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A PROOFS

Proof of Theorem 1. Write v = v(t, x) as a function of t
and x. In fact,

v(t, x) = x+

∫ t

0

g(v(t, x), t)dt.

Define u(t) = ∂v
∂x . It follows from the formula of v that

u(t) =
∂v

∂x
= 1 +

∫ t

0

∂g

∂v

∂v

∂x
dt. (1)

Then we see that

du

dt
=
∂g

∂v

∂v

∂x
=
∂g

∂v
u.

This implies that

u(t) = C exp

(∫ t

0

∂g

∂v
dt

)
.

Recall from (1) that u(0) = 1, so C = 1. Since q(x) =
v(1, x), we now conclude that

q′(x) =
∂v

∂x
(1, x) = u(1) = exp

(∫ 1

0

∂g

∂v
dt

)
.

Proof of Theorem 2. Obviously, monotonicity implies in-
vertibility, so it suffices to show that q is strictly increasing.
There are several ways to prove this. The simplest way is to
use Theorem 1 to see that q′(x) > 0, so q must be increas-
ing. Below we present a different proof without using the
analytic expression of q′(x).

Let vx(t) denote the function in (4) with v(0) = x, where
g(v, t) is continuous in t and uniformly Lipschitz continu-
ous in v. We need to show that for any x < x′, there holds
q(x) < q(x′). We prove this by contradiction. Assume that
there exist x < x′ such that q(x) ≥ q(x′). There are two
cases to consider: q(x) = q(x′) and q(x) > q(x′).

Case 1: q(x) = q(x′) = C for some constant C.
In this case, vx(1) = vx′(1) = C. Define wa(t) = va(1−t)
for any a ∈ R and t ∈ [0, 1]. Then it is easy to see thatwx(t),
wx′(t) are both solutions to the ODE

dw

dt
= −g(w(t), 1− t), w(0) = C, t ∈ [0, 1]. (2)

Note that wx(t) and wx′(t) are two different solutions of
(2) because wx(1) = x < x′ = wx′(1). This contradicts
the uniqueness of solution to the ODE (which is well-posed
since g is Lipschitz) and we conclude that the assumption
q(x) = q(x′) can not hold.

Case 2: q(x) > q(x′).
In this case, we have vx(1) > vx′(1) and vx(0) < vx′(0).
Applying intermediate value theorem to vx(t)−vx′(t) yields
that there exists τ ∈ (0, 1) such that

vx(τ) = vx′(τ) = C

for some constantC. Similar to Case 1, if we definewa(t) =
va(τ − t) for t ∈ [0, τ ], then we can deduce that the ODE

dw

dt
= −g(w(t), 1− t), w(0) = C (3)

has two different solutions wx(t) and wx′(t) as wx(τ) =
x < x′ = wx′(τ), which contradicts the well-posedness of
(3).

We now conclude that the inequality q(x) ≥ q(x′) can not
hold. Consequently, q(x) must be strictly increasing and the
proof is complete.

Proof of Theorem 3. Since the set of increasing Lipschitz
continuous functions is dense inM, it suffices to consider
Lipschitz functions inM.

We need to show that, given an arbitrary increasing Lipschitz
continuous function φ(x), there exists a family of AUTM
bijections {qs(x)}s>0 ⊂ Q that converge compactly to φ(x)
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as s → 0, i.e. qs|K → φ|K uniformly on any compact set
K ⊂ R as s→ 0. We construct qs as follows.

For s > 0, we define

gs(v, t) = φ(v(te−
1
s ))− v(te− 1

s ).

Then we define

qs(x) = x+

∫ 1

0

gs(vs, t)dt,

where

vs(t) := x+

∫ t

0

gs(vs, z)dz.

We prove that for any x, qs(x) converges to φ(x) as s→ 0.
In fact, we will show that the convergence rate is O(e−

1
s ).

First we prove that max
t∈[0,1]

|vs(t)| is uniformly bounded for

s > 0. To show this, we investigate the differential equation
that vs(t) satisfies. For notational convenience, we drop the
subscript s in vs in the proof below. The dependence on s
will be stated explicitly when needed. Note that

dv

dt
= gs(v, t) = φ(v(te−

1
s ))− v(te− 1

s ), v(0) = x.

Equivalently, by a change of variable τ = te−
1
s , we have

dv

dτ
= e

1
s [φ(v(τ))− v(τ)], v(0) = x. (4)

In the following, we first analyze the property of the solution
v to the initial value problem in (4), and then we prove the
uniform boundedness.

Results on initial value problem (4). We prove in the fol-
lowing that the solution v(τ) of (4) must fall into one of the
three cases below:

(I)v′(τ) = 0 for all τ ;
(I)v′(τ) > 0 for all τ ;
(I)v′(τ) < 0 for all τ.

Case (I): We first show that if v′(a) = 0 for some a ≥ 0,
then v′(τ) = 0 everywhere. In fact, v′(a) = e

1
s [φ(v(a))−

v(a)] = 0 implies φ(v(a)) − v(a) = 0. Note that v(τ) =
v(a) is then an equilibrium solution. Since φ is Lipschitz,
from the uniqueness theorem of the initial value problem,
v(τ) = v(a) is the only solution and thus v′(τ) = 0 for all
τ .

Case (II): If v′(0) > 0, then it is easy to see that v′(τ) > 0
for all τ . In fact, if v′(a) = 0 for some a > 0, then we know
from the result above that v′(0) = 0, a contradiction; if
v′(a) < 0 for some a > 0, then because v′(τ) is continuous,
intermediate value theorem implies that there must be a
point b ∈ (0, a) such that v′(b) = 0, which then implies
v′(0) = 0 according to the result above, a contradiction.

Case (III): If v′(0) < 0, a similar argument shows that
v′(τ) < 0 for all τ .

Thus we conclude that there can only be three cases for the
solution v(τ), as shown in (I), (II), (III).

Proof of uniform boundedness of |vs|. Next we show that
every solution v of (4) is uniformly bounded in s.

If v falls into Case (I), it is easy to see that v(τ) = v(0) = x
independent of s, thus uniformly bounded.

If v falls into Case (II), then φ(v)− v > 0, and the equation
in (4) can be equivalently written as

dv

φ(v)− v
= e

1
s dτ.

Let G(x) denote the anti-derivative of 1
φ(x)−x . Then it fol-

lows that

G(v) =

∫ τ

0

e
1
s dτ +A = τe

1
s +A = t+A,

whereA is a constant independent of s. In fact, setting t = 0
(or equivalently, τ = 0) yields that

G(v(0)) = G(x) = 0 +A = A.

Thus A = G(x). Since G′(v) = 1
φ(v)−v = 1

v′ · e
1
s > 0, we

know from inverse function theorem that G−1 exists and is
continuous and strictly increasing. Therefore,

v = G−1(G(v)) = G−1(t+A) = G−1(t+G(x)) (5)

is uniformly bounded in s and t since G is independent
of s, t, and t + G(x) ∈ [G(x), 1 + G(x)] with t ∈ [0, 1].
Therefore, in Case (II), |vs(t)| is uniformly bounded in s
and t.

If v falls into Case (III), the uniform boundedness of |vs(t)|
can be derived analogously as in Case (II).

Now we conclude that max
t∈[0,1]

|vs(t)| is uniformly bounded

with respect to s.

Proof of convergence qs(x) → φ(x). Next we show that
the uniform boundedness of |vs| implies the convergence
qs(x) → φ(x) as s → 0. Since φ is Lipschitz, we see
that |gs(vs, t)| is also uniformly bounded in s and t. Thus
M := sup

s>0,t∈[0,1]
|gs(vs, t)| <∞. Note that

φ(x) = x+

∫ 1

0

φ(x)− xdt.

Let L denote the Lipschitz constant of φ. Then we deduce



from the definition of qs and vs that

|qs(x)− φ(x)| =
∣∣∣∣∫ 1

0

φ(vs(te
− 1

s ))− φ(x) + x− vs(te−
1
s )dt

∣∣∣∣
≤ (L+ 1)

∫ 1

0

|vs(te−
1
s )− x|dt

= (L+ 1)

∫ 1

0

∣∣∣∣∣∣
∫ te−

1
s

0

gs(vs, z)dz

∣∣∣∣∣∣ dt
≤ (L+ 1)

∫ 1

0

Mte−
1
s dt

= (L+ 1)
M

2
e−

1
s → 0, s→ 0.

This proves the pointwise convergence qs(x) → φ(x) as
s→ 0. Since K is compact and |vs| is continuous in x (see
(5) for example), it can be deduced from the argument above
that |vs| is in fact uniformly bounded in s > 0, t ∈ [0, 1] and
x ∈ K. Thus the convergence proof still holds with constant
M chosen as an upper bound of |gs| over s > 0, t ∈ [0, 1]

and x ∈ K. The rate of convergence is still O(e−
1
s ) as

s→ 0.

The proof of Theorem 3 is now complete.

Proof of Theorem 4. This is an immediate result of Theo-
rem 3. Since compact convergence implies pointwise con-
vergence, it suffices to show the compact convergence. Ac-
cording to the proof of Theorem 3, for each Fk (where
each entry is a monotone continuous function), we can con-
struct a family of triangular AUTM transformations Ts,k
(parametrized by s > 0) that converge compactly to Fk with
a rate of O(e−

1
s ) as s → 0. Then it follows immediately

that Ts := Ts,1 ◦ Ts,2 ◦ · · · ◦ Ts,p converges compactly to
F = F1 ◦ F2 ◦ · · · ◦ Fp with rate O(e−

1
s ) as s→ 0, which

completes the proof.

Proof of Theorem 5. The proof follows essentially the same
argument as the proof of Theorem 3 in which κs(t) = 1.
More precisely, for a general positive kernel κs(t) satis-
fying (10), the positivity of κs(t) is used in obtaining re-
sults for the initial value problem; the bounded L1 norm of
κs(t) is used in proving the uniform boundedness of |vs|;
the asymptotic property as s → 0 is used in proving the
convergence qs → φ. Therefore, similar to the proof of
Theorem 3, we conclude that qs|K → φ|K uniformly as
s→ 0. We remark that the class of kernels in (10) includes
κs(t) = 1, the normalized Gaussian kernel κs(t) = Cse

− t2

s

with Cs =
(∫ 1

0
e−

z2

s dz
)−1

, and it can be computed that

the convergence rate for the latter is O(s−
1
2 e−

1
s ).

B EXPERIMENT DETAILS

B.1 HYPERPARAMETERS FOR DENSITY
ESTIMATION DATASETS

We list the hyperparameters in Table 1. Hyperparameters
are obtained after extensive grid search. For the number of
layers, we tried 5,10,20. For the hidden layer dimensions,
we tried 10d, 20d, 40d, where d is the dimension of the
vector in the dataset. We trained our model by using Adam.
We stop the training process when there is no improvement
on validation set in several epochs.

B.2 HYPERPARAMETERS FOR CIFAR10 AND
IMAGENET32

We list the hyperparameters in Table 2. In this experiment,
most hyperparameters come from [Kaiming et al., 2016].
We use 14 AUTM coupling layers with 8 residual blocks for
each layer in our model. Like [Kingma and Dhariwal, 2018],
before each coupling layers, there is an actnorm layer and a
conv 1× 1 layer. Each residual block has three convolution
layers with 128 channels. Our method is trained for 100
epochs with batch size 64. We trained our model by using
Adamax with Polyak.

C RECONSTRUCTION ON IMAGE
DATASET

We examine the reserve step of our AUTM layer by showing
the reconstruction of images. The used model is the same as
the model in Section 6.2 and use CIFAR10 and ImageNet32
dataset in this experiment. We compute the inverse of our
layer by using iterative method with the reverse of integral
as the initial guess. As Figure 1 shows, the average L1

reconstruction error converges in 15 steps. Also, Figure
1 shows that the reconstructed images look the same as
original images.

We show the result of the reconstruction process of our
method in Figure 1.

D CODE

Our code is available at https://anonymous.4open.
science/r/AUTM-2B1B. We use some code from
BNAF[De Cao et al., 2020].
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lr decay rate 0.5 0.5 0.5 0.5 0.5
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layers 14 14
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hidden channels 128 128
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batch size 64 64
optimizer adamax adamax

learning rate 0.01 0.01
lr decay 0.5 0.5

lr decay epoch [30,60,90] [30,60,90]
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Figure 1: Left: The average value of the L1 reconstruction error for 64 images. Right: The reconstruction of selected
images in CIFAR10 and ImageNet32 dataset. The 1st, 3rd rows are the original images, and the 2nd, 4th rows are the
reconstructions.


