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A PROOFS

Proof. (Of Lemma 5) Observe that in this case:
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If M has bounded variance, then the variance of
An(M(x1), . . . ,M(xn)) diminishes with n. The rest of
the lemma follows by an application of the Chebyshev’s
inequality.

Proof. (Of Lemma 6) The proof generalizes the argument
that the Laplace mechanism applied independently to each
coordinate is differentially private for vectors with bounded
L1-sensitivity. Let x ∈ Rd with ∥x∥p ≤ ∆, and let Q0, Q1

be density functions for the output distributions of M with
or without the input x. Then for any output value z:

Q0(z)

Q1(z)
=

d∏
i=1

Q0(zi)

Q1(zi)

≤
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exp(ϵxp
i ) since M is ϵ-metric DP

= exp

(
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xp
i

)
≤ exp(ϵ∆p).

The reverse inequality can be derived similarly. Unbiased-
ness follows from the fact that M is unbiased for each
dimension i = 1, . . . , d.

Proof. (Of Lemma 7) Let p be a feasible solution for (4).
Let ⊙ and ⊙−1 denote element-wise product and inverse,
respectively. Then:
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≤ (Dα
i∗j∗/Ci∗j∗)(B − 1)p∆p

= d0D
α
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Theorem 1. Unbiased Bitwise Randomized Response satis-
fies ϵ-local DP and is unbiased.

Proof. By standard proofs of the Randomized Response
mechanism, transmitting bit j of z is ϵ/b-differentially pri-
vate. The entire procedure is thus ϵ-differentially private by
composition.

To show unbiasedness, first we observe that E[z] = x. Addi-
tionally, let us write z =

∑b−1
j=0 2

−jzj . The transmitted num-

ber t is decoded as t =
∑b−1

j=0 2
−jtj . Thus, if E[tj ] = zj ,

then the entire algorithm is unbiased. Observe that:

E[tj ] = a0 + (a1 − a0)E[yj ]

= a0 + (a1 − a0)

(
zj

1 + e−ϵ/b
+

(1− zj) · e−ϵ/b

1 + e−ϵ/b

)
= zj .

where the last step follows from some algebra. The theorem
follows by noting that E[z] = x from properties of dithering.

Theorem 2. Unbiased Generalized Randomized Response
satisfies ϵ-local DP and is unbiased.
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Figure 1: Optimized sampling probability matrix P for the MVU mechanism with bin = 5 and different values of bout. The
bottom right plot shows that the marginal benefit of the communication budget bout to MSE becomes lower as bout increases.

Proof. The proof of privacy follows from standard proofs
of the privacy of the Generalized RR mechanism. To prove
unbiasedness, observe that when z = i

B−1 , the expected
output is ai with probability eϵ

B+eϵ−1 and aj for j ̸= i with
probability 1

B+eϵ−1 . From Equation 3.3, this expectation is
also i

B−1 = z. Additionally, from properties of the dithering
process, E[z] = x. The unbiasedness follows by combining
these two.

B EXPERIMENTAL DETAILS

B.1 VECTOR DITHERING

The optimization program in the MVU Mechanism oper-
ates on numbers on a discrete grid, which are obtained by
dithering. In the scalar case, we use the standard dithering
procedure on an x in [0, 1]. For vectors, we use coordinate-
wise dithering on each coordinate. While this leads to an
unbiased solution, it might increase the norm of the vector.
We show below that the increase in norm is not too high.

Lemma 3. Let v be a vector such that ∥v∥ ≤ 1 and vi ∈
[−1, 1] for each coordinate i. Let v′ be the vector obtained
by dithering each coordinate of v to a grid of size B (so that

the difference between any two grid points is ∆ = 2
B−1 ).

Then, with probability ≥ 1− δ,

∥v′∥2 ≤ ∥v∥2+
√
2∥v∥∆ log(4/δ)+d∆2/4+

√
2d∆ log(4/δ).

Proof. Let ∆ = 2
B−1 be the difference between any two

grid points. For a coordinate i, let vi = λi + ai where λi is
the closest grid point that is ≤ vi and ai ≥ 0. We also let
v′i = λi +Zi; observe that by the dithering algorithm, Zi ∈
{0,∆}, with E[Zi] = ai. Additionally, V ar(Zi) ≤ ∆2

4 .

Additionally, we observe that ∥v′i∥2 =
∑

i(λi + Zi)
2 =∑

i λ
2
i + 2λiZi + Z2

i . By algebra, we get that:

∥v′∥2 − ∥v∥2 =
∑
i

(Z2
i − a2i ) +

∑
i

2λi(Zi − ai)

We next bound these terms one by one. To bound the second
term, we observe that E[Zi] = ai and apply Hoeffding’s
inequality. This gives us:

Pr(
∑
i

λiZi ≥
∑
i

λiai + t) ≤ 2e−t2/2
∑

i λ
2
i∆

2

Plugging in t =
√
2
∑

i λ
2
i∆ log(4/δ) makes the right hand

side ≤ δ/2. To bound the first term, we again use a Hoeffd-



ing’s inequality.
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Plugging in t =
√
2d∆ log(4/δ) makes the right hand side

≤ δ/4. Therefore, with probability ≥ 1− δ,
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2 − a2i )

+
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Observe that E[Z2
i ]− a2i = V ar(Zi) ≤ ∆2/4; additionally,∑

i λ
2
i ≤ ∥v∥2. Therefore, we get:

∥v′∥2 ≤ ∥v∥2+
√
2∥v∥∆ log(4/δ)+d∆2/4+

√
2d∆ log(4/δ).

The lemma follows.

In practice, given an a priori norm bound ∥v∥ ≤ R for all
input vectors v, we estimate a scaling factor γ ∈ [0, 1] and
apply dithering to the input γv so that ∥Dither(γv)∥ ≤ R
with high probability. This can be done by choosing a
confidence level δ > 0 and solving for sup{γ ∈ [0, 1] :
∥Dither(γv)∥ ≤ R w.p. ≥ 1−δ} via binary search. Since
dithering is randomized, we can perform rejection sampling
until the condition ∥Dither(γv)∥ ≤ R is met. Doing so in-
curs a small bias that is insignificant in practical applications.
We leave the design of more sophisticated vector dithering
techniques that simultaneously preserve unbiasedness and
norm bound for future work.

B.2 CONNECTION BETWEEN DP AND
COMPRESSION

We highlight an interesting effect on the required commu-
nication budget as a result of adding differentially private
noise. Figure 1 shows the optimized sampling probabil-
ity matrix P for the MVU mechanism with a fixed input
quantization level bin = 5 and various values of bout. As
bout increases, the overall structure in the matrix P remains
nearly the same but becomes more refined. Moreover, in
the bottom right plot, it is evident that the marginal benefit
to MSE becomes lower as bout increases. This observation
suggests that for a given ϵ, having more communication
budget is eventually not beneficial to aggregation accuracy
since the amount of information in the data becomes ob-
scured by the DP mechanism and hence requires fewer bits
to communicate.

B.3 DISTRIBUTED MEAN ESTIMATION

For the vector distributed mean estimation experiment in
Section 5.1, the different private compression mechanisms
used different values of the communication budget b. We
justify the choice of b as follows.
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Figure 2: DP-SGD training of a small convolutional network
on MNIST with Gaussian mechanism, stochastic signSGD
and MVU mechanism. Each point corresponds to a single
hyperparameter setting, and dashed line shows Pareto fron-
tier of privacy-utility trade-off.

L1-sensitivity setting. CLDP outputs a total number of
log2(d) + 1 = 8 bits, which is lower than that of both
Skellam and MVU and cannot be tuned. Skellam performs
truncation to the range {−2b−1, 2b−1 − 1} after perturbing
the quantized input with Skellam noise, and hence requires
a value of b that is large enough to prevent truncation error.
We intentionally afforded Skellam a large budget of b = 16
so that truncation error rarely occurs, and show that even
in this setting MVU can outperform Skellam in terms of
estimation MSE. For MVU, we chose bin = 9, which is the
minimum value required to avoid a large quantization error,
and b = bout = 3.

L2-sensitivity setting. CLDP uses a communication bud-
get of b = log2(d) + 1 = 8 per coordinate and is not
tunable. We used the same b = 16 budget for Skellam as in
the L1-sensitivity setting. For MVU, we chose bin = 5 and
b = bout = 3 for both the L1- and L2-metric DP versions,
which results in a communication budget that is lower than
both CLDP and Skellam. For the L1-metric DP version,
we found that optimizing MVU to satisfy (ϵ/2)-metric DP
with respect to the L1 metric results in an (ϵ′, δ)-DP mech-
anism with ϵ′ ≈ ϵ and δ = 1/(n + 1) after optimal RDP
conversion.

B.4 PRIVATE SGD

In Section 5.2, we trained a linear model on top of features
extracted by a scattering network1 on the MNIST dataset.
In addition, we consider a convolutional network with tanh
activation, which has been found to be more suitable for

1We used the Kymatio library https://github.com/
kymatio/kymatio to implement the scattering transform.

https://github.com/kymatio/kymatio
https://github.com/kymatio/kymatio


Layer Parameters

ScatterNet Scale J = 2, L = 8 angles, depth 2
GroupNorm (Wu and He, 2018) 6 groups of 24 channels each
Fully connected 10 units

Table 1: Architecture for scatter + linear model.

Layer Parameters

Convolution +tanh 16 filters of 8× 8, stride 2, padding 2
Average pooling 2× 2, stride 1
Convolution +tanh 32 filters of 4× 4, stride 2, padding 0
Average pooling 2× 2, stride 1
Fully connected +tanh 32 units
Fully connected +tanh 10 units

Table 2: Architecture for convolutional network model.

Hyperparameter Values

Batch size 600
Momentum 0.5
# Iterations T 500, 1000, 2000, 3000, 5000
Noise multiplier σ for Gaussian and signSGD 0.5, 1, 2, 3, 5
L1-metric DP parameter ϵ for MVU 0.25, 0.5, 0.75, 1, 2, 3, 5
Step size ρ 0.01, 0.03, 0.1
Gradient norm clip C 0.25, 0.5, 1, 2, 4, 8

Table 3: Hyperparameters for DP-SGD on MNIST.

Hyperparameter Values

Batch size 500
Momentum 0.5
# Iterations T 1000, 2000, 3000, 5000, 10000, 15000
Noise multiplier σ for Gaussian and signSGD 0.5, 1, 2, 3, 5
L1-metric DP parameter ϵ for MVU 0.25, 0.5, 0.75, 1, 2, 3, 5
Step size ρ 0.01, 0.03, 0.1
Gradient norm clip C 0.25, 0.5, 1, 2, 4, 8

Table 4: Hyperparameters for DP-SGD on CIFAR-10.

DP-SGD (Papernot et al., 2020). We give the architecture
details of both models in Tables 1 and 2.

Hyperparameters. DP-SGD has several hyperparame-
ters, and we exhaustive test all setting combinations to pro-
duce the scatter plots in Figures 4 and 2. Tables 3 and 4 give
the choice of values that we considered for each hyperpa-
rameter.

Result for convolutional network. Figure 2 shows the
comparison of DP-SGD training with Gaussian mechanism,
stochastic signSGD, and MVU mechanism with b = 1. The
experimental setting is identical to that of Figure 4 except for
the model being a small convolutional network trained end-
to-end. We observe a similar result that MVU recovers the
performance of signSGD at equal communication budget of
b = 1.
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