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Lemma 0.1 (Lemma 3.5). Fix any t, β > 0. Let F : X ×X → R be a hypothesis class induced from H such that ∀f ∈ F ,
f(x, x′) = τ tβ(|h(x) − h(x′)|) where τ tβ(z) is a piecewise model outputting 1 if z > β + 1

t , outputting 0 if z ≤ β and
t(z − β) otherwise. Then Rm(F ) ≤ 8t · Rm(H).

Proof. Let G : X ×X → R be the set of functions induced from h and defined as ∀g ∈ G, g(a, b) = h(a)− h(b). Let abs
be the absolute function. Then f(a, b) = τ tβ ◦ abs ◦ g(a, b) and we can write, accordingly,

F = τ tβ ◦ abs ◦G. (1)

We first show Rm(F ) ≤ Rm(G). This is true because

Rm(F ) = Rm(τ tβ ◦ abs ◦G) ≤ 2t · Rm(abs ◦G) ≤ 4t · Rm(G), (2)

where both inequalities are by the property of Rademacher complexity for composite function with one component being
Lipschitz continuous e.g., [Bartlett and Mendelson, 2002, Theorem 12] and the facts that τ tβ and abs are both Lipschitz with
constants t and 1 respectively.

We then show Rm(G) ≤ 2 · Rm(H). This is true because

Rm(G) = E{(ai,bi)}Eσ sup
g∈G

1

m

m∑
i=1

σig(ai, bi)

= E{(ai,bi)}Eσ sup
g∈G

1

m

m∑
i=1

σi[h(ai)− h(bi)]

≤ E{(ai,bi)}Eσ sup
g∈G

1

m

m∑
i=1

σih(ai) + E{(ai,bi)}Eσ sup
g∈G

1

m

m∑
i=1

σih(bi)

= 2 · E{(ai,bi)}Eσ sup
g∈G

1

m

m∑
i=1

σih(xi)

= 2 · Rm(H),

(3)

where the third equality is based on the fact that σi is uniform in {-1, 1} so the expectation with respect to σi is the same as
the expectation with respect to −σi.

Combining (2) and (3) proves the lemma.

Theorem 0.2 (Theorem 3.6). Fix any α, β, t > 0. Suppose Rm(H) ∈ O(1/
√
m). Any model h ∈ H returned by the AMF

learner satisfies ∆α,β+1/t(h) ≤ ε with probability at least 1− δ if m ≥ 1
ε2

(
16tc+

√
1
2 log

1
δ

)
, where m is the number of

(x, x′) ∈ S satisfying d(x, x′) ≤ α and c is a constant inherited from O(1/
√
m).
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Proof. To facilitate discussion, define two functions

τβ(z) =

{
1, if z > β

0, if z ≤ β
, (4)

and

τ tβ(z) =


1, if z > β + 1

t

t(z − β), if β < z ≤ β + 1
t

0, if z ≤ β

. (5)

By definition, we have
τβ+ 1

t
(z) ≤ τ tβ(z) ≤ τβ(z). (6)

Recall S = {(xi, xj)}i,j=1,...,n. Let Sα be a subset of S defined as

Sα = {(a, b) ∈ S | d(a, b) ≤ α}. (7)

Suppose the size of Sα is m. Then,

∆α,β(h;S) =
1

n2

n∑
i,,j=1

I{|h(xi)− h(xj)| > β, d(xi, xj) ≤ α}

=
m

n2
· 1

m

∑
(a,b)∈Sα

I{|h(a)− h(b)| > β}

=
m

n2
· 1

m

∑
(a,b)∈Sα

τβ(|h(a)− h(b)|).

(8)

Recall F : X ×X → R is the set of functions induced from τ tβ and defined as ∀f ∈ F , f(a, b) = τ tβ(|h(a)− h(b)|). We
have that, with probability at least 1− δ,

1

m

∑
(a,b)∈Sα

τβ(|h(a)− h(b)|) ≥ 1

m

∑
(a,b)∈Sα

τ tβ(|h(a)− h(b)|)

≥ E[τ tβ(|h(a)− h(b)|) | d(a, b) ≤ α]− 2Rm(F )−

√
log 1

δ

2m

≥ E[τβ+ 1
t
(|h(a)− h(b)|) | d(a, b) ≤ α]− 16tRm(H)−

√
log 1

δ

2m

≥ E[τβ+ 1
t
(|h(a)− h(b)|) | d(a, b) ≤ α]− 1√

m

(
16tc+

√
1

2
log

1

δ

)
.

(9)

where for some constant c. In (9), the first inequality is by (6); the second one is by standard generalization bound1 with
Rademacher complexity e.g. [Mohri et al., 2018, Theorem 3.3] conditioned on d(a, b) ≤ α; the third one is by (6) and
Lemma 3.5; and the last one holds since Rm ∈ O(1/

√
m). Note the expectation of (a, b) ∈ Sα in Rm ∈ O(1/

√
m) is also

conditioned on d(a, b) ≤ α, and we always assume Rm ∈ O(1/
√
m) w.r.t. any proper data distribution.

Combining (8) and (9), we see ∆α,β(h;S) = 0 implies

E[τβ+ 1
t
(|h(a)− h(b)|) | d(a, b) ≤ α] ≤ 1

m

(
16tc+

√
1

2
log

1

δ

)
. (10)

1Here we follow Yona and Rothblum [2018] and treat Sα as an i.i.d. sample. If it is not, we can either add an additional constraint that
no two pairs in Sα share the same instance so it can be viewed as an i.i.d. sample, or apply a generalization error bound on non-i.i.d.
sample e.g. Mohri and Rostamizadeh [2008]. In either case, the order of our result remains the same.



Further, we can show
∆α,β+ 1

t
(h) ≤ E[τβ+ 1

t
(|h(a)− h(b)|) | d(a, b) ≤ α], (11)

because

∆α,β+ 1
t
(h) =

∫
(a,b)∈X×X

I{|h(a)− h(b)| > β + 1/t} · I{d(a, b) ≤ α} · p(a, b)

≤
∫
(a,b)∈X×X

I{|h(a)− h(b)| > β + 1/t} · p(a, b)

≤
∫
(a,b)∈X×X

I{|h(a)− h(b)| > β + 1/t} · p(a, b | d(a, b) ≤ α)

= E[τβ+ 1
t
(|h(a)− h(b)|) | d(a, b) ≤ α].

(12)

Combining (10) and (11), and upper bounding the RHS of (10) by ε implies that ∆α,β+ 1
t
(h) ≤ ε whenever

m ≥ 1

ε2

(
16tc+

√
1

2
log

1

δ

)
. (13)

The theorem is proved.

Theorem 0.3 (Theorem 4.2). Fix any α, β > 0. Suppose Rm(H) ∈ O(1/
√
m) and the counter (α, β) AMF coefficient

w.r.t. H is bounded. Then, with probability at least 1− δ, any h ∈ H returned by Algorithm 1 satisfies ∆α,β(h) ≤ ε after
O(log 1

ε ) labeling.

Proof. Suppose we have performed q rounds of labeling. Let Lq be the updated training set and Sq be the associated set of
instance pairs in Definition 3.4. Define

Vq = {h ∈ H; ∆α,β(h;Sq) = 0}. (14)

Consider labeling m instances in round q + 1. First, note that all labeled instances fall in Cα,β(Vq) and thus will
add to Sq at least m pairs of (x, x′) satisfying d(x, x′) ≤ α. Then, by Theorem 0.2 and setting t = 1/β, if

m ≥ 1
4ξ2

(
32c/β +

√
1
2 log

1
δ′

)
, with probability at least 1− δ′, any h ∈ Vq+1 satisfies

∆α,β(h) ≤ 1/(2ξ). (15)

Let & be logic ‘AND’ and define event

Iβα(x, x
′;h) := d(x, x′) ≤ α & |h(x)− h(x′)| > β. (16)

Then, with probability at least 1− δ′, any h ∈ Vq+1 satisfies

Pr{Iβα(x, x′;h)} = Pr{Iβα(x, x′;h)& (x, x′) ∈ Cα,β(Vq)}+ Pr{Iβα(x, x′;h)& (x, x′) /∈ Cα,β(Vq)}

= Pr{Iβα(x, x′;h)& (x, x′) ∈ Cα,β(Vq)}

= Pr{Iβα(x, x′;h) | (x, x′) ∈ Cα,β(Vq)} · Pr{(x, x′) ∈ Cα,β(Vq)}

≤ Pr{(x, x′) ∈ Cα,β(Vq)}
2ξ

,

(17)

where the second equality is by the fact that Pr{Iβα(x, x′;h) & (x, x′) /∈ Cα,β(Vq)} ≤ Pr{Iβα(x, x′;h) & (x, x′) /∈
Cα,β(Vq+1)} = 0, and the inequality is by (15) conditioned on an additional fact that all labeled instances fall in Cα,β(Vq+1).
For conciseness, we will write Pr{Cα,β(Vq)} for Pr{(x, x′) ∈ Cα,β(Vq)} .



Result in (17) implies Vq+1 ⊆ B
(

Pr{Cα,β(Vq)}
2ξ

)
and

Pr{Cα,β(Vq+1)} ≤ Pr

{
Cα,β

(
Bα,β

(
Pr{Cα,β(Vq)}

2ξ

))}
≤ ξ · Pr{Cα,β(Vq)}

2ξ
=

Pr{Cα,β(Vq)}
2

, (18)

where the first inequality is by the definition of ξ. This result means Pr{Cα,β(Vq)} is halved after each round of labeling.
Therefore, after Q := log2

1
ε rounds of labeling,

∆α,β(h) ≤ Pr{Cα,β(VQ)} ≤ ε, (19)

with probability at least 1−Qδ′; where the left inequality is by definition. By then, the total number of labeled instances is

log2
1
ε · 1

4ξ2

(
32c/β +

√
1
2 log

1
δ′

)
. Setting δ = Qδ′ and plugging δ′ = δ/Q in completes the proof.

Lemma 0.4 (Lemma 5.1). Fix any α, β > 0. We have ∆α,β(h;S) ≤ ∆̃α,β(h;S) for any h ∈ S and sample S.

Proof. Since Ix≥t ≤ x
t for any x, t ≥ 0, we have

I{d(xi, xj) ≤ α, |h(xi)− h(xj)| ≥ β} = I{d(xi, xj) ≤ α} · I{|h(xi)− h(xj)|2 ≥ β2}

≤ 1

β2
· I{d(xi, xj) ≤ α} · |h(xi)− h(xj)|2

=
1

β2
·Mij · |h(xi)− h(xj)|2.

(20)

Plugging this back to (6) proves the lemma.
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