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A ADDITIONAL RESULTS

Figure 1 and Figures 3-6 provide all qualitative visual-
izations of the posterior predictive distributions across
all methods on SYNTHETIC BIOLOGY and HUMAN VI-
RAL CHALLENGE datasets. Note that for fair comparisons,
Hierarchical-ODE preserves the data generating graphical
model of Roeder et al. (2019) but deviate in dynamics and
emission functions, resulting in significantly worse perfor-
mance than reported in Roeder et al. (2019). Additionally,
we present results from held-out device posterior predic-
tive distribution and controlled generated observations from
novel device g = R33-S32 in Figure 2. See Table 2 for
CARDIOVASCULAR SYSTEM quantitative results.

B EXPERIMENTAL SETUP

Below we provide details of the neural-network architec-
tures, selected hyper-parameters and pseudo-code for the
proposed SL-ODE algorithm.

B.1 NEURAL-NETWORK ARCHITECTURES

In all experiments, SL-ODE (proposed), GOKU-Net, Latent-
ODE, and Hierarchical-ODE share the ODE f(·), emission
m(·), and encoder (maps observations y(t) to latent z) func-
tions, detailed below. In general, we specify two-layer multi-
layer perceptrons (MLPs) with 25 hidden units and Rectified
Linear Unit (ReLU) as activation functions. Additionally,
we implement 2-layer MLPs for the system input-specific
distributions:

• Prior distribution pψ(zu|u) used in SL-ODE and
Hierarchical-ODE.

• Variational distribution qϕ(u|zu) used in SL-ODE and
GOKU-Net.

Encoder Following Roeder et al. (2019), we apply a 1D
CNN to observations y(t)→ average pooling→ two-layer

MLPs→ latent variable z described with mean µ and vari-
ance diag(σ2). Note that the Hierarchical ODE model has
an additional 2-layer MLP mapping system inputs to an
input-specific latent variable.

Black-box Dynamics We leverage the adjoint solver
Chen et al. (2018) to simulate the state-time matrixX where
the dynamics fθ(·) are 2-layer MLPs with Sigmoid output-
layer activations. Following Roeder et al. (2019), we specify
dynamics as

dx

dt
= f1(x, z, t; θ)− x� f2(x, z, t; θ) ,

where � is the Hadamard product. Further, we initialize the
initial state x0 as z → 2-layer MLPs with Sigmoid output
activation→ x0.

Emission We map the statesX to the observations Y with
a 1-layer linear MLP. For all baseline methods, the emission
function outputs observation means m(t) and variances
ε(t). In contrast, our proposed approach (SL-ODE), outputs
the median m(t), upper- u(t), and lower- l(t) quantiles
according to the specified τ .

B.2 HYPER-PARAMETER SELECTION

We use the Adam optimizer (Kingma and Ba, 2015) with the
following hyper-parameters: first moment 0.9, second mo-
ment 0.99, and epsilon 1× 10−8. We train all models using
one NVIDIA P100 GPU with 16GB memory. See Table 1
for data-specific hyper-parameters. We split the CARDIO-
VASCULAR SYSTEM data into training, validation, and test
sets as 80%, 10%, and 10% partitions, respectively. Further,
we use the validation set for early stopping and learning
model hyper-parameters. However, for the SYNTHETIC BI-
OLOGY and HUMAN VIRAL CHALLENGE datasets, we
perform k-fold cross-validation due to the small sample
sizes.
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Table 1: Summary of data-specific hyper-parameters.

Hyper-parameter SYNTHETIC BIOLOGY CARDIOVASCULAR SYSTEM HUMAN VIRAL CHALLENGE

Mini-batch size 36 128 28
Learning rate 3× 10−4 1× 10−3 1× 10−3

States dimension (D) 8 5 5

Table 2: Performance comparisons for CARDIOVASCULAR SYSTEM on test data. System inputs u are interpretable patient
states. We report methods without system input inference or controlled prior generation mechanisms as NA.

Method u Accuracy (%) ↑ L1 error (posterior, prior) ↓ ELBO ↑
Latent-ODE NA (6.95, NA) 9.12
GOKU-Net 100 (5.06, NA) 324.81
Hierarchical-ODE NA (4.25, 4.42) 374.94
SL-ODE-Gaussian (ablation) 100 (0.66, 0.67) 561.29
SL-ODE (proposed) 100 (0.56, 0.57) 752.23

(a) SL-ODE (b) GOKU-Net (c) Latent-ODE (d) Hierarchical-ODE

Figure 1: Posterior predictive distribution on SYNTHETIC BIOLOGY data via 4-fold cross-validation multiple device
inference task for (a) proposed SL-ODE, (b) GOKU-Net, (c) Latent-ODE, and (d) Hierarchical-ODE models. For clarity, we
plot ground truth (dotted) time-series against median predictions (solid) across three c = [C6, C12] treatments (minimum,
median, and maximum), e.g., when C6= minimum, output is averaged across all C12. Shaded areas indicate the predicted
95% confidence interval (CI).



(a) SL-ODE: Posterior (b) SL-ODE: Prior

Figure 2: SL-ODE SYNTHETIC BIOLOGY held-out device (g = R33-S32) task. Ground truth vs. (a) posterior predictive
distribution and (b) controlled generated observations given system inputs u = [g, c] according to assumed prior distribution.
We plot the median (circles) with 95% CI against ground truth observations (crosses) averaged (200 z samples) across all
observations at the final time-point sweeping all c = [C6, C12] treatments.



(a) SL-ODE (b) GOKU-Net (c) Latent-ODE (d) Hierarchical-ODE

Figure 3: Posterior predictive distribution on HUMAN VIRAL CHALLENGE for randomly selected test patient showing one
of the four combination binary outcomes u for viral shedding (sh=0) and symptoms (sx=0) onset (a) proposed SL-ODE,
(b) GOKU-Net, (c) Latent-ODE, and (d) Hierarchical-ODE models. For clarity, we plot ground truth (dotted) time-series
against median predictions (solid). We do not show error bars since they are too large due to noisy data.

(a) SL-ODE (b) GOKU-Net (c) Latent-ODE (d) Hierarchical-ODE

Figure 4: Posterior predictive distribution on HUMAN VIRAL CHALLENGE for randomly selected test patient showing one
of the four combination binary outcomes u for viral shedding (sh=0) and symptoms (sx=1) onset (a) proposed SL-ODE,
(b) GOKU-Net, (c) Latent-ODE, and (d) Hierarchical-ODE models. For clarity, we plot ground truth (dotted) time-series
against median predictions (solid). We do not show error bars since they are too large due to noisy data.



(a) SL-ODE (b) GOKU-Net (c) Latent-ODE (d) Hierarchical-ODE

Figure 5: Posterior predictive distribution on HUMAN VIRAL CHALLENGE for randomly selected test patient showing one
of the four combination binary outcomes u for viral shedding (sh=1) and symptoms (sx=0) onset (a) proposed SL-ODE,
(b) GOKU-Net, (c) Latent-ODE, and (d) Hierarchical-ODE models. For clarity, we plot ground truth (dotted) time-series
against median predictions (solid). We do not show error bars since they are too large due to noisy data.

(a) SL-ODE (b) GOKU-Net (c) Latent-ODE (d) Hierarchical-ODE

Figure 6: Posterior predictive distribution on HUMAN VIRAL CHALLENGE for randomly selected test patient showing one
of the four combination binary outcomes u for viral shedding (sh=1) and symptoms (sx=1) onset (a) proposed SL-ODE,
(b) GOKU-Net, (c) Latent-ODE, and (d) Hierarchical-ODE models. For clarity, we plot ground truth (dotted) time-series
against median predictions (solid). We do not show error bars since they are too large due to noisy data.
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