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1 VISUALIZATIONS OF THE MSE LANDSCAPE
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Figure 1: MSE vs. the noise parameter. Top left panel for model (i), Gaussian mean; Top right panel for model (ii), Gaussian
variance; Bottom left for model (iii), Gaussian correlation.

We provide visualizations of the MSE landscape of the NCE estimator, when the noise is constrained within a parametric
family containing the data.

We draw attention to the two local minima symmetrically placed to the left and to the right of the Gaussian mean. This
corroborates the indeterminacies observed in this paper (Conjecture on limit of zero noise), as to where the optimal noise
should place its mass for this estimation problem.

Proceedings of the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022), PMLR 180:1–16.

mailto:<jj@example.edu>?Subject=Your UAI 2022 paper


2 INTRACTABILITY OF THE 1D GAUSSIAN CASE

Suppose the data distribution pd is a one-dimensional standardized zero-mean Gaussian. The model and noise distributions
are of the same family, parameterized by mean and/or variance (we write these together in one model):

pθ(x) =
1√
2πα

e−
1
2

(x−µ)2

α , pn(x) =
1√
2πβ

e−
1
2 (

(x−π)2

β x ∈ R

We can write out the relevant functions, evaluated at α = 1, µ = 0 as the 2D score:

g(x) =

(
∂µ log pθ
∂α log pθ

) ∣∣∣∣
µ=0,α=1

=

(
x

−1 + x2

)

and its “pointwise covariance": g(x)g(x)> =

(
x2 −x+ x3

−x+ x3 x4 − x2 + 1

)
In the following, we consider estimation of variance only. i.e. only the second term inm and the second diagonal term in the
Fisher information matrix I . Now we can compute the generalized score mean m and mean of square I as they intervene in
the MSE formula for Noise-Contrastive Estimation:

m =

∫
g(x)(1−D(x))p(x)dx

which gives

m = − 1

2
√
2π

∫ e
−x2

2
1

1 + 1
ν

√
βe

−x2

2 (1− 1
β )

 dx+
1

2
√
2π

∫
x2

e
−x2

2
1

1 + 1
ν

√
βe

−x2

2 (1− 1
β )

 dx

and

I =

∫
g(x)2(1−D(x))p(x)dx

which gives

I =
1

4
√
2π

∫
x4

e
−x4

2
1

1 + 1
ν

√
βe

−x2

2 (1− 1
β )

 dx− 1

2α3
√
2π

∫
x2

e
−x2

2
1

1 + 1
ν

√
βe

−x2

2 (1− 1
β )

 dx

+
1

4
√
2π

∫ e
−x2

2
1

1 + 1
ν

√
βe

−x2

2 (1− 1
β )

 dx

We see that even in a simple 1D Gaussian setting, evaluating the asymptotic MSE of the Noise-Contrastive Estimator is
untractable in closed-form, given the integrals in I , where the integrand includes the product of a Gaussian density with the
logistic function compounded by the Gaussian density, further multiplied by monomials. While here we considered the case
of variance, the intractability is seen even in the case of the mean. Optimizing the asymptotic MSE with respect to β and π
(noise distribution) or ν (identifiable to the noise proportion) yields similarly intractable integrals.
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3 OPTIMAL NOISE PROPORTION WHEN THE NOISE DISTRIBUTION MATCHES
THE DATA DISTRIBUTION: PROOF

We wish to minimize the MSE given by

MSENCE(T, ν, pn) =
ν + 1

T
tr(I−1 − ν + 1

ν
(I−1mm>I−1))

when pn = pd. In that case,

D(x) =
pd

pd + νpn
(x) =

pd
pd + νpd

(x) =
1

1 + ν

and the integrals involved become

m =

∫
g(x)(1−D(x))p(x)dx

=
ν

1 + ν

∫
g(x)p(x)dx

= 0

given the score has zero mean, and

I =

∫
g(x)g(x)>(1−D(x))p(x)dx

=
ν

1 + ν

∫
g(x)g(x)>p(x)dx

=
ν

1 + ν
IF .

The objective function thus reduces to

MSENCE(T, ν, pn) =
ν + 1

T
tr(I−1) =

(ν + 1)2

νT
tr(I−1

F ) ∝ (ν + 1)2

ν
.

The derivative with respect to ν is proportional to 1
ν2 − 1 and is null when ν = 1 so when the noise proportion is 50%.

Note that in that case where pn = pd, we can compare the MSE achieved by NCE (using Td data samples and Tn noise
samples) with the MSE achieved my MLE (using Td data samples):

MSENCE(T, ν, pn)

MSEMLE(Td)
=

(ν+1)2

νT tr(I−1
F )

1
Td

tr(I−1
F )

=
(ν+1)2

νT tr(I−1
F )

ν+1
T tr(I−1

F )
= 1 +

1

ν

which is known from [Gutmann and Hyvärinen, 2012, Pihlaja et al., 2010].
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4 OPTIMAL NOISE FOR ESTIMATING A PARAMETER: PROOFS

We here prove the theorem and conjecture for the optimal noise distribution in three limit cases ν → 0 (all data samples),
ν → ∞ (all noise samples), and pd

pn
(.) = 1 + ε(.) as ε(.) → 0 (noise distribution is an infinitesimal perturbation of the data

distribution).

The goal is to optimize the MSENCE(T, ν, pn) with respect to the noise distribution pn, where

MSENCE(T, ν, pn) =
ν + 1

T
tr(I−1 − ν + 1

ν
(I−1mm>I−1)) (1)

where the integrals

m =

∫
g(x)(1−D(x))p(x)dx

I =

∫
g(x)g(x)>(1−D(x))p(x)dx

depend non-linearly on pn via the optimal discriminator:

1−D(x) =
νpn(x)

pd(x) + νpn(x)

The general proof structure is:

• Perform a Taylor expansion of 1−D(x) in the ν → 0 or ν → ∞ limit

• Plug into the integralsm, I and evaluate them (up to a certain order)

• Perform a Taylor expansion of I−1 (up to a certain order)

• Evaluate the MSENCE (up to a certain order)

• Optimize the MSENCE w.r.t. pn
• Compute the MSE gaps at optimality
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Theorem 1 In either of the following two limits:

(i) the noise distribution is a (infinitesimal) perturbation of the data distribution pd

pn
= 1 + ε(x);

(ii) in the limit of all noise samples ν → ∞;

the noise distribution minimizing asymptotic MSE is

poptn (x) ∝ pd(x)‖I−1
F g(x)‖ . (2)

Proof: case where ν → ∞.

We start with a change of variables γ = 1
ν → 0 to bring us to a zero-limit.

The MSE in terms of our new variable γ = 1
ν can be written as:

MSENCE(T, γ, pn) =
γ + 1

γT
tr(I−1)− (γ + 1)2

Tγ
tr(I−1mm>I−1) (3)

=

(
γ−1T−1 + γ0T−1

)
tr(I−1)−

(
γ−1T−1 + γ02T−1 + γ1T−1

)
tr(I−1mm>I−1) (4)

Given the term up until γ−1 in the MSE, we will use Taylor expansions up to order 2 throughout the proof, in anticipation
that the MSE will be expanded until order 1.

• Taylor expansion of the discriminator

1−D(x) =
νpn(x)

pd(x) + νpn(x)
=

1

1 + γ pd

pn
(x)

= 1− γ
pd
pn

(x) + γ2 p
2
d

p2n
(x) + ◦(γ2)

• Evaluating the integralsm, I

m =

∫
g(x)pd(x)

(
1−D(x)

)
dx =

∫
g(x)pd(x)

(
1− γ

pd
pn

(x) + γ2 p
2
d

p2n
(x) + ◦(γ2)

)
dx

=mF − γa+ γ2b+ ◦(γ2) (5)

wheremF is the Fisher-score mean of the (possibly unnormalized) model and we use shorthand notations a and b for
the remaining integrals:

mF =

∫
g(x)pd(x)dx = 0

a =

∫
g(x)

p2d
pn

(x)dx

b =

∫
g(x)

p3d
p2n

(x)dx .

Similarly,

I =

∫
g(x)g(x)>pd(x)

(
1−D(x)

)
dx =

∫
g(x)g(x)>pd(x)

(
1− γ

pd
pn

(x) + γ2 p
2
d

p2n
(x) + ◦(γ2)

)
dx

= IF − γA+ γ2B + ◦(γ2)
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where the Fisher-score covariance (Fisher information) is IF and we use shorthand notations A and B for the remaining
integrals:

IF =

∫
g(x)g(x)>pd(x)dx

A =

∫
g(x)g(x)>

p2d
pn

(x)dx

B =

∫
g(x)g(x)>

p3d
p2n

(x)dx .

• Taylor expansion of I−1

I−1 =

(
IF − γA+ γ2B + ◦(γ2)

)−1

=

(
IF (Id − γI−1

F A+ γ2I−1
F B) + ◦(γ2)

)−1

= I−1
F

(
Id − γI−1

F A+ γ2I−1
F B

)−1

+ ◦(γ2)

= I−1
F

(
Id + γI−1

F A+ γ2((I−1
F A)2 − I−1

F B) + ◦(γ2)

)
+ ◦(γ2)

= I−1
F + γI−2

F A+ γ2(I−1
F (I−1

F A)2 − I−2
F B) + ◦(γ2) (6)

• Evaluating the MSENCE

I−1mm>I−1 = I−1
F mFm

>
F I

−1
F γ2(I−1

F aa>I−1
F + I−2

F AmFmF>I−2
F A) + ◦(γ2)

by plugging in the Taylor expansions of I−1 andm and retaining only terms up to the second order. Hence, the second
term of the MSE without the trace is(

γ−1T−1 + γ02T−1 + γ1T−1

)
I−1mm>I−1

= γ−1 1

T
(I−1

F mFm
>
F I

−1
F ) + γ0 2

T
(I−1

F mFm
>
F I

−1
F )+

γ1 1

T
(I−1

F mFm
>
F I

−1
F + I−1

F aa>I−1
F + I−2

F AmFm
>
F I

−2
F A) + ◦(γ)

and the first term of the MSE without the trace is(
γ−1T−1 + γ0T−1

)
(I−1)

=

(
γ−1T−1 + γ0T−1

)(
I−1
F + γI−2

F A+ γ2(I−1
F (I−1

F A)2 − I−2
F B) + ◦(γ2)

)
= γ−1 1

T
I−1
F + γ0 1

T
(I−2

F A+ I−1
F ) + γ1 1

T
[I−1

F (I−1
F A)2 − I−2

F B + I−2
F A] + ◦(γ) .

Subtracting the second term from the first term and applying the trace, we finally write the MSE:

MSENCE = tr

(
γ−1 1

T

(
I−1
F − I−1

F mFm
>
F I

−1
F

)
+ γ0 1

T

(
I−2
F A+ I−1

F − 2I−1
F mFm

>
F I

−1
F

))
+ ◦(γ) (7)

• Optimize the MSENCE w.r.t. pn
To optimize w.r.t. pn, we need only keep the two first orders of the MSENCE, which depends on pn only via the term
tr(I−2

F A) =
∫
‖I−1

F g(x)‖2 p2
d

pn
(x)dx. Hence, we need to optimize

J(pn) =
1

T

∫
‖I−1

F g(x)‖2 p
2
d

pn
(x)dx (8)
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with respect to pn. We compute the variational (Fréchet) derivative together with the Lagrangian of the constraint∫
pn(x) = 1 (with λ denoting the Lagrangian multiplier) to obtain

δpn
J = −‖I−1

F g‖2 p
2
d

p2n
+ λ . (9)

Setting this to zero and taking into account the non-negativity of pn gives

pn(x) = ‖I−1
F g(x)‖pd(x)/Z (10)

where Z =
∫
‖I−1

F g(x)‖pd(x)dx is the normalization constant. This is thus the optimal noise distribution, as a
first-order approximation.

• Compute the MSE gaps at optimality
Plugging this optimal pn into the formula of MSENCE and subtracting the Cramer-Rao MSE (which is a lower bound
for a normalized model), we get:

∆optMSENCE = MSENCE(pn = poptn )−MSECramer−Rao

=
1

T

(∫
‖I−1

F ψ‖pd
)2

.

This is interesting to compare with the case where the noise distribution is the data distribution, which gives

∆dataMSENCE = MSENCE(pn = pd)−MSECramer−Rao

=
1

T

∫
‖I−1

F ψ‖2pd

where the squaring is in a different place. In fact, we can compare these two quantities by the Cauchy-Schwartz
inequality, or simply the fact that

∆MSENCE = ∆dataMSENCE −∆optMSENCE

= MSENCE(pn = pd)−MSENCE(pn = poptn )

=
1

T
VarX∼pd

{‖I−1
F g(X)‖}

This implies that the two MSEs, when when the noise distribution is either poptn or pd, can be equal only if ‖I−1
F g(.)‖

is constant in the support of pd. This does not seem to be possible for any reasonable distribution.
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Proof: case where pn ≈ pd

We consider the limit case where pd

pn
(x) = 1 + ε(x) with |ε(x)− 0| < εmax ∀x.

Note that in order to use Taylor expansions for terms containing ε(x) in an integral, we assume for any integrand h(x) that∫
h(x)ε(x)dx ≈ ε

∫
h(x)dx, where ε would be a constant.

• Taylor expansion of the discriminator

1−D(x) =
νpn(x)

pd(x) + νpn(x)
=

1

1 + 1
ν + pd

pn
(x)

=
1

1 + 1
ν + 1

ν ε(x)

=
ν

1 + ν
ε0(x)− ν

(1 + ν)2
ε1(x) +

ν

(1 + ν)3
ε2(x) + ◦(ε2)

• Evaluating the integralsm, I

m =

∫
g(x)pd(x)

(
1−D(x)

)
dx

=

∫
g(x)pd(x)

(
ν

1 + ν
ε0(x)− ν

(1 + ν)2
ε1(x) +

ν

(1 + ν)3
ε2(x) + ◦(ε2)

)
dx

=
ν

1 + ν
mF − ν

(1 + ν)2
a(ε) +

ν

(1 + ν)3
b(ε2) + ◦(ε3)

where the Fisher-score meanmF is null and we use shorthand notations a and b for the remaining integrals:

mF =

∫
g(x)pd(x)dx

a(ε) =

∫
g(x)pdε(x)dx

b(ε2) =

∫
g(x)pdε

2(x)dx .

Similarly,

I =

∫
g(x)g(x)>pd(x)

(
1−D(x)

)
dx

=

∫
g(x)g(x)>pd(x)

(
ν

1 + ν
ε0(x)− ν

(1 + ν)2
ε1(x) +

ν

(1 + ν)3
ε2(x) + ◦(ε2)

)
dx

=
ν

1 + ν
IF − ν

(1 + ν)2
A(ε) +

ν

(1 + ν)3
B(ε2) + ◦(ε3)

where the Fisher-score covariance (Fisher information) is IF and we use shorthand notations A and B for the remaining
integrals:

IF =

∫
g(x)g(x)>pd(x)dx

A(ε) =

∫
g(x)g(x)>pdε(x)dx

B(ε2) =

∫
g(x)g(x)>pdε

2(x)dx .

• Taylor expansion of I−1

I−1 =

(
ν

1 + ν
IF − ν

(1 + ν)2
A(ε) +

ν

(1 + ν)3
B(ε2) + ◦(ε3)

)−1

=
1 + ν

ν
I−1
F +

1

ν
I−2
F A(ε) +

ν

1 + ν
I−2
F

(
I−1
F A2(ε)−B(ε2)

)
+ ◦(ε3)
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• Evaluating the MSENCE

I−1mm>I−1 = I−1
F mFm

>
F I

−1
F +

1

(1 + ν)2

(
I−2
F A(ε)mFm

>
F I

−2
F A(ε) + I−1

F a(ε)a(ε)>I−1
F

)
+ ◦(ε3)

by plugging in the Taylor expansions of I−1 andm and retaining only terms up to the second order. Finally, the MSE
becomes:

MSENCE(T, ν, pn) =
ν + 1

T
tr(I−1 − ν + 1

ν
(I−1mm>I−1))

= tr

(
(1 + ν)2

Tν
(I−1

F − I−1
F mFm

>
F I

−1
F ) +

1 + ν

Tν
I−2
F A(ε)+

1

Tν

(
I−3
F A2(ε)− I−2

F B(ε2)− I−1
F a(ε)a(ε)>I−1

F − I−2
F A(ε)mFm

>
F I

−2
F A(ε)

))
+ ◦(ε3)

• Optimize the MSENCE w.r.t. pn
To optimize w.r.t. pn, we need only keep the MSENCE up to order 1, which depends on pn only via the term

tr(I−2
F A(ε)) = tr

(
I−2
F

( ∫
g(x)g(x)>

p2d
pn

(x)dx− IF
))

. where we unpacked pn from ε = pd

pn
− 1. Hence, we need to optimize

J(pn) =
1

T

∫
‖I−1

F g(x)‖2 p
2
d

pn
(x)dx (11)

with respect to pn. This was already done in the all-noise limit ν → ∞ and yielded

pn(x) = ‖I−1
F g(x)‖pd(x)/Z (12)

where Z =
∫
‖I−1

F g(x)‖pd(x)dx is the normalization constant. This is thus the optimal noise distribution, as a
first-order approximation.
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In the third case, the limit of all data, we have the following conjecture:

Conjecture 1 In case (iii), the limit of all data samples ν → 0, the optimal noise distribution is such that it is all concentrated
at the set of those ξ which are given by

argmax
ξ

pd(ξ)tr

(
(g(ξ)g(ξ)>)−1

)−1

s.t. g(ξ) = constant (13)
Informal and heuristic “proof":

We have the MSENCE(T, ν, pn) =
ν+1
T tr(I−1 − ν+1

ν (I−1mm>I−1)).

Given the term up until ν−1 in the MSE, we will use Taylor expansions up to order 2 throughout the proof, in anticipation
that the MSE will be expanded until order 1.

Note that in this no noise limit, the assumption made by Gutmann and Hyvärinen (2012) that pn is non-zero whenever
pd is nonzero is not true for this optimal pn, which reduces the rigour of this analysis. (This we denote by heuristic
approximation 1.)

• Taylor expansion of the discriminator

1−D(x) =
νpn(x)

pd(x) + νpn(x)
=

1

1 + 1
ν

pd

pn
(x)

= ν
pn
pd

(x)− ν2
p2n
p2d

(x) + ◦(ν2)

• Evaluating the integralsm, I

m =

∫
g(x)pd(x)

(
1−D(x)

)
dx =

∫
g(x)pd(x)

(
ν
pn
pd

(x)− ν2
p2n
p2d

(x) + ◦(ν2)
)
dx

= νmn − ν2b+ ◦(ν2)

where

mn =

∫
g(x)pn(x)dx

b =

∫
g(x)

p2n
pd

(x)dx .

Similarly,

I =

∫
g(x)g(x)>pd(x)

(
1−D(x)

)
dx =

∫
g(x)g(x)>pd(x)

(
ν
pn
pd

(x)− ν2
p2n
p2d

(x) + ◦(ν2)
)
dx

= νIn − ν2B + ◦(ν2)

where the Fisher-score covariance (Fisher information) is IF and we use shorthand notations A and B for the remaining
integrals:

In =

∫
g(x)g(x)>pn(x)dx

B =

∫
g(x)g(x)>

p2n
pd

(x)dx .

• Taylor expansion of I−1
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I−1 =

(
νIn − ν2B + ◦(ν2)

)−1

=

(
νIn(Id − νI−1

n B) + ◦(ν2)
)−1

= ν−1I−1
n

(
Id + νI−1

n B + ν2(I−1
n B)2 + ν3(I−1

n B)3 + ◦(ν3)
)
+ ◦(ν2)

= ν−1I−1
n + ν0I−2

n B + ν1I−1
n (I−2

n B)2 + ν2I−1
n (I−2

n B)3 + ◦(ν2)

• Evaluating the MSENCE

I−1mm>I−1 =

ν0(I−1
n mnm

T
nI

−1
n ) + ν2(I−1

n bbT I−1
n + I−2

n Bmnm
T
nI

−2
n B) + ◦(ν2)

by plugging in the Taylor expansions of I−1 andm and retaining only terms up to the second order. Hence, the second
term of the MSE without the trace is(

ν1T−1 + ν02T−1 + ν−1T−1

)
I−1mm>I−1

=

(
ν1T−1 + ν02T−1 + ν−1T−1

)(
ν0(I−1

n mnm
>
n I

−1
n ) + ν2(I−1

n bb>I−1
n + I−2

n Bmnm
>
n I

−2
n B) + ◦(ν2)

)
= ν−1 1

T
(I−1

n mnm
>
n I

−1
n ) + ν0

1

T
(2I−1

n mnm
>
n I

−1
n )+

ν1
1

T
(I−1

n bnb
>
n I

−1
n + I−2

n Bmnm
>
n I

−2
n B + I−1

n mnm
>
n I

−1
n ) + ◦(ν)

and the first term of the MSE without the trace is(
ν0T−1 + ν1T−1

)
tr(I−1)

=

(
ν0T−1 + ν1T−1

)(
ν−1I−1

n + ν0I−2
n B + ν1I−1

n (I−2
n B)2 + ν2I−1

n (I−2
n B)3 + ◦(ν2)

)
= ν−1 1

T
I−1
n + ν0

1

T
(I−2

n B + I−1
n ) + ν1

1

T
[I−1

n (I−1
n B)2 + I−2

n B] + ◦(ν) .

Subtracting the second term from the first term and applying the trace, we finally write the MSE:

MSENCE = tr(ν−1 1

T
(I−1

n − I−1
n mnm

T
nI

−1
n ) + ν0

1

T
(I−2

n B + I−1
n − 2I−1

n mnm
T
nI

−1
n )+

ν1
1

T
[I−1

n (I−1
n B)2 + I−2

n B − I−1
n bnb

T
nI

−1
n − I−2

n Bmnm
T
nI

−2
n B − I−1

n mnm
T
nI

−1
n ] + ◦(ν)) .

Rewriting I−1
n = I−1

n InI
−1
n , using the circular invariance of the trace operator and stopping at order ν0, we get:

MSENCE = ν−1 1

T
〈I−2

n , In −mnm
>
n 〉+ ν0

1

T
〈I−2

n ,B + In − 2mnm
>
n 〉+ ◦(1)

= ν−1 1

T
〈I−2

n ,VarN∼pn
g(N)〉+ ν0

1

T
〈I−2

n ,B + In − 2mnm
>
n 〉+ ◦(1) . (14)

• Optimize the MSENCE w.r.t. pn
Looking at the above MSE, the dominant term of order ν−1 is 〈I−2

n ,VarN∼png(N)〉 ≥ 0 is minimized when it is 0,
that is, when g is constant in the support of pn. Typically this means that pn is concentrated on a set of zero measure. In
the 1D case, such case is typically the Dirac delta pn = δz , or a distribution with two deltas in case of symmetrical g.
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We can plug this in the terms of the next order ν0, which remain to be minimized:

〈I−2
n ,B + In − 2mnm

T
n 〉 = 〈I−2

n ,B − In + 2In − 2mnm
T
n 〉

= 〈I−2
n ,B − In + 2VarN∼png(N)〉

= 〈I−2
n ,B − In〉

given we chose pn so that the variance is 0.
The integrands of B and I respectively involve p2n and pn. Because pn is concentrated on a set of zero measure
(Dirac-like), the term inB dominates the term in I . This is because if we consider the pn as the limit of a sequence of
some proper pdf’s, the value of the pdf gets infinite in the support of that pdf in the limit, and thus p2n is infinitely larger
than pn. Hence we are left with 〈I−2

n ,B〉.
The integral with respect to pn simplifies to simply evaluating the g(x)g(x)>/pd(x) the support of pn. Since we know
that g(x) is constant in that set, the main question is whether pd is constant in that set as well. Here, we heuristically
assume that it is; this is intuitively appealing in many cases, if not necessarily true. (This we denote by heuristic
approximation 2.)
Thus, we have ∫

g(x)g(x)>
δ2z
pd

(x)dx ≈ c g(z)g(z)>
1

pd(z)

for some constant c taking into account the effect of squaring of pn (it is ultimately infinite, but the reasoning is still
valid in any sequence going to the limit.)
Next we make heuristic approximation 3: we neglect any problems of inversion of singular, rank 1 matrices (note this
is not a problem in the 1D case), and further obtain

〈I−2
n ,B〉 ≈ tr

(
(g(z)g(z)>)−1g(z)g(z)>

1

pd(z)
(g(z)g(z)>)−1

)
≈ 1

pd(z)
tr

(
(g(z)g(z)>)−1

)
. (15)

Minimizing this term is equivalent to the following maximization setup (still applying heuristic approximation 3):

argmax
ξ

pd(ξ)tr

(
(g(ξ)g(ξ)>)−1

)−1

.

Those points z obtained by the above condition are the best candidates for pn to concentrate its mass on.
We arrived this result by making three heuristic approximations as explained above; we hope to be able to remove some
of them in future work.
Numerically, evaluating the optimal noise in the all-data limit requires computing a weight w(x) =

tr

(
(g(ξ)g(ξ)>)−1

)−1

that is intractable in dimensions bigger than 1, due to the singularity of the rank 1 ma-

trix. We can avoid this numerically by introducing an (infinitesimal) perturbation ε > 0 which removes the singularity
problem:

wε(ξ) = tr

(
(g(ξ)g(ξ)> + εId)−1

)−1

= tr

(
ε−1Id− 1

ε2 + εg(ξ)>Idg(ξ)
g(ξ)g(ξ)>

)−1

by the Sherman-Morrison formula

=

(
ε−1d− 1

ε2 + ε‖g(ξ)‖2
‖g(ξ)‖2

)−1

=

(
ε−1(d− 1) + ε0

1

‖g(ξ)‖2
+ ε1

−1

‖g(ξ)‖4
+O(ε2)

)−1

by Taylor expansion

= ε
1

d− 1
+ ε2

−1

‖g(ξ)‖2(d− 1)2
+ ε3

(2− d)

‖g(ξ)‖4(d− 1)3
+O(ε4) by further Taylor expansion

12



where we go up to order 3 to ensure the weight wε(ξ) is positive. Finally, we can approximate the argmax operator
with its relaxation soft argmaxε(x) = e

x
ε∫

e
x
ε dx

, so that

pn(x) ≈ soft arg
ε1

max
(
pd(x)wε2(x)

)
where (ε1, ε2) ∈ (R∗

+)
2 are two hyperparameters taken close to zero.

13



5 OPTIMAL NOISE FOR ESTIMATING A DISTRIBUTION: PROOFS

So far, we have optimized hyperparameters (such as the noise distribution) so that the reduce the uncertainty of the parameter
estimation, measured by the Mean Squared Error E

[
‖θ̂T − θ∗‖2

]
= 1

Td
tr(Σ).

Sometimes, we might wish to reduce the uncertainty of the distribution estimation, which we can measure using the
Kullback-Leibler (KL) divergence E

[
DKL(pd, pθ̂T

)
]
.

We can specify this error, by using the Taylor expansion of the estimated θ̂T near optimality, given in Gutmann and
Hyvärinen [2012]:

θ̂T − θ∗ = z +O(‖θ̂T − θ∗‖2) (16)

where z ∼ N (0, 1
Td

Σ) and Σ is the asymptotic variance matrix.

We can similarly take the Taylor expansion of the KL divergence with respect to its second argument, near optimality:

J(θ̂T ) := DKL(pd, pθ̂T
)

= J(θ∗)+ < ∇θJ(θ
∗), θ̂T − θ∗ > +

1

2
< (θ̂T − θ∗),∇2

θJ(θ
∗) (θ̂T − θ∗) > +O(‖θ̂T − θ∗‖3)

= J(θ∗)+ < ∇θJ(θ
∗), θ̂T − θ∗) > +

1

2

∥∥θ̂T − θ∗
∥∥2
∇2

θJ(θ
∗)

+O(‖θ̂T − θ∗‖3)

Note that some simplifications occur:

• J(θ∗) = DKL(pθ∗ , pθ∗) = 0

• ∇θJ(θ
∗) = 0 as the gradient the KL divergence at θ∗ is the mean of the (negative) Fisher score, which is null.

• ∇2
θJ(θ

∗) = IF

Plugging in the estimation error 16 into the distribution error yields:

J(θ̂T ) =
1

2

∥∥∥∥z +O(‖θ̂T − θ∗‖2)
∥∥∥∥2
IF

+O(‖θ̂T − θ∗‖3)

=
1

2

(
‖z‖2IF + 2 < z, O(‖θ − θ∗‖2) >IF +

∥∥O(‖θ − θ∗‖2)
∥∥2
IF

)
+O(‖θ̂T − θ∗‖3)

=
1

2
‖z‖2IF +O(‖θ̂T − θ∗‖2)

by truncating the Taylor expansion to the first order. Hence up to the first order, the expectation yields:

E
[
DKL(pd, pθ̂T

)
]
=

1

2
E
[
‖z‖2IF

]
=

1

2
E
[
zT IFz

]
=

1

2
E
[
tr(zT IFz)

]
=

1

2
E
[
tr(IFzz

T )
]

=
1

2
tr(IFE[zzT ]) =

1

2
tr(IFVar[z]) =

1

2Td
tr(IFΣ)

Note that this is a general and known result which is applicable beyond the KL divergence: for any divergence, the 0th order
term is null as it measures the divergence between the data distribution and itself, the 1st order term is null in expectation if
the estimator θ̂T is asymptotically unbiased, which leaves an expected error given by the 2nd-order term 1

2Td
tr(∇2JΣ)

where J is the chosen divergence. Essentially, one would replace the Fisher Information above, which is the Hessian for a
forward-KL divergence, by the Hessian for a given divergence.

Finding the optimal noise that minimizes the distribution error means minimizing 1
Td

tr(ΣIF ). Contrast that with the optimal
noise that minimizes the parameter estimation error (asymptotic variance) 1

Td
tr(Σ). We can reprise each of the three limit

cases from the previous proofs, and derive novel optimal noise distributions:
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Theorem 2 In the two limit cases of Theorem 1, the noise distribution minimizing the expected Kullback-Leibler divergence
is given by

poptn (x) ∝ pd(x)‖I
− 1

2

F g(x)‖ . (17)
Proof: case of ν → ∞

We recall the asymptotic variance 1
Td

Σ in the all-noise limit is given by equation 7 at the first order and without the trace.
Multiplying by IF introduces no additional dependency in pn, hence we retain the only term dependent that was dependent
on pn, I−2

F

∫
g(x)g(x)>

p2
d

pn
(x)dx, multiply it with IF and take the trace. This yields the following cost to minimize:

J(pn) =
1

T

∫
‖I−

1
2

F g(x)‖2 p
2
d

pn
(x)dx (18)

with respect to pn. As in previous proofs, we compute the variational (Fréchet) derivative together with the Lagrangian of
the constraint

∫
pn(x) = 1 (with λ denoting the Lagrangian multiplier) to obtain

δpn
J = −‖I−

1
2

F g‖2 p
2
d

p2n
+ λ . (19)

Setting this to zero and taking into account the non-negativity of pn gives

pn(x) = ‖I−
1
2

F g(x)‖pd(x)/Z (20)

where Z =
∫
‖I−

1
2

F g(x)‖pd(x)dx is the normalization constant. This is thus the optimal noise distribution, as a first-order
approximation.

In the third case, the limit of all data, we have the following conjecture:

Conjecture 2 In the limit of Conjecture 1 the noise distribution minimizing the expected Kullback-Leibler divergence is
such that it is all concentrated at the set of those ξ which are given by

argmax
ξ

pd(ξ)tr

(
(g(ξ)g(ξ)>)−

1
2

)−1

s.t. g(ξ) = constant (21)
Proof: case of ν → 0

By the same considerations, we can obtain the optimal noise that minimizes the asymptotic error in distribution space in the
all-data limit, using equation 15 with a multiplication by IF inside the the trace. This leads to the result.
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6 NUMERICAL VALIDATION OF THE PREDICTED DISTRIBUTION ERROR

.

3 2 1 0 1 2 3
Noise Parameter

5.0

2.5

KL
 (l

og
10

)

KL Mean (Predicted) KL Mean (Empirical)

Figure 2: KL vs. the noise parameter (Gaussian Mean). The noise proportion is fixed at 50%.

We here numerically validate our formulae predicting the asymptotic estimation error in distribution space DKL(pd, pθ̂NCE
),

when the noise is constrained within a parametric family containing the data; here, the model is a one-dimensional centered
Gaussian with unit variance, parameterized by its mean.
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