ 0.

Therefore, x(n) ·w∗
i′ + b∗i′ ≤ 0. Then, for every I′ ⊆ [r] the following holds:∑

i∈I′
w∗

i · x(n) + b∗i ≤
∑

i∈I′
⋂

I

w∗
i · x(n) + b∗i =

∑
i∈I′

⋂
I

|An|λi + (2− |An|)λi = 2
∑

i∈I′
⋂

I

λi < 2 (71)

and thus θ∗ doesn’t satisfy the MIN+ property. By Lemma 3.1, this contradicts the fact that θ∗ is a perfect solution.

If
∑

i∈I λi > 1, we choose an arbitrarily î ∈ I. Define θ̂ as follows:

∀i ∈ [r]\I ŵi = w∗
i , b̂i = b∗i

∀i ∈ I\{̂i} ŵi = 0, b̂i = 0 (72)

ŵî = t∗n, b̂î = BT (ŵî)

Given x(ñ) ∈ O, we know that θ∗ satisfies the MIN+. Thus, ∃I′ ⊆ [r] such that:∑
i∈I′

w∗
i′ · x(ñ) + b∗i ≥ 2 (73)

We will show that there exists Î ⊆ [r] such that: ∑
i′∈Î

ŵi′ · x(ñ) + b̂i′ ≥ 2 (74)

If ñ = n, then:
ŵî · x

(ñ) + b̂î = t∗n · x(ñ) +BT (t∗n) = ||t∗n||1 − ||t∗n||1 + 2 = 2 (75)

Therefore, by choosing Î = {̂i}, we can show that θ̂ satisfies Eq. (74).

Otherwise, ñ ̸= n and then every i ∈ I satisfies:

w∗
i · x(ñ) + b∗i = −λi|An| − λi(|An| − 2) < 0 (76)

From Eq. (72) we can conclude:∑
i∈I′\I

ŵi · x(ñ) + b̂i =
∑
i∈I′\I

w∗
i · x(ñ) + b∗i ≥

∑
i∈I′

w∗
i · x(ñ) + b∗i ≥ 2 (77)



Therefore, θ̂ satisfies Eq. (74) for x(ñ). In addition, by Property 2 of Lemma 3.4 and Eq. (72), we know that all the weights
of the neurons in θ̂ are nonnegative. Then, θ̂ meets the condition of Lemma 3.3 and it satisfies the MIN+ property.

According to Property 1 of Lemma 3.4 and Eq. (72):

∀i ∈ [r]\I BT (ŵi) = BT (w∗
i ) = b∗i = b̂i (78)

In addition, we know that ∀i ∈ I\{̂i} b̂i = 0 = BT (ŵi) and b̂î = BT (ŵî). Therefore, according to Lemma 3.2, the
solution θ is a perfect solution.

We will prove that
∑

i∈[r] ||(w∗
i , b

∗
i )||22 >

∑
i∈[r] ||(ŵi, b̂i)||22. This will contradict the optimality of θ∗. Indeed:∑

i∈[r]

||(w∗
i , b

∗
i )||22 −

∑
i∈[r]

||(ŵi, b̂i)||22 =
∑
i∈I

||(w∗
i , b

∗
i )||22 − ||(ŵî, b̂î)||

2
2 = (79)

∑
i∈I

λ2
i |An|+ λ2

i (|An| − 2)2 − |An| − (|An| − 2)2 =(∑
i∈I

λ2
i − 1

)(
|An|+ (|An| − 2)2

)
Since

∑
i∈I λi > 1, we have

∑
i∈[r] ||(w∗

i , b
∗
i )||22 −

∑
i∈[r] ||(ŵi, b̂i)||22 > 0, which completes the proof.

3.5 FINISHING THE PROOF OF THEOREM 6.1

Proof. Given a min-norm solution θ∗ = (W ∗, b∗), by Lemma 3.5, each neuron i ∈ [r] aligns with some term ni ∈ [K]
or it is equal to 0. Assume by contradiction that there exists a term n ∈ [K] that is not aligned, namely ∀i ∈ [r] ni ̸= n.
Consider the special positive sample x(n) ∈ S+. From the definition of x(n), every j ∈ [D]\An satisfies x(n)

j = −1. Then,

∀i ∈ [r] x(n) ·w∗
i = λnx

(n) · t∗ni
= −λn||t∗ni

||1 < 0 (80)

By the first property of Lemma 3.5, ∀i ∈ [r], b∗i = BT (w∗
i ) ≤ 0. Therefore, ∀i ∈ [r] : x(n) ·w∗

i + b∗i < 0, in contradiction
to the fact that θ∗ is a perfect solution.

In conclusion, every term n ∈ [K] aligns with a set of neurons I ⊆ [r]. By Lemma 3.7, we know that
∑
i∈I

λi = 1. By Lemma

3.6, we know that every two neurons i1, i2 that align with the same term satisfy λi1 = λi2 . Therefore, θ∗ is a DNF recovery
solution.

4 EXPERIMENT DETAILS AND ADDITIONAL RESULTS

Selected read-once DNFs: In this section we provide additional experiments for the following types of read-once DNFs.

• f∗
1 - 3-term read-once DNF where the length of every term is 3 for D = 9

• f∗
2 - 4-term read-once DNF where the length of the terms are 4,5,5,6 for D = 25

• f∗
3 - 8-term read-once DNF where the length of the terms are 3,3,4,4,4,4,5,5 for D = 40

• f∗
4 - 10-term read-once DNF where the length of the terms are 3,3,4,4,4,4,6,6,6,6 for D = 50

• f∗
5 - 15-term read-once DNF where of every term is 5 for D = 100

General details: In all the experiments, “small initialization” refers to initializing weights from W (0) ∼ N (0, 10−6) and
b(0) = [0]D. The learning rate for SGD is η = 10−3, the number of hidden units is r = 2000 and the batch size is 32. We
create the train set by sampling uniformly from [±1]D. All the experiments can run on any single GPU. Training a single
network can take up to two hours.



(a) (b)

(c) (d)

Figure 5: Test accuracy for the convex network with small initialization, convex network with large initialization and
standard networks. Figure (a) shows the performance when learning f∗

1 , Figure (b) for f∗
3 , Figure (c) for f∗

4 and Figure (d)
for f∗

3 (Results for f∗
2 were presented in the main paper).

Weight Matrix Visualization: When presenting weight matrices, we first cluster the neurons using the Hierarchical
clustering algorithm.2 We then plot the weight values in an image, where neurons clustered together appear in consecutive
rows. Note this of course does not change the model itself, but makes it easy to see if there are well clustered neurons (as in
the DNF recovery case.

Sample Complexity Experiments: We evaluate test accuracy as a function of the training sample size for different models.
Results are shown in Figure 5. Specifically, we compare the convex network with small initialization (see details above),
the convex network with large initialization (we take W (0) ∼ N (0, 1)), and a “standard” network with one hidden layer,
same width as the convex network and Xavier initialization (we checked different initialization schemes, including small
Gaussian initialization, and verified that this not affect the results). We run every experiment 10 times and present the mean
performance and the std of this mean (the std is small and smaller than the line width).

Implementation of the Statistical Queries (SQ) Methods: In Figure 2a of the main paper, we present results of the
statistical query algorithm. We implemented the algorithm described in Mansour & Schain (2001). We view the ϵ therein as
a hyperparameter. Therefore, we use 10% of the train set as validation for finding ϵ. We present the performance of the SQ
algorithm only for D = 9, because for larger dimension the algorithm failed in creating a DNF for the range of train set
sizes tested.

2We used scipy.cluster.hierarchy.linkage. with centroid as a method.



(a) (b) (c) (d)

Figure 6: (a-c) Effect of training size on the learned model (see Learned models for different training sizes in the text) for
the ground-truth model f∗

1 . Panels a-c correspond to training sizes 800,1500 and 7500. (d) Result for training on 7500 with
large initialization.

(a) (b) (c) (d)

Figure 7: Same as Figure 6 but with f∗
2 as ground truth.

(a) (b) (c) (d)

Figure 8: Same as Figure 6 but with f∗
3 as ground truth.

(a) (b) (c) (d)

Figure 9: Same as Figure 6 but with f∗
4 as ground truth.



Algorithm 1 Reconstruction Procedure
Input: Network θ = (W , b, c), DNF f∗, fixed sets A,B ⊆ [0, 1]L.
Output: True if the network with parameter θ reconstructs DNF f∗, False otherwise.

for (a, b) ∈ A×B do
W ′ ← [0]rD ▷ W ′ will be a {0, 1} matrix where each row corresponds to a term in a DNF.
for 1 ≤ i ≤ r do

if ℓ∞(wi) ≥ a ∗ ℓ∞(W ) then ▷ Taking into account only meaningful neurons
for 1 ≤ j ≤ r do

if wij ≥ ℓ∞(wi) ∗ b then ▷ Taking into account only meaningful values
w′

ij ← 1
end if

end for
end if

end for
if The set of terms represented by W ′ is exactly the set of terms of the DNF f∗ then

return True
end if

end for
return False

Learned models for different training sizes: In the main paper, we show empirically that learning convex networks with
small init and GD leads to a DNF recovery solution, and we also show formally that in the population risk DNF recovery is
norm minimizing. Here we show explicit model weights for different training sizes, demonstrating that approximate DNF
recovery solutions are obtained for fairly small sample sizes. Figures 6,7,8,9,10 (panels a-c) show these results. In panel d of
these figures we show the learned model for when learning with large Gaussian initialization and with the same train set size.
It can be seen that larger initialization does not results in the recovery-DNF solution (note we are also visualizing these
solutions using clustering as explained above, and there is clearly no cluster structure in the solution).

DNF reconstruction: In Figure 2b of the main paper we present accuracy results for DNF reconstruction. To obtain
these, we take the learned model and apply a simple rounding procedure to check if this model reconstructs the ground-
truth DNF. The procedure is outlined in Algorithm 1. In the procedure, we create a {0, 1} matrix W ′ where the column
indices of 1s in each row correspond to a term of a DNF. Thus, W ′ represents a set of terms. If the set of terms of W ′ is
exactly the set of terms of the input DNF, the procedure returns True. In our experiments we ran the procedure with inputs
A = [0, 0.1, 0.2, . . . , 0.9] and B = [0, 0.2, 0.4, . . . , 0.8].

The effect of learning c: Figure 11 shows that fixing the learnable parameter c to −1 does not effect the structure of the
solution. In this experiment, we took 2 networks with the same width: One with learnable c initialized to 0, and the second
with fixed c = −1. We initialize the other weights with the same values, and train them with the same train set for the same
number of steps. Finally we plot the solution that the network learns. We can say they both recover the underlying DNF.

Tabular datasets: We consider the three UCI datasets: kr-vs-kp, Splice, and diabetes. For these, we convert the input
into binary by changing categorical variables to one-hot. We also consider binary classification such that in kr-vs-kp the
class ’won’ is positive considered and ’notwon’ is negative, in Splice the classes ’EI’ and ’IE’ are considered positive and
’N’ negative, and diabetes is binary by design. We train on 90% of the data and test on 10%. The reconstruction process is
identical to algorithm 1 when instead of validate if W ′ is identical to f∗, we return the W ′ with the best accuracy on the
train set.

The relevant code can be found in our repository: https://github.com/idobronstein/
Exploring-the-Inductive-Bias-of-Neural-Networks-for-Learning-Read-once-DNFs.git.

https://github.com/idobronstein/Exploring-the-Inductive-Bias-of-Neural-Networks-for-Learning-Read-once-DNFs.git
https://github.com/idobronstein/Exploring-the-Inductive-Bias-of-Neural-Networks-for-Learning-Read-once-DNFs.git


(a) (b) (c) (d)

Figure 10: Same as Figure 6 but with f∗
5 as ground truth.

(a) (b) (c) (d)

Figure 11: (a) Learning f∗
1 using convex network with learnable c and 250 train samples. (b) Learning f∗

1 using convex
network with fix c to −1 and 250 train samples. (c) Learning f∗

4 using convex network with learnable c and 30,000 train
samples. (d) Learning f∗

4 using convex network with fix c to −1 and 30,000 train samples.
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