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APPENDIX

We present an extended related work (Appendix A), glossary (Appendix B), additional algorithmic details (Appendix C),
proofs (Appendix D), experimental details (Appendix E), and additional experimental results (Appendix F).

A EXTENDED RELATED WORK

Weak supervision is a broad set of techniques using weak sources of signal to supervise models, such as distant super-
vision [Takamatsu et al., 2012], co-training methods [Blum and Mitchell, 1998], pattern-based supervision [Gupta and
Manning, 2014] and feature annotation [Mann and McCallum, 2010, Liang et al., 2009]. Weak supervision frameworks
often train in two stages—first modeling source accuracies to generate weak labels, and then fine-tuning a powerful end
model for generalization [Ratner et al., 2018, Bach et al., 2019, Khetan et al., 2018, Sheng et al., 2020, Fu et al., 2020, Zhan
et al., 2019, Safranchik et al., 2020, Boecking and Dubrawski, 2019]. Our work removes the second stage from the equation
and addresses two common challenges in weak supervision, coarse accuracy modeling and low coverage.

One weak supervision work that does not train in two stages, and models source qualities in a way that can be nonuniform
over the points is WeaSuL [Cachay et al., 2021]. However, this capability is present in a different context: end-to-end training
of a weak supervision label model with an end model. This prevents the use of the label model directly for prediction, as we
seek to do in our work. It requires much heavier computational budget, for example, when training a deep model, which
is not needed with our approach. In addition, WeaSuL relies on the use of an encoder for source qualities, rendering a
theoretical analysis intractable. By contrast, our approach offers clean and easy-to-interpret theoretical guarantees.

Transfer learning uses large datasets to learn useful feature representations that can be fine-tuned for downstream
tasks [Kolesnikov et al., 2020, Devlin et al., 2018]. Transfer learning techniques for text applications typically pre-train on
large corpora of unlabeled data [Devlin et al., 2018, Brown et al., 2020, Radford et al., 2019], while common applications
of transfer learning to computer vision pre-train on both large supervised datasets such as ImageNet [Russakovsky et al.,
2015] and large unsupervised or weakly-supervised datasets [He et al., 2019, Chen et al., 2020, Radford et al., 2021].
Pre-trained embeddings have also been used as data point descriptors for kNN search algorithms to improve model
performance, interpretability, and robustness [Papernot and McDaniel, 2018, Khandelwal et al., 2019]. We view our work as
complementary to these approaches, presenting another mechanism for using pre-trained networks.

Foundation models offer a new interface for the transfer learning setting: when it is impossible to fine-tune the original
models [Bommasani et al., 2021]. In this setting, the foundation models can still be used either by direct prompting [Lester
et al., 2021, Brown et al., 2020], or by using embeddings [Neelakantan et al., 2022]. Wang et al. [2021] prompts FMs to
produce pseudolabels, providing a complementary way to use FMs in weak supervision. In contrast, our work focuses
on using FM embeddings. Since we can only access the final embeddings of some foundation models, we focus on
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adapters [Houlsby et al., 2019] over the final layer in this work—which are equivalent to linear probes [Alain and Bengio,
2016].

Semi-supervised and few-shot learning approaches aim to learn good models for downstream tasks given a few labeled
examples. Semi-supervised approaches like label propagation Iscen et al. [2019] start from a few labeled examples and
iteratively fine-tune representations on progressively larger datasets, while few-shot learning approaches such as meta-
learning and metric learning aim to build networks that can be directly trained with a few labels Snell et al. [2017]. Our work
is inspired by these approaches for expanding signal from a subset of the data to the entire dataset using FM representations,
but we do not assume that our labeling sources are perfect, and we do not tune the representation.

B GLOSSARY

The glossary is given in Table 3 below.



Symbol Used for

x Input data point x ∈ X .
y True task label y ∈ Y = {−1,+1}.
λ Weak sources λ = {λ1, . . . , λm}, where each λj : X → Y ∪ {0}

is a probabilistic labeling function that votes on each x.
m Number of weak sources.
f A fixed mapping from input space X to embedding space Z that is made available

by the off-the-shelf foundation model.
ρ A fixed metric on the embedding space, ρ : Z × Z → R+.
D A training dataset of n i.i.d. unlabeled points, D = {xi}ni=1.
n Number of points in the unlabeled training dataset D.
G The dependency graph G = (V,E) used to model Pr(y,λ|x), where V = y ∪ λ and E contains

edges between y and λ.
Θ(x) The set of canonical parameters Θ(x) = {θy(x), θi(x), θi,0(x) ∀i ∈ [m]} corresponding to

class balance, source accuracy, and the abstain rate used to parametrize Pr(y,λ|x) in (1).
Z Partition function used for normalizing the distribution of Pr(y,λ|x).
ai(x) Accuracy parameter of λi on point x, ai(x) = E [λiy|λi ̸= 0, x].
C Partition of the embedding space Z into nonoverlapping subsets, C = {C1, . . . , Cs}.
s Size of the partition C.
n′ The number of points from D in each subset Cj , n′ = n

s .
C(x) The subset that x belongs to, i.e. C(x) = Cj if f(x) ∈ Cj .
ai(C(x)) Local accuracy parameter of λi on subset C(x), ai(C(x)) = E [λiy|λi ̸= 0, C(x)].
âi(C(x)) Our local accuracy estimate of ai(C(x)) using the triplet method in Algorithm 2.
λ̄ Set of extended weak sources, where each λ̄i is extended from λi using threshold radius ri in (3).
ri Threshold radius for λi, which determines how much beyond the support of λi to extend votes to.
L(λ) Generalization error (cross-entropy loss) of the label model,

defined as L(λ) = ED,x,y,λ

[
− log P̂r(y|λ, x)

]
.

Ky,Kλ,Kλ,0 Constants in Definition 1 corresponding to label, source, and coverage Lipschitzness, respectively.

α The maximum average inverse source coverage over the subsets, α = maxi Ex

[
1
pij

∣∣ pij ̸= 0
]
,

where pij = Pr(λi ̸= 0|f(x) ∈ Cj) is the coverage of λi on Cj .
amax The maximum source accuracy over the subsets, amax = maxi,j ai(Cj).
bmin The minimum rate of agreement between sources over the subsets,

bmin = mini,j,k{E [λiλj |λi ∧ λk ̸= 0, Cj ] , Ê [λiλk|λi ∧ λk ̸= 0, Cj ]}.
dCj The diameter of Cj , dCj = maxf(x),f(x′)∈Cj

ρ(f(x), f(x′)).
dC The average subset diameter dC = Ex

[
dC(x)

]
.

H(y|λ, x) Conditional entropy of y given λ, x.
ai The average accuracy of λi, ai = E [λiy|λi ̸= 0].
āi(ri) The average accuracy of λ̄i on the extended region, āi(ri) = E

[
λ̄iy|λ̄i ̸= 0, λi = 0

]
.

Pλi
The distribution of (x, y) over the support of λi, Pλi

= Pr(·|λi ̸= 0).
M An increasing function M : R+ → [0, 1] used to describe probabilistic Lipschitzness.
βi λi’s accuracy over an area close to where λi is extended and y changes value,

βi = E [λiy|λi ̸= 0,∃(x′, y′) : λi(x
′) = 0, ρ(f(x), f(x′)) ≤ ri, y

′ = y].
pi The proportion of the region where λ̄i is extended, pi = Pr(λi ̸= 0, λi = 0).
p(λ−i) The label model’s true probability of outputting the correct label in the extension region when

only using λ−i = λ\λi, p(λ−i) = Ey′,λ−i,λ̄i ̸=0,λi=0 [Pr(y = y′|λ−i, x)].

Table 3: Glossary of variables and symbols used in this paper.



C ADDITIONAL ALGORITHMIC DETAILS

We describe some properties of the graphical model that justify our algorithm (Section C.1). Then, we formalize the triplet
method algorithm for estimating local accuracy parameters, âi(Cj) (Section C.2).

C.1 PROPERTIES OF THE GRAPHICAL MODEL

Lemma 2. For x, y,λ satisfying (1), it holds for any λi that

Pr(y, λi = 0|x) = Pr(y|x) Pr(λi = 0|x).

That is, y ⊥⊥ 1 {λi = 0} |x.

Proof. Denote λ−i = λ\λi, and equivalently let θ−i and θ−i,0 denote vectors of canonical parameters corresponding to
λ−i in (1). We show independence by proving that Pr(y = 1, λi = 0|x) = Pr(y = 1|x) Pr(λi = 0|x):

Pr(y = 1, λi = 0|x) = 1

Z

∑
λ−i

exp
(
θy(x) + θi,0(x) + θ−i(x)λ−i + θ−i,0(x)1 {λ−i = 0}

)
(4)

=
1

Z
exp(θy(x) + θi,0(x))

∑
λ−i

exp
(
θ−i(x)λ−i + θ−i,0(x)1 {λ−i = 0}

)
.

Pr(y = 1|x) can be written as Pr(y = 1, λi = 1|x) + Pr(y = 1, λi = −1|x) + Pr(y = 1, λi = 0|x):

Pr(y = 1|x) = 1

Z

∑
λ−i

(
exp(θy(x) + θi(x) + θ−i(x)λ−i + θ−i,0(x)1 {λ−i = 0}) (5)

+ exp(θy(x)− θi(x) + θ−i(x)λ−i + θ−i,0(x)1 {λ−i = 0})

+ exp(θy(x) + θi,0(x) + θ−i(x)λ−i + θ−i,0(x)1 {λ−i = 0})
)

=
1

Z

∑
λ−i

exp(θ−i(x)λ−i + θ−i,0(x)1 {λ−i = 0}) exp(θy(x))
(
exp(θi(x)) + exp(−θi(x)) + exp(θi,0(x))

)
.

Pr(λi = 0|x) can be written as Pr(y = 1, λi = 0|x) + Pr(y = −1, λi = 0|x):

Pr(λi = 0|x) = 1

Z

∑
λ−i

(
exp(θy(x) + θi,0(x) + θ−i(x)λ−i + θ−i,0(x)1 {λ−i = 0}) (6)

+ exp(−θy(x) + θi,0(x)− θ−i(x)λ−i + θ−i,0(x)1 {λ−i = 0})
)
.

Setting (4) equal to (5) times (6), the term
∑

λ−i
exp(θ−i(x)λ−i + θ−i,0(x)1 {λ−i = 0}) in the former two equations

cancels out. We thus aim to prove the following equality:

Z exp(θy(x) + θi,0(x)) = exp(θy(x))
(
exp(θi(x)) + exp(−θi(x)) + exp(θi,0(x))

)
× (7)∑

λ−i

exp(θ−i,01 {λ−i = 0}) exp(θi,0(x))
(
exp(θy(x) + θ−i(x)λ−i(x)) + exp(−θy(x)− θ−i(x)λ−i(x))

)
.

Canceling out exp(θy(x) + θi,0(x)), (7) is equal to

Z =
(
exp(θi(x)) + exp(−θi(x)) + exp(θi,0(x))

)
×∑

λ−i

exp(θ−i,01 {λ−i = 0})
(
exp(θy(x) + θ−i(x)λ−i(x)) + exp(−θy(x)− θ−i(x)λ−i(x))

)
,



which is true since the RHS iterates over all values of λ−i, y, and λi. We have shown that Pr(y = 1, λi = 0|x) = Pr(y =
1|x) Pr(λi = 0|x) and thus that y ⊥⊥ 1 {λi = 0} |x for any λi.

Due to this independence property, we note that

Pr(λi = 0, λ−i|x) = Pr(λi = 0, λ−i|y = 1, x) Pr(y = 1|x) + Pr(λi = 0, λ−i|y = −1, x) Pr(y = −1|x)

= Pr(λi = 0|x)
(
Pr(λ−i|y = 1, x) Pr(y = 1|x) + Pr(λ−i|y = −1, x) Pr(y = −1|x)

)
= Pr(λi = 0|x) Pr(λ−i|x),

and hence

Pr(y|λi = 0, λ−i, x) =
Pr(λi = 0|y, x) Pr(λ−i|y, x) Pr(y|x)

Pr(λi = 0, λ−i|x)
=

Pr(λi = 0|x) Pr(λ−i|y, x) Pr(y|x)
Pr(λi = 0|x) Pr(λ−i|x)

= Pr(y|λ−i, x).

Lemma 3. For any i ̸= j, if x,λ, y follows (1), then λiy ⊥⊥ λjy|λi ∧ λj ̸= 0, x.

Proof. Conditioning on the event that λ ̸= 0, we have that

Pr(y,λ|λ ̸= 0, x) =
1

Z0
exp

(
θy(x)y +

m∑
i=1

θi(x)λiy
)

(8)

for some partition function Z0 different from Z in (1). This graphical model now follows the structure of the graphical model
in Fu et al. [2020] (see their Equation 3). We can thus apply Proposition 1 of their work to get that λiy ⊥⊥ λjy|λ ̸= 0, x. From
Lemma 2 and conditional independence of sources, this independence property is equivalent to λiy ⊥⊥ λjy|λi ∧ λj ̸= 0, x,
as desired.

Lemma 4. If x,λ, y follows (1), then for any λi,

Pr(λi = 1|y = 1, λi ̸= 0, x) = Pr(λi = −1|y = −1, λi ̸= 0, x) = Pr(λiy = 1|λi ̸= 0, x) (9)
Pr(λi = −1|y = 1, λi ̸= 0, x) = Pr(λi = 1|y = −1, λi ̸= 0, x) = Pr(λiy = −1|λi ̸= 0, x). (10)

Therefore,

Pr(λi|y, λi ̸= 0, x) =
1 + sgn(λiy)ai(x)

2
.

Proof. Conditioning on the event that λ ̸= 0, the graphical model is of the form in (8) above. This graphical model also
follows the structure of that in Chen et al. [2021], and therefore we obtain our desired properties by Lemma 2 of their
work.

C.2 LOCAL ACCURACY PARAMETER ESTIMATION ALGORITHM

We formalize the triplet method used to recover latent source parameters Pr(λi|y, x). First, when we want to evalu-
ate Pr(λi = 1|y, x) or Pr(λi = −1|y, x), this probability can be written as Pr(λi|y, x, λi ̸= 0)Pr(λi ̸= 0|y, x) =
Pr(λiy|x, λi ̸= 0)Pr(λi ̸= 0|x) by Lemmas 2 and 4. We have that E [λiy|x, λi ̸= 0] = Pr(λiy = 1|x, λi ̸= 0)−Pr(λiy =

−1|x, λi ̸= 0) = 2Pr(λiy = 1|x, λi ̸= 0)− 1, so Pr(λi|y, x) = 1+sgn(λiy)ai(x)
2 ·Pr(λi ̸= 0|x) when λi ∈ {−1, 1}. When

λi is 0, the probability we want to estimate is Pr(λi = 0|y, x) = Pr(λi = 0|x) by Lemma 2.



Algorithm 2 Local Accuracy Estimation (Triplet Method)

Input: Dataset D, weak sources λ̄, partition Cj .
Returns: Estimate of local accuracy âi(Cj).
for k, l ∈ [m]\i do

Estimate Ê
[
λ̄iλ̄k|λ̄i ∧ λ̄k ̸= 0, Cj

]
over the set of points {x ∈ D : λ̄i(x), λ̄k(x) ̸= 0, f(x) ∈ Cj}, and similarly

estimate Ê
[
λ̄iλ̄l|λ̄i ∧ λ̄l ̸= 0, Cj

]
and Ê

[
λ̄kλ̄l|λ̄k ∧ λ̄l ̸= 0, Cj

]
.

Compute âk,li (Cj) =

√∣∣∣∣ Ê[λ̄iλ̄k|λ̄i∧λ̄k ̸=0,Cj]Ê[λ̄iλ̄l|λ̄i∧λ̄l ̸=0,Cj]
Ê[λ̄kλ̄l|λ̄k∧λ̄l ̸=0,Cj]

∣∣∣∣.
end for
return âi(Cj) as the average over all âk,li (Cj).

We now explain how our algorithm estimates ai(x). From Lemma 3, we have that λiy ⊥⊥ λjy|λi ∧ λj ̸= 0, x for any i, j.
Then, given any set of λi, λj , λk, we have the set of equations

ai(x)aj(x) = E [λiλj |λi ∧ λj ̸= 0, x]

ai(x)ak(x) = E [λiλk|λi ∧ λk ̸= 0, x]

aj(x)ak(x) = E [λjλk|λj ∧ λk ̸= 0, x] .

Solving, we get that

|ai(x)| =

√∣∣∣∣E [λiλj |λi ∧ λj ̸= 0, x]E [λiλk|λi ∧ λk ̸= 0, x]

E [λjλk|λj ∧ λk ̸= 0, x]

∣∣∣∣.
This property allows us to recover ai(x) up to a sign. As discussed in Section 3, we use C(x) to estimate the accuracy
parameter over a region of the embedding space, such that in fact we are estimating ai(C(x)) = E [λiy|λi ̸= 0, C(x)] (since
Lemma 3 holds on any x, it holds conditioned over C(x) too). We resolve the sign of the accuracy parameter by assuming
that ai(C(x)) > 0, meaning that the accuracy of a source over a subset is better than random. Finally, rather than estimating
ai(C(x)) using just one pair of λj and λk, we compute the average ai(C(x)) over all other pairs (λj , λk ∈ λ\λi) to make
the estimate less noisy. Our approach for computing âi(Cj) for any λ̄i and Cj (note that λ̄i and λi are interchangeable in
the above given that (x, y,λ) and (x, y, λ̄) both satisfy (1)) is described in Algorithm 2.

D PROOFS

We present the proofs for our results in Section 4.

D.1 PROOFS FOR SECTION 4.1

The proof of Theorem 1 involves decomposing the generalization error into the irreducible error, bias from using C(x), and
variance (sampling error).

Theorem 1. Suppose that data x, y,λ follows the model in (1) and Pr(y|x) and Pr(λi|y, x) for each λi are Lipschitz-
smooth. The generalization error of the label model P̂r(y|λ, x) in Algorithm 1 when ri = 0 ∀i can be decomposed into
L(λ)=Bias + Variance + Irreducible Error + o(1/n), where

Bias ≤ 2dC(Ky +mKλ +mKλ,0),

Variance ≤ ms

n

(
3α(1− b2min)

8b2min(1− a2max)

( 1

b4min

+
2

b2min

)
+ 1

)
,

Irreducible Error = H(y|λ, x),

where H(y|λ, x) denotes conditional entropy.



Proof. We can write the generalization error as

L(λ) = ED,x,y,λ

[
− log P̂r(y|λ, x)

]
= E

[
− log

P̂r(y|λ, x)
Pr(y|λ, x)

]
− Ex,y,λ [log Pr(y|λ, x)] .

−Ex,y,λ [Pr(y|λ, x)] is equal to the conditional entropy of y given λ, x, expressed as H(y|λ, x)observing. This describes
the entropy of y after observing the weak labels and input and thus depends on how much signal we are getting from the
labelers. Next, we decompose the expected log ratio using our construction of P̂r(λi|y, C(x)) to get

L(λ) = E

[
− log

(∏m
i=1 P̂r(λi|y, C(x)) Pr(y|C(x))

P̂r(λ|C(x))
· Pr(λ|x)∏m

i=1 Pr(λi|y, x) Pr(y|x)

)]
+H(y|λ, x)

= −E

[
m∑
i=1

log
P̂r(λi|y, C(x))

Pr(λi|y, x)

]
− E

[
log

Pr(λ|x)
P̂r(λ|C(x))

]
− E

[
log

Pr(y|C(x))

Pr(y|x)

]
+H(y|λ, x)

= −E

[
m∑
i=1

log
P̂r(λi|y, C(x))

Pr(λi|y, x)

]
− Ex

[
DKL(Pr(λ|x)||P̂r(λ|C(x)))

]
− E

[
log

Pr(y|C(x))

Pr(y|x)

]
+H(y|λ, x)

≤
m∑
i=1

Ex,y,λi

[
log

Pr(λi|y, x)
P̂r(λi|y, C(x))

]
− Ex,y

[
log

Pr(y|C(x))

Pr(y|x)

]
+H(y|λ, x), (11)

where we have used Lemma 2 and the fact that the Kullback-Leibler divergence is always nonnegative in the last line.
For notation, let KLC(x)(y) = Ex [DKL(Pr(y|x)||Pr(y|C(x)))] = Ex,y

[
log Pr(y|x)

Pr(y|C(x))

]
, be the KL-divergence between

distributions conditioned on C(x) versus x, which describes the bias we incur from using a partition. Then, L(λ) ≤∑m
i=1 Ex,y,λi

[
log Pr(λi|y,x)

P̂r(λi|y,C(x))

]
+ KLC(x)(y) +H(y|λ, x).

We now simplify the expression E
[
log Pr(λi|y,x)

P̂r(λi|y,C(x))

]
based on if λi = 0 or λi ∈ {−1, 1}:

E
[
log

Pr(λi|y, x)
P̂r(λi|y, C(x))

]
= Ex

[
Pr(λi = 0|x) log Pr(λi = 0|x)

P̂r(λi = 0|C(x))

]
+ Ex,y,λi ̸=0

[
Pr(λi ̸= 0|x) log Pr(λi|y, x)

P̂r(λi|y, C(x))

]

= Ex

[
Pr(λi = 0|x) log Pr(λi = 0|x)

P̂r(λi = 0|C(x))
+ Pr(λi ̸= 0|x) log Pr(λi ̸= 0|x)

P̂r(λi ̸= 0|C(x))

]

+ Ex,y,λi ̸=0

[
Pr(λi ̸= 0|x) log Pr(λi|y, x, λi ̸= 0)

P̂r(λi|y, C(x), λi ̸= 0)

]

= Ex

[
DKL(Pr(zi|x)||P̂r(zi|C(x)))

]
+ Ex,y,λi ̸=0

[
Pr(λi ̸= 0|x) log Pr(λi|y, x, λi ̸= 0)

P̂r(λi|y, C(x), λi ̸= 0)

]
, (12)

where zi = 1 {λi = 0} is an indicator variable pertaining to coverage. The first KL divergence pertains to estimating the
coverage of λi, while the second pertains to estimating the accuracy parameter of λi. The first term in (12) can be written as

Ex[DKL(Pr(zi|x)||P̂r(zi|C(x)))] = KLC(x)(zi)

+ Ex

[
Pr(λi = 0|x) log Pr(λi = 0|C(x))

P̂r(λi = 0|C(x))
+ Pr(λi ̸= 0|x) log Pr(λi ̸= 0|C(x))

P̂r(λi ̸= 0|C(x))

]

= KLC(x)(zi) + EC(x)

[
Pr(λi = 0|C(x)) log

Pr(λi = 0|C(x))

P̂r(λi = 0|C(x))
+ Pr(λi ̸= 0|C(x)) log

Pr(λi ̸= 0|C(x))

P̂r(λi ̸= 0|C(x))

]

= KLC(x)(zi) + EC(x),zi

[
log

Pr(zi|C(x))

P̂r(zi|C(x))

]
,



The second term in (12) can be written as

E

[
Pr(λi ̸= 0|x) log Pr(λi|y, x, λi ̸= 0)

P̂r(λi|y, C(x), λi ̸= 0)

]
≤ Ex,y,λi ̸=0

[
log

(
Pr(λi|y, x, λi ̸= 0)

Pr(λi|y, C(x), λi ̸= 0)
· Pr(λi|y, C(x), λi ̸= 0)

P̂r(λi|y, C(x), λi ̸= 0)

)]

= KLC(x)(λi|y, λi ̸= 0) + Ex,y,λi ̸=0

[
log

Pr(λi|y, C(x), λi ̸= 0)

P̂r(λi|y, C(x), λi ̸= 0)

]
.

Putting everything together in (11), the generalization error is at most

L(λ) ≤
m∑
i=1

(
EC(x),zi

[
log

Pr(zi|C(x))

P̂r(zi|C(x))

]
+ Ex,y,λi ̸=0

[
log

Pr(λi|y, C(x), λi ̸= 0)

P̂r(λi|y, C(x), λi ̸= 0)

]

+ KLC(x)(zi) + KLC(x)(λi|y, λi ̸= 0)

)
+ KLC(x)(y) +H(y|λ, x).

We can interpret the generalization error as consisting of bias, variance (and irreducible error) coming from 1) estimating the
coverage of a weak source over a part, and then, conditioned on the support of a source, 2) estimating the accuracy of the
source over a part. The bias is from using C(x) instead of x, and the variance is from estimating over the dataset over these
two steps.

Using Lemmas 5, 6, and 7 we get our desired bound.

Lemma 5. The sampling error term coming from estimating λi’s coverage, EC(x),zi

[
log Pr(zi|C(x))

P̂r(zi|C(x))

]
, where zi =

1 {λi = 0}, is equal to

EC(x),zi

[
log

Pr(zi|C(x))

P̂r(zi|C(x))

]
=

s

n
+ o(1/n).

Proof. We can write this expectation across each Cj . Denote pij = Pr(λi ̸= 0|Cj) as λi’s coverage on Cj , and equivalently
p̂ij as its estimate over D. Then,

EC(x),zi

[
log

Pr(zi|C(x))

P̂r(zi|C(x))

]
=

s∑
j=1

Pr(f(x) ∈ Cj)ED

[
pij log

pij
p̂ij

+ (1− pij) log
1− pij
1− p̂ij

]
. (13)

Performing a Taylor approximation of g(x) = log c
x at x = c gives us log c

x ≈ log 1 +− 1
c (x− c) + 1

2c2 (x− c)2. Setting
x = p̂ij , 1 − p̂ij and c = pij , 1 − pij respectively in (13) and using the fact that p̂ij is an unbiased estimate of pij , this
expression becomes

EC(x),zi

[
log

Pr(zi|C(x))

P̂r(zi|C(x))

]
=

s∑
j=1

Pr(f(x) ∈ Cj)
1

pij(1− pij)
E
[
(pij − p̂ij)

2
]
+ o(1/n)

=

s∑
j=1

Pr(f(x) ∈ Cj)
1

pij(1− pij)
Var [p̂ij ] + o(1/n),

where we use the fact that the Taylor remainder scales in E
[
(p̂i,j − pi,j)

3
∣∣Cj

]
∼ O(1/n2). We can simplify the variance

Var [p̂i,j ] = Var
[

1
n′

∑
x:f(x)∈Cj

1 {λi(x) ̸= 0}
]
= 1

(n′)2

∑
x:f(x)∈Cj

Var [1 {λi(x) ̸= 0}] = pi,j(1−pi,j)
n′ . Putting this all

together, we have

EC(x),zi

[
log

Pr(zi|C(x))

P̂r(zi|C(x))

]
=

s∑
j=1

Pr(f(x) ∈ Cj)
1

n′ + o(1/n) =
s

n
+ o(1/n).



Lemma 6. Define pij = Pr(λi ̸= 0|Cj) as the coverage of the λi on Cj . The sampling error term coming from estimating
source accuracy of λi, Pr(λi|y, C(x), λi ̸= 0), is at most

Ex,y,λi ̸=0

[
log

Pr(λi|y, C(x), λi ̸= 0)

P̂r(λi|y, C(x), λi ̸= 0)

]
≤ ECj

[
1

pij

∣∣∣ pij ̸= 0

]
· 3s
8n

· 1− b2min

b2min(1− a2max)

(
1

b4min
+

2

b2min

)
+ o(1/n).

Proof. Define Ci ⊆ C to be the subsets where λi has non-zero coverage, {C ∈ C : ∃x : f(x) ∈ C, λi(x) ̸= 0}. When
there are subsets with no λi coverage, we do not estimate the accuracy and can discard them from this bound. We can thus
write the above expectation as E

[
log 1+sgn(λiy)·ai(C(x))

1+sgn(λiy)·âi(C(x))

]
=

∑
Cj∈Ci

Pr(f(x) ∈ Cj)E
[
log

1+sgn(λiy)·ai(Cj)
1+sgn(λiy)·âi(Cj)

∣∣∣Cj

]
. We can

decompose the expectation as

Ex,y,λi ̸=0

[
log

1 + sgn(λiy) · ai(Cj)

1 + sgn(λiy) · âi(Cj)

∣∣∣∣Cj

]
= E

[
log

1 + ai(Cj)

1 + âi(Cj)

∣∣∣∣Cj

]
Pr(λiy=1|Cj , λi ̸= 0) (14)

+ E
[
log

1− ai(Cj)

1− âi(Cj)

∣∣∣∣Cj

]
Pr(λiy=− 1|Cj , λi ̸= 0). (15)

Pr(λiy = 1|Cj , λi ̸= 0) is equal to 1+ai(Cj)
2 . (15) becomes

E
[
log

1 + sgn(λiy) · ai(Cj)

1 + sgn(λiy) · âi(Cj)

∣∣∣∣Cj

]
=
1

2

(
(1 + ai(Cj))E

[
log

1 + ai(Cj)

1 + âi(Cj)

∣∣∣∣Cj

]
+ (1− ai(Cj))E

[
log

1− ai(Cj)

1− âi(Cj)

∣∣∣∣Cj

])
.

(16)

Again, we can perform a Taylor expansion on g(x) = log 1+c
1+x at x = c to get that log 1+c

1+x ≈ − 1
1+c (x−c)+ 1

2(1+c)2 (x−c)2,

and therefore E
[
log

1+ai(Cj)
1+âi(Cj)

∣∣∣Cj

]
=

E[ai(Cj)−âi(Cj)]
1+ai(Cj)

+
E[(âi(Cj)−ai(Cj))

2]
2(1+ai(Cj))2

+ o(1/n), (see Lemma 4 of Chen et al. [2021]

for bounding the Taylor remainder). Similarly, we have that E
[
log

1−ai(Cj)
1−âi(Cj)

∣∣∣Cj

]
=

E[âi(Cj)−ai(Cj)]
1−ai(Cj)

+
E[(âi(Cj)−ai(Cj))

2]
2(1−ai(Cj))2

+

o(1/n). Therefore, (16) becomes

E
[
log

1 + sgn(λiy) · ai(Cj)

1 + sgn(λiy) · âi(Cj)

∣∣∣∣Cj

]
=

1

2

(
E [ai(Cj)− âi(Cj)] +

E
[
(âi(Cj)− ai(Cj))

2
]

2(1 + ai(Cj))

+ E [âi(Cj)− ai(Cj)] +
E
[
(âi(Cj)− ai(Cj))

2
]

2(1− ai(Cj))

)
+ o(1/n)

=
1

2
·
E
[
(âi(Cj)− ai(Cj))

2
]

1− ai(Cj)2
+ o(1/n).

The value of E
[
(âi(Cj)− ai(Cj))

2
]

has been studied in previous works that use the triplet method of Fu et al. [2020]. In
particular, we use Lemma 6 of Chen et al. [2021] to get that

E
[
(âi(Cj)− ai(Cj))

2
]
≤ 3s

4pi,jn
· 1− b2min

b2min

(
1

b4min
+

2

b2min

)
.

Therefore, the overall expression can be bounded by

E
[
log

1 + sgn(λiy) · ai(C(x))

1 + sgn(λiy) · âi(C(x))

]
≤

∑
Cj∈Ci

Pr(f(x) ∈ Cj)
1

2(1− a2max)
· 3s

4pi,jn
· 1− b2min

b2min

(
1

b4min
+

2

b2min

)
+ o

( 1

n

)
≤ ECj

[
1

pij

∣∣∣ pij ̸= 0

]
· 3s
8n

· 1− b2min

b2min(1− a2max)

(
1

b4min
+

2

b2min

)
+ o

( 1

n

)
.



Lemma 7. Denote zi = 1 {λi = 0} and KLC(x)(·) = Ex [DKL(Pr(·|x),Pr(·|C(x)))]. The bias terms from conditioning on
C(x) rather than x are at most

KLC(x)(y) ≤ 2KydC

KLC(x)(λi|y, λi ̸= 0) ≤ 2mKλdC

KLC(x)(zi) ≤ 2mKλ,0dC .

Proof. We can write the expected KL-divergence between the distribution of the true label y conditioned on C(x) versus x
as

KLC(x)(y) = Ex [DKL(Pr(y|x)||Pr(y|C(x)))] =

s∑
j=1

Pr(f(x) ∈ Cj)

∫
Pr(x|Cj)DKL(Pr(y|x,Cj)||Pr(y|Cj))dx.

(17)

This inner KL-divergence is on two Bernoulli distributions. Define py,j = Pr(y = 1|Cj), and denote py,x,j = Pr(y =

1|x,Cj). Then, DKL(Pr(y|x,Cj)||Pr(y|Cj)) = py,x,j log
py,x,j

py,j
+ (1− py,x,j) log

1−py,x,j

1−py,j
.

Next, recall that Pr(y|x) is Ky-Lipschitz in the embedding space; that is, |Pr(y = 1|x) − Pr(y = 1|x′)| ≤
Kyρ(f(x), f(x

′)). Since py,j is Pr(y|x) averaged over Cj , it holds that |py,x,j − py,j | ≤ Kydj , where dj is the di-
ameter of Cj . We then have that py,x,j ≤ Kydj + py,j , and since |(1 − py,x,j) − (1 − py,j)| ≤ Kydj , we also have that
1− py,x,j ≤ 1− py,j +Kydj . Therefore, the KL-divergence is bounded by

DKL(Pr(y|x,Cj)||Pr(y|Cj)) ≤ py,x,j log
Kydj + py,j

py,j
+ (1− py,x,j) log

Kydj + (1− py,j)

1− py,j

≤ py,x,j ·
Kydj
py,j

+ (1− py,x,j) ·
Kydj

1− py,j
,

where we use the fact that log(1 + x) ≤ x. Plugging this back into (17),

Ex [DKL(Pr(y|x)||Pr(y|C(x)))] ≤
s∑

j=1

Pr(f(x) ∈ Cj)

∫
Pr(x|Cj))

(
py,x,j ·

Kydj
py,j

+ (1− py,x,j) ·
Kydj

1− py,j

)
dx

=

s∑
j=1

Pr(f(x) ∈ Cj)

∫
Pr(x, y = 1|Cj) ·

Kydj
py,j

+ Pr(x, y = −1|Cj) ·
Kydj

1− py,j
dx

=

s∑
j=1

Pr(f(x) ∈ Cj)

(
Pr(y = 1|Cj) ·

Kydj
py,j

+ Pr(y = −1|Cj) ·
Kydj

1− py,j

)

=

s∑
j=1

Pr(f(x) ∈ Cj) · 2Kydj = 2KydC .

Next, we bound KLC(x)(λi|y, λi ̸= 0). Using the same approach, we have that KLC(x)(λi|y, λi ̸= 0) ≤ 2KλdC . We also
have that KLC(x)(zi) ≤ 2Kλ,0dC .

D.2 PROOFS FOR SECTION 4.2

Lemma 8. When we use λ̄ instead of λ, the bias term in L(λ̄) is at most

Bias ≤ 2dCKy + 2m(dC + 2max
i

ri)(Kλ +Kλ,0).



Proof. The term Ex [DKL(Pr(y|x)||Pr(y|C(x))] in the bias is unchanged since the distribution of y given x is not impacted
by λ. We next look at Ex,y,λ̄i ̸=0

[
DKL(Pr(λ̄i|y, x, λ̄i ̸= 0)||Pr(λ̄i|y, C(x), λ̄i ̸= 0))

]
. Using the approach in Lemma 7, re-

call that Pr(λ̄i|y, x, λ̄i ̸= 0) = Pr(λi(x)|y, x, λi(x) ̸= 0) when λi(x) ̸= 0, and Pr(λi(NN(x))|y,NN(x), λi(NN(x)) ̸= 0)
when λi(x) = 0. Therefore, by Assumption 1, |Pr(λ̄i = 1|y, λ̄i ̸= 0, x) − Pr(λ̄i = 1|y, λi ̸= 0, x′)| ≤
Kλ max{ρ(f(NN(x)), f(NN(x′))), ρ(f(x), f(NN(x′))), ρ(f(NN(x)), f(x′)), ρ(f(x), f(x′))}. The greatest possible dis-
tance in embedding space between NN(x) and NN(x′) when f(x), f(x′) ∈ Cj under our method of source extension is
dj + 2ri. We can thus view the extensions as changing the diameter of the subset in Lemma 7. The rest of the approach
remains unchanged, so we get that

Ex,y,λ̄i ̸=0

[
DKL(Pr(λ̄i|y, x, λ̄i ̸= 0)||Pr(λ̄i|y, C(x), λ̄i ̸= 0))

]
≤ 2Kλ(dC + 2ri).

We consider Ex [DKL(Pr(λi ̸= 0|x)||Pr(λi ̸= 0|C(x)))]. Similarly, Pr(λ̄i(x) ̸= 0|x) is either Pr(λi(x) ̸= 0|x) or
Pr(λi(NN(x)) ̸= 0|NN(x)) depending on the region x is in. Therefore,

Ex [DKL(Pr(λi ̸= 0|x)||Pr(λi ̸= 0|C(x)))] ≤ 2Kλ,0(dC + 2ri),

and we obtain the desired bound.

Lemma 1. Suppose Pλi is M -probabilistically Lipschitz. The average accuracy of λ̄i on the extended region is at least
āi(ri) ≥ ai − (1 + βi)M(ri).

Proof. We first introduce some notation. Define S = {x ∈ X : λi(x) ̸= 0} as the support of λi, and Ŝ = S ∩ D as the set
of points in D that λi has coverage on. In particular, Ŝ consists of points sampled from Pλi

, and suppose that |Ŝ| = n0.
Define the extended region as Ŝri = {x ∈ X\S : ∃x′ ∈ Ŝ s.t. ρ(f(x), f(x′)) ≤ ri}, and let the distribution of x over this
support be PŜ,r = Pr(x|x ∈ Ŝri). With slight abuse of notation, we also use PŜ,ri

to refer to the joint distribution over x, y
with x from PŜ,r. We also use Ŝri to refer to the support Ŝri × Y .

Define the expected error ε = EŜ∼Pn0
λi

[
Prx,y∼PŜ,ri

(λ̄i ̸= y|x, λ̄i(x) ̸= 0)
]
= EŜ∼Pn0

λi

[
Prx,y∼PŜ,ri

(λ̄i ̸= y|x)
]
. Let Ŝ

also be written as a set of n0 random variables {x1, . . . , xn0}. Denote NNŜ(x) = argminx′∈Ŝ ρ(f(x), f(x′)) to be x’s
nearest neighbor in Ŝ (in the body, this is just referred to as NN(x)), so λ̄i(x) := λi(NNŜ(x)) for x ∈ Ŝri . Then, we
decompose ε based on which point in Ŝ is x’s nearest neighbor:

ε = Pr
Ŝ∼Pn0

λi
x,y∼PŜ,ri

(λi(NNŜ(x)) ̸= y|x) =
n0∑
j=1

Pr
Ŝ∼Pn0

λi
,

x∼PŜ,ri

(NNŜ(x) = xj) · Pr
Ŝ∼Pn0

λi
x,y,∼PŜ,ri

(λi(xj) ̸= y|NNŜ(x) = xj). (18)

Let yj denote the label corresponding to xj , drawn from Pλi
(·|xj). The probability PrŜ∼Pn0

λi
,x,y,∼PŜ,ri

(λi(xj) ̸=
y|NNŜ(x) = xj) can be further decomposed into two cases: when λ(xj) = yj , yj ̸= y and when λ(xj) ̸= yj , yj = y. That
is,

Pr
Ŝ∼Pn0

λi
x,y,∼PŜ,ri

(λi(xj) ̸= y|NNŜ(x) = xj) (19)

= Pr
Ŝ∼Pn0

λi
x,y∼PŜ,ri

,

yj∼Pλi
(·|xj)

(λi(xj) = yj , yj ̸= y|NNŜ(x) = xj) + Pr
Ŝ∼Pn0

λi
x,y∼PŜ,ri

,

yj∼Pλi
(·|xj)

(λi(xj) ̸= yj , yj = y|NNŜ(x) = xj)

≤ Pr
Ŝ∼Pn0

λi
,

yj∼Pλi
(·|xj)

(λi(xj) = yj ,∃(x, y) ∈ Ŝri : NNŜ(x) = xj , yj ̸= y) + Pr
Ŝ∼Pn0

λi
,

yj∼Pλi
(·|xj)

(λi(xj) ̸= yj ,∃(x, y) ∈ Ŝri : NNŜ(x) = xj , yj = y).

Next, we recall the definition of Ŝri and observe that NNŜ(x) = xj implies that ρ(f(x), f(x′)) ≤ ri. These allow us to



write the probability only over one (xj , yj) ∼ Pλi rather than Ŝ, and so the expression in (19) satisfies

Pr
Ŝ∼Pn0

λi
x,y,∼PŜ,ri

(λi(xj) ̸= y|NNŜ(x) = xj) ≤ Pr
xj ,yj∼Pλi

(λi(xj) = yj ,∃(x, y) ∈ X\S : ρ(f(xj), f(x)) ≤ ri, yj ̸= y)

+ Pr
xj ,yj∼Pλi

(λi(xj) ̸= yj ,∃(x, y) ∈ X\S : ρ(f(xj), f(x)) ≤ ri, yj = y).

The first probability on the RHS can be written as Prxj ,yj∼Pλi
(λi(xj) = yj |∃(x, y) ∈ X\S : ρ(f(xj), f(x)) ≤

ri, yj ̸= y) Prxj ,yj∼Pλi
(∃(x, y) ∈ X\S : ρ(f(xj), f(x)) ≤ ri, yj ̸= y) ≤ 1+βi

2 M(ri), and the second one is
at most Prxj ,yj∼Pλi

(λi(xj) ̸= yj) = 1−ai

2 . Therefore, putting this back into (18), ε ≤ 1+βi

2 M(ri) +
1−ai

2 . Since
āi(ri) = 2(1− ε)− 1, we now have our desired bound

āi(ri) ≥ ai − (1 + βi)M(ri).

Theorem 2. Suppose that data follows the model in (1). The irreducible error decreases by at least the following amount
when using λ̄i rather than λi in Algorithm 1:

H(y|λ, x)−H(y|λ̄, x) ≥ 2pi(1− p(λ−i))
2 · āi(ri)2.

We aim to lower bound H(y|λ, x)−H(y|λ̄, x) where only λi is extended to be λ̄i with threshold radius ri.

H(y|λ, x)−H(y|λ̄, x) = Ex,y,λ [− log Pr(y|λ, x)] + Ex,y,λ̄

[
log Pr(y|λ̄, x)

]
= Ex,y,λ−i

[
Eλ̄i

[
log

Pr(λ̄i|x, y) Pr(λ−i|x, y) Pr(y|x)
Pr(λ̄i, λ−i|x)

∣∣∣x, y]− Eλi

[
log

Pr(λi|x, y) Pr(λ−i|x, y) Pr(y|x)
Pr(λi, λ−i|x)

∣∣∣x, y]] .
(20)

Pr(λ−i|x, y) and Pr(y|x) are the same when using λ̄i versus λi, so (20) becomes

H(y|λ, x)−H(y|λ̄, x) = Ex,y,λ−i

[
Eλ̄i

[
log

Pr(λ̄i|x, y)
Pr(λ̄i, λ−i|x)

∣∣∣x, y]− Eλi

[
log

Pr(λi|x, y)
Pr(λi, λ−i|x)

∣∣∣x, y]] . (21)

When extending λi, there are three regions of interest in input space: λi(x), λ̄i(x) ̸= 0; λi(x) = 0, λ̄i(x) ̸= 0; and
λi(x) = λ̄i(x) = 0. In the first region, λ̄i has the exact same behavior as λi since λi has coverage over this region.
Therefore, conditioning on λi(x) ̸= 0, the expectation on the RHS of (21) is equal to 0. Similarly, in the third region where
λi(x) = λ̄i(x) = 0, the extended and original labeler vote exactly the same, so the expectation on the RHS of (21) is again
equal to 0. The primary region of interest are the points that previously had no signal from λi but now have signal from λ̄i.
Then, (21) becomes

H(y|λ, x)−H(y|λ̄, x) = piEy,λ−i,λ̄i(x)̸=0,λi(x)=0

[
log

Pr(λ̄i|x, y)
Pr(λ̄i, λ−i|x)

− log
Pr(λi = 0|x, y)

Pr(λi = 0, λ−i|x)

]
. (22)

We can write Pr(λi=0|x,y)
Pr(λi=0,λ−i|x) = Pr(λi=0|x)

Pr(λi=0|x) Pr(λ−i|x) = 1
Pr(λ−i|x) by decomposing the denominator conditional on y and

using Lemma 2. Using the chain rule on Pr(λ̄i, λ−i|x) = Pr(λ̄i|λ−i, x) Pr(λ−i|x), (22) is now

H(y|λ, x)−H(y|λ̄, x) = piEy,λ−i,λ̄i(x)̸=0,λi(x)=0

[
log

Pr(λ̄i|x, y)
Pr(λ̄i|λ−i, x)

]
.

To analyze this expectation, we first look at the case where y = 1. Then,

Ey=1,λ−i,λ̄i(x)̸=0,λi(x)=0

[
log

Pr(λ̄i|x, y)
Pr(λ̄i|λ−i, x)

]
= (23)

E
[
Pr(λ̄i = 1|y = 1, x, λ̄i ̸= 0) log

Pr(λ̄i = 1|x, y = 1)

Pr(λ̄i = 1|λ−i, x)
+ Pr(λ̄i = −1|y = 1, x, λ̄i ̸= 0) log

Pr(λ̄i = −1|x, y = 1)

Pr(λ̄i = −1|λ−i, x)

]
.



Denote αi(x) = Pr(λ̄i = 1|y = 1, x, λ̄i ̸= 0) as the probability corresponding to λ̄i’s accuracy parameter. In addition, note
that we can write

Pr(λ̄i = 1|λ−i, x) = Pr(λ̄i = 1|λ−i, x, y = 1)Pr(y = 1|λ−i, x) + Pr(λ̄i = 1|λ−i, x, y = −1)Pr(y = −1|λ−i, x)

= αi(x)p(x, λ−i) + (1− αi(x))(1− p(x, λ−i)),

where p(x, λ−i) is shorthand for Pr(y = 1|λ−i, x) (importantly, it does not depend on λ̄i) and likewise for Pr(λ̄i =
−1|λ−i, x) = αi(x)(1− p(x, λ−i)) + (1− αi(x))p(x, λ−i). Our expression from (23) is now

Ey=1,λ−i,λ̄i(x)̸=0,λi(x)=0

[
αi(x) log

αi(x)

αi(x)p(x, λ−i) + (1− αi(x))(1− p(x, λ−i))
(24)

+ (1− αi(x)) log
1− αi(x)

αi(x)(1− p(x, λ−i)) + (1− αi(x))p(x, λ−i)

]
.

Note that the expression inside the expectation is convex in both αi(x) and p(x, λ−i).

Define αi,1 = Ey=1,λ̄i(x)̸=0,λi(x)=0 [αi(x)] to be the expected accuracy probability over the extended region when y = 1,
and pλ−i,1 = Ey′=1,λ−i,λ̄i(x) ̸=0,λi(x)=0 [Pr(y = y′|x, λ−i)] to be the expected label model performance using just λ−i over
the extended region when y = 1. Then, this expression from (24) is at least

αi,1 log
αi,1

αi,1pλ−i,1 + (1− αi,1)(1− pλ−i,1)
(25)

+ (1− αi,1) log
1− αi,1

αi,1(1− pλ−i,1) + (1− αi,1)pλ−i,1
.

We look at the case where y = −1. Similarly, we get

Ey=−1,λ−i,λ̄i(x)̸=0,λi(x)=0

[
αi(x) log

αi(x)

αi(x)(1− p(x, λ−i)) + (1− αi(x))p(x, λ−i)
(26)

+ (1− αi(x)) log
1− αi(x)

αi(x)p(x, λ−i) + (1− αi(x))(1− p(x, λ−i))

]
.

Again, define αi,−1 = Ey=−1,λ̄i(x)̸=0,λi(x)=0 [αi(x)] and pλ−i,−1 = Ey′=−1,λ−i,λ̄i(x)̸=0,λi(x)=0 [Pr(y = y′|x, λ−i)], and
by Jensen’s inequality we have that (26) is at least

αi,−1 log
αi,−1

αi,−1pλ−i,−1 + (1− αi,−1)(1− pλ−i,−1)
(27)

+ (1− αi,−1) log
1− αi,−1

αi,−1(1− pλ−i,−1) + (1− αi,−1)pλ−i,−1
.

Therefore, Ey,λ−i,λ̄i(x)̸=0,λi(x)=0

[
log Pr(λ̄i|x,y)

Pr(λ̄i|λ−i,x)

]
is lower bounded by the weighted sum of Pr(y = 1|λ−i, λ̄i(x) ̸=

0, λi(x) = 0) times (25) and Pr(y = −1|λ−i, λ̄i(x) ̸= 0, λi(x) = 0) times (27). Since (25) and (27) are convex in
αi,1, pλ−i,1 and αi,−1, pλ−i,1 respectively, we can define αi = Pr(y = 1|λ−i, λ̄i(x) ̸= 0, λi(x) = 0) · αi,1 + Pr(y =
−1|λ−i, λ̄i(x) ̸= 0, λi(x) = 0) · αi,−1 = Eλ̄i(x)̸=0,λi(x)=0 [αi(x)] as a notion of λ̄i’s accuracy in the region where we
extend λi. We also define pλ−i

= Pr(y = 1|λ−i, λ̄i(x) ̸= 0, λi(x) = 0) · pλ−i,1 + Pr(y = −1|λ−i, λ̄i(x) ̸= 0, λi(x) =
0) · pλ−i,−1 = Ey′,λ−i,λ̄i(x) ̸=0,λi(x)=0 [Pr(y = y′|λ−i, x] as the label model’s probability of outputting the correct label in
our region of interest when relying on only λ−i. Then, we have that

H(y|λ, x)−H(y|λ̄, x) ≥ pi

(
αi log

αi

αipλ−i + (1− αi)(1− pλ−i)

+ (1− αi) log
1− αi

(1− αi)pλ−i
+ αi(1− pλ−i

)

)
.

We can lower bound the expression in the parentheses. Define g(x) = x log x
xp+(1−x)p + (1 − x) log 1−x

(1−x)p+x(1−p) for
some constant p. We claim that g(x) ≥ h(x) = 8(1 − p)2(x − 0.5)2 for x ∈ [0, 1]. Note that g(0.5) = h(0.5) = 0.



To show that g(x) ≥ h(x), it suffices to show that g′(x) > h′(x) for x > 0.5, and g′(x) < h′(x) for x < 0.5.
g′(x) = 1−p

xp+(1−x)(1−p)+
p−1

x(1−p)+(1−x)p+log x
xp+(1−x)(1−p)−log 1−x

(1−x)p+x(1−p) , and h′(x) = 16(1−p)2(x−0.5). Again,

note that g′(0.5) = h′(0.5) = 0, so we want to show that g′′(x) > h′′(x) for all x ∈ [0, 1]. g′′(x) = − (1−p)(2p−1)
(xp+(1−x)(1−p))2 −

(p−1)(1−2p)
(x(1−p)+(1−x)p)2 +

1−p
x(xp+(1−x)(1−p))+

1−p
(1−x)(x(1−p)+(1−x)p) , and h′′(x) = 16(1−p)2. It is easy to check that g′′(x) obtains

a minimum at x = 0.5. We compute that g′′(0.5) = 16(1− p)2, which demonstrates that g(x) ≥ 8(1− p)2(x− 0.5)2. We
thus get

H(y|λ, x)−H(y|λ̄, x) ≥ 8pi(1− pλ−i
)2
(
αi −

1

2

)2

.

We know that αi =
1+āi(ri)

2 , so our final bound is

H(y|λ, x)−H(y|λ̄, x) ≥ 8pi(1− pλ−i
)2 · āi(ri)

2

4
= 2pi(1− pλ−i

)2 · āi(ri)2.

E EXPERIMENTAL DETAILS

We describe additional details about each task, including details about data sources (Section E.1), supervision sources
(Section E.2), and setting extension thresholds (Section E.3).

E.1 DATASET DETAILS

Task (Embedding) T m/T Prop Ntrain Ndev Ntest

Spam 1 10 0.49 1,586 120 250
Weather 1 103 0.53 187 50 50
Spouse 1 9 0.07 22,254 2,811 2,701
Basketball 8 4 0.12 3,594 212 244
Commercial 3 4 0.32 64,130 9,479 7,496
Tennis 9 6 0.34 6,959 746 1,098

Table 4: Details for each dataset. T : the number of related elements modeled by the weak supervision label model. m/T :
the number of supervision sources per element. Prop: The proportion of positive examples in each dataset. Ntrain: The size
of the unlabeled training set. Ndev: The size of the labeled dev set. Ntest: The size of the held-out test set.

Table 4 provides details on train/dev/test splits for each dataset, as well as statistics about the positive class proportion and
the number of labeling functions. Additional details about each dataset are provided below.

Spam We use the dataset as provided by Snorkel1 and those train/dev/test splits.

Weather, Spouse These datasets are used in Ratner et al. [2018] and Fu et al. [2020] for evaluation, and we use the
train/dev/test splits from those works (Weather is called Crowd in that work).

Basketball This dataset is a subset of ActivityNet and was used for evaluation in Sala et al. [2019] and Fu et al. [2020].
We use the train/dev/test splits from those works.

Commercial We use the dataset from Fu et al. [2019], Hong et al. [2021] and Fu et al. [2020] and the train/dev/test splits
from those works.

Tennis We use the dataset from Fu et al. [2020] and the train/dev/test splits from those works.

1https://www.snorkel.org/use-cases/01-spam-tutorial



E.2 SUPERVISION SOURCES

Supervision sources are expressed as short Python functions. Each source relied on different information to assign noisy
labels:

Spam, Weather, Spouse For these tasks, we used the same supervision sources as used in previous work [Ratner et al.,
2018, Fu et al., 2020]. These are all text classification tasks, so they rely on text-based heuristics such as the presence or
absence of certain words, or particular regex patterns.

Basketball, Commercial, Tennis Again, we use sources from previous work [Sala et al., 2019, Fu et al., 2020]. For
Basketball, these sources rely on an off-the-shelf object detector to detect balls or people, and use heuristics based on the
average pixel of the detected ball or distance between the ball and person to determine whether the sport being played is
basketball or not. For Commercial, there is a strong signal for the presence or absence of commercials in pixel histograms
and the text; in particular, commercials are book-ended on either side by sequences of black frames, and commercial
segments tend to have mixed-case or missing transcripts (whereas news segments are in all caps). For Tennis, we use an
off-the-shelf pose detector to provide primitives for the weak supervision sources. The supervision sources are heuristics
based on the number of people on court and their positions. Additional supervision sources use color histograms of the
frames (i.e., how green the frame is, or whether there are enough white pixels for the court markings to be shown).

E.3 SETTING ri AND s

We tune ri using the dev set in two steps. First, we set all the ri to the same value r and use grid search over r. Then, we
perform a series of small per-coordinate searches for a subset of the labeling functions to optimize individual ri values. For
labeling functions with full coverage, we set the threshold to have no extensions.

Tuning s is done independently from ri. Once we have the best performing ri values, we search for the best possible s from
one to ten. We obtain the partition by performing K-means clustering with K = s.

Now we report thresholds in terms of cosine similarities (note that this is a different presentation than in terms of distances).
For Spam, all thresholds are set to 0.844, except for weak sources 1, 2, and 7, which have thresholds 0.864, 0.854 and
0.804 respectively. The best s is 2. For Weather, all thresholds are set to 0.2, and the best s is 3. For Spouse, all thresholds
are set to 0.9275, except for weak sources 2 and 3, which have thresholds 0.8385 and 0.9. The best s is 8. For Basketball,
thresholds are set to [0.42, 0.97, 0.52, 0.42] and s is set to 2. For Commercial, thresholds are set to [.6, .35, .35, .65] and s
is set to 3. For Tennis, thresholds are set to [0.11, 0.110.11, 0.85, 0.11, 0.11] and s is set to 2.

In our experimentss, class balance Pr(y|Cj) is estimated from the dev set.

E.4 ADAPTERS

We describe adapter experimental details in the main results. For each dataset, we train single-layer adapters with gradient
descent. Because this requires training labels, we consider two training setups: (1) splitting the validation set into a new 80%
training set and 20% held-out validation set, and (2) using weak-supervision methods (WS-LM) combined with labeling
functions to generate pseudolabels for the training data.

For both, we train adapters using the OpenAI GPT-3 Ada embeddings for NLP tasks and OpenAI CLIP embeddings for
video tasks.. We train with 50 epochs and early stopping, and sweep over the following hyperparameters: learning rate
∈ {1e− 3, 1e− 2, 1e− 1}, weight decay ∈ {5e− 4, 0}, momentum ∈ {0, 0.9}.

The best performing model (based on held-out validation set accuracy for Spam and Weather datasets, held-out validation
F1-score for all other datasets), was then evaluated on the test set.

For the linear models, the best hyperparameters are as follows: for Spam, we use 1e− 1 learning rate, 5e− 4 weight decay,
and 0.9 momentum. For Weather, we use 1e− 1 learning rate, 5e− 4 weight decay, and 0.9 momentum. For Spouse, we
use 1e− 2 learning rate, 5e− 4 weight decay, and 0 momentum. For Basketball, we use 1e− 3 learning rate, 0 weight
decay, and 0.9 momentum. For Commercial, we use 1e − 1 learning rate, 5e − 4 weight decay, and 0 momentum. For
Tennis, we use 1e− 1 learning rate, 5e− 4 weight decay, and 0 momentum.

For the MLPs, the best hyperparameters are as follows: for Spam, we use 0.1 learning rate, 0 weight decay, 0.9 momentum,



and 512 hidden layer dimension. For Weather, we use 1e − 1 learning rate, 5e − 4 weight decay, 0.9 momentum, and
256 hidden layer dimension. For Spouse, we use 1e− 3 learning rate, 0 weight decay, 0 momentum, and 256 hidden layer
dimension. For Basketball, we use 1e− 2 learning rate, 0 weight decay, 0.9 momentum, and 512 hidden layer dimension.
For Commercial, we use 1e− 1 learning rate, 5e− 4 weight decay, 0.9 momentum, and 512 hidden layer dimension. For
Tennis, we use 1e− 2 learning rate, 5e− 4 weight decay, 0.9 momentum, and 256 hidden layer dimension.

LIGER-Adapter In addition to evaluating LIGER on its own against linear adapters, we also demonstrate further boosts
when combining the LIGER predictions with Adapters. For this approach, we first create training sets by combining the
80% split of the original validation set and the original training set. To get labels, we use the ground-truth labels for the
former, and the LIGER predictions on the training set for the latter. To get data inputs, we tune between using the same data
embeddings as in the original datasets, and optionally concatenating the LIGER predictions as an additional input dimension
to the embeddings. In the setup, for validation and test sets, we also concatenate the LIGER predictions to the embeddings.
For the Spouse dataset, we do this concatenation, as we found it to improve the validation set F1-score. For all others,
we use the original embeddings. When the weak labels are not very accurate (< 75% accuracy on dev), we downsample
the train points (otherwise they would degrade performance from ground-truth dev labels). This allows performance on
Basketball to be strong even though LIGER accuracy is relatively low.

We tune hyperparameters in the same way as the other adapters. The best hyperparameters are as follows: for Spam, we
use 0.1 learning rate, 0 weight decay, 0.9 momentum. For Weather, we use 0.1 learning rate, 5e − 4 weight decay, 0.9
momentum. For Spouse, we use 1e− 3 learning rate, 5e− 4 weight decay, 0.9 momentum. For Basketball, we use 10.1
learning rate, 5e − 4 weight decay, 0 momentum. For Commercial, we use 0.1 learning rate, 0 weight decay, 0.9. For
Tennis, we use 1e− 1 learning rate, 5e− 4 weight decay, 0 momentum.

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 MLP ADAPTERS

Task LIGER (s)

Spam 96.8 (2)
Weather 95.3 (3)
Spouse 17.0 (6)

Basketball 81.7 (2)
Commercial 93.4 (3)
Tennis 83.4 (1)

Table 5: MLP Adapter performance. Scores are in F1, except for Spam and Weather (accuracy).

We also evaluated adapters using 3-layer MLPs as alternatives to the linear adapters. We considered MLPs with 512 or 256
dimensional hidden-layers with the ReLU nonlinear activation function. We report the results in Table 5. Performance is
similar to the linear adapters, but the MLP adapters are slightly more expensive to train. We focus on a simple linear probe
for LIGER-Adapter and the main experiments for simplicity.

F.2 ADDITIONAL MEASURES OF SMOOTHNESS

Figure 3 reports two additional measurements of smoothness on Basketball and Spouse—coverage Lipschitzness and local
label probabilistic Lipschitzness (see Section 4 for the formal definitions). Trends match label Lipschitzness.

To measure label Lipschitzness, the property that |Pr(y = 1|x)− Pr(y = 1|x′)| ≤ Kyρ(f(x), f(x
′)), we observe that

|Pr(y = 1|x)− Pr(y = 1|x′)| = |E [1 {y = 1|x} − E [1 {y = 1|x′}]]
≤ E [|1 {y = 1|x} − 1 {y = 1|x′} |]
= E [1 {y ̸= y′}] = Pr(y ̸= y′)
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Figure 3: Top: LIGER performance and smoothness measurements of CLIP, BiT-M, ResNet-101, and raw pixels as
embeddings for Basketball. Bottom: LIGER performance and smoothness measurements of no prompting, prompting at
beginning, and prompting at end in GPT-3 for Spouse.

by Jensen’s inequality. Therefore, we estimate Pr(y = y′) on data as an upper bound on label Lipschitzness. We do this by
computing the average percentage of points in some local region (defined either by a radius or by nearest neighbors) around
a given point where the label is different from that of the given point.

For source Lipschitzness, the sources in practice are unimodal and hence Kλ = 0.

For coverage Lipschitzness, we note that |Pr(λi ̸= 0|x)− Pr(λi ̸= 0|x′)| ≤ Pr(1 {λi(x) ̸= 0}! = 1 {λi(x) ̸= 0}), so we
estimate this probability on data as an upper bound. This is done by computing the average percentage of points that abstain
in some local region around a point that has coverage, and vice versa. We average over all sources.

Finally, for local label probabilistic Lipschitzness, we follow Definition 2. For each point in the support of λi, we search if
there exists a nearby point within radius r (or k-th nearest neighbor) such that this nearby point is not in the support and has
a label differerent from that of the given point. We compute the percentage of points in the support that satisfy this property.
We average over all sources.

To read Ky,Kλ,0,M from Figure 3, they can each be viewed as the slope of the linear function that upper bounds the
smoothness curve. Note that for the curves that appear flat (i.e. no prompt), these constants are very large, as there is an
initial sharp increase in the percentage of points with changed value.

F.3 SYNTHETIC EXPERIMENTS

We evaluate LIGER on synthetic data to confirm our insights about 1) how generalization error for P̂r(y|λ, x) demonstrates
a bias-variance tradeoff depending on the number of partitions, and 2) how additional lift depends on setting the threshold
radius based on the original weak source’s accuracy and the embedding’s probabilistic Lipschitzness.

First, we conduct a synthetic experiment to understand how the number of partitions s controls the bias-variance tradeoff in
generalization error of P̂r(y|λ, x) (Theorem 1. We generate two sets of canonical parameters and use them in (1) to generate
(y,λ) from two different distributions, P1 and P2 over an embedding space. We generate 1000 points each for P1 and P2 to
form datasets D1 and D2, which are then concatenated to form a dataset D of 2000 points. We first run Algorithm 1 with
s = 1, which means that we estimate only one set of parameters over D despite the dataset consisting of two different
conditional distributions. We then set s = 2 and estimate the parameters of P1 and P2 separately over 1000 points each.
Finally, we set s = 4 and s = 8 by dividing each of D1 and D2 into 2 subsets of 500 points and 4 subsets of 250 points,
respectively. For each of these, we compute the average cross-entropy loss (over s) of our label model. Figure 4 plots how the
generalization error changes with the number of partitions s. We plot the mean and 95% confidence interval over ten random
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spaces of varying smoothness (right). LF refers to a weak source’s labeling function.

initializations of canonical parameters and datasets drawn according to them. It demonstrates a bias-variance tradeoff: when
s = 1, we estimate one set of parameters over the entire dataset rather than the two true sets of parameters, and this approach
hence does not capture the distinctions in input space among the source accuracies. As a result, a low s results in high bias,
contributing to large generalization error. On the other hand, when s = 4 or 8, our approach is correctly estimating D1 and
D2 separately but is using much less data to do so. This approach has higher sampling error, which worsens variance and
contributes to large generalization error.

Next, we conduct a synthetic experiment to understand how setting the threshold radius of the extended weak source
controls improvement in generalization error as a function of the original average source accuracy and the probabilistic
Lipschitzness of the FM embedding (Theorem 2). Suppose for simplicity that s = 1 and that Pr(y,λ) is modeled the same
way as Pr(y,λ|x) in (1). This assumption reduces to previous weak supervision settings but allows us to isolate the effect of
extending a source. We create an embedding space over 10000 uniformly sampled points in [0, 1]2 with a fixed class balance
Pr(y) and m = 3 labeling functions, where only λ1 is extended. To understand the impact of a labeling function’s accuracy,
we fix a task distribution by assigning Y labels in a 10× 10 “checkerboard” pattern and run our algorithm on four versions
of λ1 with varying average accuracies, keeping λ1’s support consistent. In Figure 5 (left), we extend λ1 based on r for each
of the four versions of the labeling function. This confirms that extending a highly accurate labeling function results in
greater generalization lift. To understand the impact of Lipschitzness of the task distribution, we produce four distributions
of Y over the embedding space, three of which follow a checkerboard clustering pattern (such that more divisions mean less
smoothness), and one that spatially distributes the values of Y at random. For both experiments, we run our approach with
threshold radius varying from 0 to 0.1 in increments of 0.005. In Figure 5 (right), each curve represents performance of the
same high average accuracy labeling function (a1 = 0.89) over embeddings of varying Lipschitzness. This confirms that the
greatest improvement due to an extension occurs for the smoothest embedding. Lastly, both of these graphs illustrate the



tradeoff in setting a threshold radius, confirming the theoretical insight that this quantity must be chosen carefully to ensure
lift from using λ̄1 over λ1.
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