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A PROOF OF MAIN RESULTS

In this section, we provide the complete proofs of our main results in Section 4. We start with some helper lemmas in
Appendix A.1. Then we show the proof of Theorem 1 in Appendix A.2. Finally, we provide the proof of Theorem 2 in
Appendix A.3.

A.1 HELPER LEMMAS

Lemma 1 (Concentration). With probability at least 1− δ, for any f ∈ F , w ∈ W, h ∈ [H] we have,

|LD(f, w, h)− E[LD(f, w, h)]| ≤ 2CH

√
log(2|F||W|H/δ)

2n
=: εstat,n.

Remark Here we apply Hoeffding’s inequality to show the concentration result. Similar as Xie and Jiang (2020), we can
also apply Bernstein’s inequality, but the dominating rate would be the same.

Proof. Firstly, we fix f ∈ F , w ∈ W, h ∈ [H]. From the boundedness assumptions (Assumption 3 and Assumption 4), for
any sample (x

(i)
h , a

(i)
h , r

(i)
h , x

(i)
h+1) in the dataset, we have∣∣∣wh(x(i)h , a

(i)
h )(fh(x

(i)
h , a

(i)
h )− r(i)h − fh(x

(i)
h+1, πf (x

(i)
h+1)))

∣∣∣ ≤ CH.
Then since our dataset is i.i.d., applying Hoeffding’s inequality yields that with probability at least 1− δ/(|F||W|H),

|LD(f, w, h)− E[LD(f, w, h)]| ≤ 2CH

√
log(2|F||W|H/δ)

2n
.

Finally, union bounding over f ∈ F , w ∈ W, h ∈ [H] gives us that with probability at least 1 − δ, for any f ∈ F , w ∈
W, h ∈ [H],

|LD(f, w, h)− E[LD(f, w, h)]| ≤ 2CH

√
log(2|F||W|H/δ)

2n
:= εstat,n.

This completes the proof.

Lemma 2 (Population loss and average Bellman error). For any f ∈ F , w ∈ W, h ∈ [H], we have

E[LD(f, w, h)] = E(xh,ah)∼dDh
[wh(xh, ah)(fh(xh, ah)− (Thfh+1)(xh, ah)))]

and

E[LD(f, w∗, h)] = E(f, π∗, h) = E[fh(xh, ah)−Rh(xh, ah)− fh+1(xh+1, ah+1) | a0:h ∼ π∗, ah+1 ∼ πf ],

where E(·) is the Q-type average Bellman error (Jin et al., 2021; Du et al., 2021)

E(f, π, h) = E[fh(xh, ah)−Rh(xh, ah)− fh+1(xh+1, ah+1) | a0:h ∼ π, ah+1 ∼ πf ].
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Proof. These equations can be simply shown from the data generating process and the definition of population loss and
empirical loss. For any f ∈ F , w ∈ W, h ∈ [H], we have

E[LD(f, w, h)]

= E

[
1

n

n∑
i=1

[wh(x
(i)
h , a

(i)
h )(fh(x

(i)
h , a

(i)
h )− r(i)h − fh+1(x

(i)
h+1, πf (x

(i)
h+1)))]

]
= E(xh,ah)∼dDh ,xh+1∼Ph(·|xh,ah)[wh(xh, ah)(fh(xh, ah)− rh − fh+1(xh+1, πf (xh+1)))]

= E(xh,ah)∼dDh
[wh(xh, ah)(fh(xh, ah)−Rh(xh, ah)− Exh+1∼Ph(·|xh,ah)[fh+1(xh+1, πf (xh+1))])]

= E(xh,ah)∼dDh
[wh(xh, ah)(fh(xh, ah)− (Thfh+1)(xh, ah)))].

For any f ∈ F , h ∈ [H], we similarly have

E[LD(f, w∗, h)] = E

[
1

n

n∑
i=1

[w∗h(x
(i)
h , a

(i)
h )(fh(x

(i)
h , a

(i)
h )− r(i)h − fh+1(x

(i)
h+1, πf (x

(i)
h+1)))]

]
= E(xh,ah)∼dDh ,xh+1∼Ph(·|xh,ah)[w

∗
h(xh, ah)(fh(xh, ah)− rh − fh+1(xh+1, πf (xh+1)))]

= E(xh,ah)∼d∗h,xh+1∼Ph(·|xh,ah)[fh(xh, ah)− rh − fh+1(xh+1, πf (xh+1))]

= E[fh(xh, ah)−Rh(xh, ah)− fh+1(xh+1, ah+1) | a0:h ∼ π∗, ah+1 ∼ πf ].

This completes the proof.

A.2 PROOF OF THEOREM 1

Theorem (Sample complexity of identifying v∗, restatement of Theorem 1). Suppose Assumption 1, Assumption 2,
Assumption 3, Assumption 4 hold and the total number of samples nH satisfies

nH ≥ 8C2H5 log(2|F||W|H/δ)
ε2

.

Then with probability at least 1− δ, running Algorithm 1 with Cgap = 0 and α = ε/(2H) guarantees

|Vf̂ (x0)− v
∗| ≤ ε.

Proof. From our choice of n and Lemma 1, with probability at least 1− δ, for any f ∈ F , w ∈ W, h ∈ [H], we have

|LD(f, w, h)− E[LD(f, w, h)]| ≤ εstat,n ≤ ε/(2H).

Throughout the proof, we condition on this high probability event.

From Lemma 2, for any w ∈ W, h ∈ [H], we have

E[LD(Q∗, w, h)] = E(xh,ah)∼dDh
[wh(xh, ah)(Q

∗
h(xh, ah)− ThQ∗h+1(xh, ah)]

= E(xh,ah)∼dDh
[wh(xh, ah) · 0]

= 0.

Therefore, we further have

LD(Q∗, w, h) ≤ E[LD(Q∗, w, h)] + εstat,n ≤ ε/(2H) = α,

which means Q∗ satisfies all the constraints.

Then we show that any value function satisfying all constraints (though it may have large average Bellman errors under
some distributions) can not be much more pessimistic than Q∗.

From Lemma 1 and Lemma 2, we know that for any f ∈ F , h ∈ [H],

|E(f, π∗, h)|



= |E[fh(xh, ah)−Rh(xh, ah)− fh+1(xh+1, ah+1) | a0:h ∼ π∗, ah+1 ∼ πf ]|
= |E[LD(f, w∗, h)]|
≤ LD(f, w∗, h) + εstat,n

≤ α+ εstat,n ≤ ε/H.

Therefore, we have

Vf (x0) = f0(x0, πf (x0))

≥ f0(x0, π
∗(x0))

≥ E[R0(x0, a0) + f1(x1, a1) | a0 ∼ π∗, a1 ∼ πf ]− ε/H (|E(f, π∗, 0)| ≤ ε/H)
≥ E[R0(x0, a0) | a0 ∼ π∗] + E[f1(x1, a1) | a0:1 ∼ π∗]− ε/H
≥ E[R0(x0, a0) | a0 ∼ π∗] + E[R1(x1, a1) + f2(x2, a2) | a0:1 ∼ π∗, a2 ∼ πf ]− 2ε/H (|E(f, π∗, 1)| ≤ ε/H)
≥ . . .

≥ E

[
H−1∑
h=0

Rh(xh, ah) | a0:H−1 ∼ π∗
]
−H × ε/H = V ∗0 (x0)− ε.

Combining the two arguments above, we know that the pessimistic value function f̂ found by the algorithm satisfies

v∗ − ε = V ∗0 (x0)− ε ≤ Vf̂ (x0) ≤ V
∗
0 (x0) = v∗,

where the second inequality is due to pessimism. This completes the proof.

A.3 PROOF OF THEOREM 2

Theorem (Sample complexity of learning a near-optimal policy, restatement of Theorem 2). Suppose Assumption 1,
Assumption 2, Assumption 3, Assumption 4, Assumption 5 hold and the total number of samples nH satisfies

nH ≥ 8C2H7 log(2|F||W|H/δ)
ε2gap(Q∗)2

.

Then with probability at least 1− δ, running Algorithm 1 with α = εgap(Q∗)/(2H2) and Cgap = gap(Q∗) guarantees

vπf̂ ≥ v∗ − ε.

Proof. From our choice of n and Lemma 1, we know that with probability at least 1− δ, for any f ∈ F , w ∈ W, h ∈ [H],
we have

|LD(f, w, h)− E[LD(f, w, h)]| ≤ εstat,n ≤ εgap(Q∗)/(2H2).

Throughout the proof, we condition on this high probability event.

From the definition of gap(Q∗), we know that prescreening will not eliminate Q∗, i.e., Q∗ ∈ F(gap(Q∗)). Then similar as
the proof of Theorem 1, we have

LD(Q∗, w, h) ≤ E[LD(Q∗, w, h)] + εstat,n = εstat,n ≤ εgap(Q∗)/(2H2) = α,

which means that Q∗ satisfies all the constraints.

For any f ∈ F(gap(Q∗)) that satisfies all the constraints and any h ∈ [H], we have

E(f, π∗, h)
= |E[fh(xh, ah)−Rh(xh, ah)− fh+1(xh+1, ah+1) | a0:h ∼ π∗, ah+1 ∼ πf ]|
= |E[LD(f, w∗, h)]|
≤ LD(f, w∗, h) + εstat,n

≤ α+ εstat,n



≤ εgap(Q∗)/H2.

Now we have the following stronger result compared with the proof of Theorem 1

Vf (x0)

= f0(x0, πf (x0))

≥ f0(x0, π∗(x0)) + gap(Q∗)1{πf (x0) 6= π∗(x0)}
≥ E[R0(x0, a0) + f1(x1, a1) | a0 ∼ π∗, a1 ∼ πf ]

+ gap(Q∗)1{πf (x0) 6= π∗(x0)} − εgap(Q∗)/H2 (|E(f, π∗, 0)| ≤ εgap(Q∗)/H2)
≥ E[R0(x0, a0) | a0 ∼ π∗] + E[f1(x1, π∗(x1)) + gap(Q∗)1{πf (x1) 6= π∗(x1)} | a0 ∼ π∗]

+ gap(Q∗)1{πf (x0) 6= π∗(x0)} − εgap(Q∗)/H2

= E[R0(x0, a0) | a0 ∼ π∗] + E[f1(x1, a1) | a0:1 ∼ π∗] + gap(Q∗)E[1{πf (x1) 6= π∗(x1)} | a0 ∼ π∗]
+ gap(Q∗)1{πf (x0) 6= π∗(x0)} − εgap(Q∗)/H2

≥ E[R0(x0, a0) | a0 ∼ π∗] + E[R1(x1, a1) + f2(x2, a2) | a0:1 ∼ π∗, a2 ∼ πf ]
+ gap(Q∗)[1{πf (x0) 6= π∗(x0)}+ E[1{πf (x1) 6= π∗(x1)} | a0 ∼ π∗}]]
− 2εgap(Q∗)/H2 (|E(f, π∗, 1)| ≤ εgap(Q∗)/H2)

≥ . . .

≥ E

[
H−1∑
h=0

Rh(xh, ah) | a0:H−1 ∼ π∗
]
+ gap(Q∗)E

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]

−H × εgap(Q∗)/H2

= V ∗0 (x0) + gap(Q∗)E

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
− εgap(Q∗)/H.

This implies the pessimistic value function f̂ found by the Algorithm 1 satisfies

V ∗0 (x0) ≥ Vf̂ (x0) ≥ V
∗
0 (x0) + gap(Q∗)E

[
H−1∑
h=0

1{πf̂ (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
− εgap(Q∗)/H

and thus

E

[
H−1∑
h=0

1{πf̂ (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
≤ ε/H. (1)

On the other hand, define each trajectory τ as (x0, a0, r0, . . . , xH−1, aH−1, rH−1, xH), the return of τ as Return(τ) =
r0 + . . .+ rH−1, and the probability of τ under policy π (i.e., ah = π(xh),∀h ∈ [H]) as Prπ(τ). For any f ∈ F , we can
decompose the entire trajectory space into three disjoint sets C1 = {τ = (x0, a0, r0, . . . , xH−1, aH−1, rH−1, xH) : ∀h ∈
[H], ah = π∗(xh) = πf (xh)}, C2 = {τ = (x0, a0, r0, . . . , xH−1, aH−1, rH−1, xH) : ∀h ∈ [H], ah = π∗(xh),∃h ∈
[H], πf (xh) 6= π∗(xh)}, C3 = (C1

⋃
C2){.

Then we calculate V π
∗

and V πf with the definition of these three sets

V π
∗

0 (x0) =
∑

τ∈C1
⋃
C2

⋃
C3

Prπ∗(τ)Return(τ)

=
∑
τ∈C1

Prπ∗(τ)Return(τ) +
∑
τ∈C2

Prπ∗(τ)Return(τ)

(Because π∗ is greedy policy, any trajectory τ ∈ C3 has 0 probability)

=
∑
τ∈C1

Prπf
(τ)Return(τ) +

∑
τ∈C2

Prπ∗(τ)Return(τ) (Definition of C1)

≤
∑
τ∈C1

Prπf
(τ)Return(τ) +

∑
τ∈C2

Prπ∗(τ)H (Return(τ) ≤ H)



≤
∑

τ∈C1
⋃
C2

⋃
C3

Prπf
(τ)Return(τ) +

∑
τ∈C2

Prπ∗(τ)H (Return(τ) ≥ 0)

= V
πf

0 (x0) +
∑
τ∈C2

Prπ∗(τ)H.

It remains to show that Prπ∗(C2) =
∑
τ∈C2 Prπ∗(τ) is small. From the definition, any trajectory τ =

(x0, a0, r0, . . . , xH−1, aH−1, rH−1, xH) ∈ C2 satisfies that ∀h ∈ [H], ah = π∗(xh) and ∃h ∈ [H], ah 6= πf (xh). Then for
any τ ∈ C2, we can find a unique index h′ ∈ [H] such that a0 = π∗(x0) = πf (x0), . . . , ah′−1 = π∗(xh′−1) = πf (xh′−1),
ah′ = π∗(xh′) 6= πf (xh′) (i.e., h′ is the smallest index that πf differs from π∗ in trajectory τ ). This implies that
C2 ⊆

⋃H−1
h′=0 Ch

′

2 , where Ch′2 = {τ = (x0, a0, r0, . . . , xH−1, aH−1, rH−1, xH) : a0 = π∗(x0) = πf (x0), . . . , ah′−1 =

π∗(xh′−1) = πf (xh′−1), ah′ = π∗(xh′) 6= πf (xh′)}. Since E[1{πf (xh′) 6= π∗(xh′) | a0:h′−1 ∼ π∗}] = Prπ∗(Ch
′

2 ), we
have ∑

τ∈C2

Prπ∗(τ) ≤
H−1∑
h′=0

∑
τ∈Ch′2

Prπ∗(τ) = E

[
H−1∑
h=0

1{πf̂ (xh) 6= π∗(xh)} | a0:h−1 ∼ π∗
]

= E

[
H−1∑
h=0

1{πf̂ (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
.

Finally, combining all the results above gives us

V
πf̂

0 (x0) ≥ V ∗0 (x0)−
∑
τ∈C2

Prπ∗(τ)H

≥ V ∗0 (x0)−HE

[
H−1∑
h=0

1{πf̂ (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]

≥ v∗ −H × ε/H = v∗ − ε. (2)

This completes the proof.

Remark We notice that Eq. (1) is the error of supervised learning (SL) with 0/1 loss. Therefore, we can directly use the
RL to SL reduction in imitation learning literature (e.g., Theorem 2.1 in Ross and Bagnell (2010)) to translate it to the final
performance difference. It gives us the same as our result in Eq. (2). This second part of the proof is different from the one
in Ross and Bagnell (2010) and is potentially easier to understand. We believe that it is also of its independent interest.

B PROOF OF ROBUSTNESS RESULTS

In this section, we provide the complete proof of misspecificed cases in Section 5. We start with some helper lemmas in
Appendix B.1. Then we show the proof of Theorem 3 in Appendix B.2 and the proof of Theorem 4 in Appendix B.3.

B.1 HELPER LEMMAS

Lemma 3 (Population loss bound for approximately realizableW). Recall that the definitions of εW and w̃∗ are

εW = min
w∈W

max
f∈F

max
h∈[H]

∣∣∣EdDh [wh · (fh − Thfh+1)]− Ed∗h [fh − Thfh+1]
∣∣∣

and

w̃∗ = argmin
w∈W

max
f∈F

max
h∈[H]

∣∣∣EdDh [wh · (fh − Thfh+1)]− Ed∗h [fh − Thfh+1]
∣∣∣ .

For any f ∈ F , h ∈ [H], we have

|E(f, π∗, h)| ≤ |E[LD(f, w̃∗, h)]|+ εW ,

where E(·) is the Q-type average Bellman error (Jin et al., 2021; Du et al., 2021)

E(f, π, h) = E[fh(xh, ah)−Rh(xh, ah)− fh+1(xh+1, ah+1) | a0:h ∼ π, ah+1 ∼ πf ].



Proof. For any f ∈ F , h ∈ [H], we have

|E(f, π∗, h)|
= E[fh(xh, ah)−Rh(xh, ah)− fh+1(xh+1, ah+1) | a0:h ∼ π∗, ah+1 ∼ πf ].

=
∣∣∣E(xh,ah)∼d∗h,xh+1∼Ph(·|xh,ah)[fh(xh, ah)−Rh − fh+1(xh+1, πf (xh+1))]

∣∣∣
=
∣∣∣E(xh,ah)∼d∗h [fh(xh, ah)− (Thfh+1)(xh, ah)]

∣∣∣
=
∣∣Ed∗h [fh − Thfh+1]

∣∣
≤
∣∣∣EdDh [w̃∗h(fh − Thfh+1]

∣∣∣+ ∣∣∣EdDh [w̃∗h · (fh − Thfh+1)]− Ed∗h [fh − Thfh+1]
∣∣∣

≤ |E[LD(f, w̃∗, h)]|+ εW ,

which completes the proof.

Lemma 4 (εF is weaker than `∞ approximation error). Recall that the definitions of εF and Q̃∗F are

εF = min
f∈F

max
w∈W

max
h∈[H]

(∣∣∣EdDh [wh · (fh − Thfh+1)]
∣∣∣+ |f0(x0, πf (x0))−Q∗0(x0, π∗(x0))|)

and
Q̃∗F = argmin

f∈F
max
w∈W

max
h∈[H]

(∣∣∣EdDh [wh · (fh − Thfh+1)]
∣∣∣+ |f0(x0, πf (x0))−Q∗0(x0, π∗(x0))|) .

Suppose additionally we have mild regularity assumptions on W , i.e., for any w ∈ W, h ∈ [H], EdDh [wh] = 1 and
wh ∈ (X ×A → [0,∞)). Then we have

εF ≤ 3min
f∈F

max
h∈[H]

‖fh −Q∗h‖∞.

Proof. For any f ∈ F , w ∈ W, h ∈ [H], we have the following∣∣∣EdDh [wh · (fh − Thfh+1)]
∣∣∣

≤
∣∣∣EdDh [wh · (fh −Q∗h − Thfh+1 + ThQ∗h+1)]

∣∣∣+ ∣∣∣EdDh [wh · (Q∗h − ThQ∗h+1)]
∣∣∣

≤
∣∣∣EdDh [wh · (fh −Q∗h)]∣∣∣+ ∣∣∣EdDh [wh · (Thfh+1 − ThQ∗h+1)]

∣∣∣+ 0

≤ EdDh [wh · ‖fh −Q
∗
h‖∞] +

∣∣∣E(xh,ah)∼dDh ,xh+1∼Ph(·|xh,ah)[wh · (fh+1(xh+1, πf (xh+1)−Q∗(xh+1, π
∗(xh+1)))]

∣∣∣
≤ ‖fh −Q∗h‖∞ + E(xh,ah)∼dDh ·wh,xh+1∼Ph(·|xh,ah)[|f(xh+1, πf (xh+1)−Q∗h+1(xh+1, π

∗(xh+1))|], (3)

where the last inequality is due to the EdDh [wh] = 1 and wh ≥ 0.

Now, we bound the second term in Eq. (3). Using ε′ to denote maxh∈[H] ‖fh −Q∗h‖∞, we have

Q∗h+1(xh+1, π
∗(xh+1))− ε′ ≤ fh+1(xh+1, π

∗(xh+1))

≤ fh+1(xh+1, πf (xh+1)) ≤ Q∗h+1(xh+1, πf (xh+1)) + ε′ ≤ Q∗h+1(xh+1, π
∗(xh+1)) + ε′.

This implies that

|fh+1(xh+1, πf (xh+1)−Q∗h+1(xh+1, π
∗(xh+1))| ≤ ε′ = max

h∈[H]
‖fh −Q∗h‖∞.

Therefore, we have∣∣∣EdDh [wh · (fh − Thfh+1)]
∣∣∣ ≤ ‖fh −Q∗h‖∞ + E(xh,ah)∼dDh ·wh,xh+1∼Ph(·|xh,ah)[‖fh+1 −Q∗h+1‖∞].

Since EdDh [wh] = 1, we know that E(xh,ah)∼dDh ·wh,xh+1∼Ph(·|xh,ah)[·] is a probability distribution over xh+1. This implies
that ∣∣∣EdDh [wh · (fh − Thfh+1)]

∣∣∣ ≤ 2 max
h∈[H]

‖fh −Q∗h‖∞.



Similarly, we have |f0(x0, πf (x0))−Q∗0(x0, π∗(x0))| ≤ maxh∈[H] ‖fh −Q∗h‖∞, thus∣∣∣EdDh [wh · (fh − Thfh+1)]
∣∣∣+ |f0(x0, πf (x0))−Q∗0(x0, π∗(x0))| ≤ 3 max

h∈[H]
‖fh −Q∗h‖∞.

Taking max over h ∈ [h], w ∈ W and then taking min over f ∈ F on both sides completes the proof.

B.2 PROOF OF THEOREM 3

Theorem (Robust version of Theorem 1, Restatement of Theorem 3). Suppose Assumption 3, Assumption 4 hold and the
total number of samples nH satisfies

nH ≥ 8C2H5 log(2|F||W|H/δ)
ε2

.

Then with probability 1− δ, running Algorithm 1 with α = ε/(2H) + εF and Cgap = 0 guarantees

|Vf̂ (x0)− v
∗| ≤ ε+HεF +HεW .

Proof. From Lemma 1 and our choice n ≥ 8C2H4 log(2|F||W|H/δ)
ε2 , with probability at least 1 − δ, for any f ∈ F , w ∈

W, h ∈ [H], we have
|LD(f, w, h)− E[LD(f, w, h)]| ≤ εstat,n ≤ ε/(2H).

Throughout the proof, we will condition on this high probability event.

From Lemma 2, we have

|E[LD(Q̃∗F , w, h)]| =
∣∣∣E(xh,ah)∼dDh

[wh(xh, ah)(Q̃
∗
F,h(xh, ah)− (ThQ̃∗F,h+1)(xh, ah))]

∣∣∣
≤
∣∣∣E(xh,ah)∼dDh

[wh(xh, ah)(Q̃
∗
F,h(xh, ah)− (ThQ̃∗F,h+1)(xh, ah))]

∣∣∣
+
∣∣∣Q̃∗F,0(x0, πQ̃∗F (x0))−Q∗0(x0, π∗(x0))∣∣∣

≤ εF .

When using the relaxed constraints by setting α = ε/(2H) + εF , we can incorporate the approximation errors. More
specifically, we have∣∣∣LD(Q̃∗F , w, h)∣∣∣ ≤ ∣∣∣E[LD(Q̃∗F , w, h)]∣∣∣+ εstat,n ≤ εF + εstat,n ≤ ε/(2H) + εF = α,

which implies that Q̃∗F will satisfy all constraints.

In addition, for any f ∈ F that satisfies all constraints, we have that for any w ∈ W, h ∈ [H],

|E[LD(f, w, h)]| ≤ LD(f, w, h) + εstat,n ≤ α+ εstat,n = ε/H + εF .

From Lemma 3, we further have
|E(f, π∗, h)| ≤ |E[LD(f, w̃∗, h)]|+ εW .

Since w̃∗ ∈ W , we get

|E(f, π∗, h)| ≤ |E[LD(f, w̃∗, h)]|+ εW ≤ ε/H + εF + εW := ε′.

Following telescoping step in the proof of Theorem 1, for any f ∈ F , h ∈ [H] that satisfies all constraints, we have

Vf (x0) = f0(x0, πf (x0)) ≥ V ∗0 (x0)−Hε′.

Therefore, we have

V ∗0 (x0) + εF = Q∗0(x0, π
∗(x0)) + εF ≥ Q̃∗0(x0, πQ̃∗(x0)) ≥ f̂0(x0, πf̂ (x0)) ≥ V

∗
0 (x0)−Hε′,

where the first inequality is due to the definition of approximation error εF and the second inequality is due to pessimism.
This gives us

|Vf̂ (x0)− v
∗| ≤ max{Hε′, εF} ≤ ε+HεF +HεW ,

which completes the proof.



B.3 PROOF OF THEOREM 4

Theorem (Robust version of Theorem 2, restatement of Theorem 4). Suppose Assumption 3, Assumption 4 hold and the
total number of samples nH satisfies

nH ≥ 8C2H7 log(2|F||W|H/δ)
ε2C2

gap

.

Then with probability 1− δ, running Algorithm 1 with a user-specified Cgap and α = εCgap/(2H
2) + εF(Cgap) guarantees

vπf̂ ≥ v∗ − ε−
(H2 +H)εF(Cgap) +H2εW

Cgap
.

Proof. From Lemma 1 and our choice n ≥ 8C2H6 log(2|F||W|H/δ)
ε2C2

gap
, with probability at least 1 − δ, for any f ∈ F , w ∈

W, h ∈ [H], we have
|LD(f, w, h)− E[LD(f, w, h)]| ≤ εstat,n ≤ εCgap/(2H

2).

Throughout the proof, we will condition on this high probability event.

From Lemma 2, we have

|E[LD(Q̃∗F(Cgap)
, w, h)]| =

∣∣∣E(xh,ah)∼dDh
[wh(xh, ah)(Q̃

∗
F(Cgap),h

(xh, ah)− (ThQ̃∗F(Cgap),h+1)(xh, ah))]
∣∣∣

≤
∣∣∣E(xh,ah)∼dDh

[wh(xh, ah)(Q̃
∗
F(Cgap),h

(xh, ah)− (ThQ̃∗F(Cgap),h+1)(xh, ah))]
∣∣∣

+

∣∣∣∣Q̃∗F(Cgap),0
(x0, πQ̃∗F(Cgap)

(x0))−Q∗0(x0, π∗(x0))
∣∣∣∣

≤ εF(Cgap).

When using the relaxed constraints of α = εCgap/(2H
2) + εF(Cgap), we can incorporate the approximation errors. More

specifically, we have ∣∣∣LD(Q̃∗F(Cgap)
, w, h)

∣∣∣ ≤ ∣∣∣E[LD(Q̃∗F(Cgap)
, w, h)]

∣∣∣+ εstat,n

≤ εF(Cgap) + εstat,n

≤ εCgap/(2H
2) + εF(Cgap) = α,

which implies that Q̃∗F(Cgap)
will satisfy all constraints.

In addition, for any f ∈ F(Cgap) that satisfies all constraints, we have that for any w ∈ W, h ∈ [H],

|E[LD(f, w, h)]| ≤ LD(f, w, h) + εstat,n ≤ α+ εstat,n = εCgap/H
2 + εF(Cgap).

From Lemma 3, we further have
|E(f, π∗, h)| ≤ |E[LD(f, w̃∗, h)]|+ εW .

Since w̃∗ ∈ W , we get

|E(f, π∗, h)| ≤ |E[LD(f, w̃∗, h)]|+ εW ≤ εCgap/H
2 + εF(Cgap) + εW := ε′.

Since we run the algorithm on F(Cgap), the gap parameter will be Cgap instead of gap(Q∗) in Theorem 2. Following the
proof of Theorem 2, for any f ∈ F(Cgap), h ∈ [H] that satisfies all constraints, we have

Vf (x0) = f0(x0, πf (x0)) ≥ Q∗0(x0, π∗(x0)) + CgapE

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
−Hε′.

Therefore, we have

Q∗0(x0, π
∗(x0)) + εF(Cgap)



≥ Q̃∗F(Cgap),0
(x0, πQ∗F(Cgap)

(x0)) (Definition of approximation error εF(Cgap))

≥ f̂0(x0, πf̂ (x0)) (Pessimism)

≥ Q∗0(x0, π∗(x0)) + CgapE

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
−Hε′,

which yields

E

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
≤
(
Hε′ + εF(Cgap)

)
/Cgap.

This translates to the performance difference bound of

V
πf̂

0 (x0) ≥ v∗ −H
(
Hε′ + εF(Cgap)

)
/Cgap ≥ v∗ − ε−

(H2 +H)εF(Cgap) +H2εW

Cgap
,

which completes the proof.

B.4 COROLLARY FROM THEOREM 4

Theorem 4 gives us a convenient way to set the gap parameter Cgap. We show that it can easily handle the case that `∞
approximation error of F and gap(Q∗) are known. We formally define `∞ approximation error and the corresponding best
approximator w.r.t. F as

εF,∞ = min
f∈F

max
h∈[H]

‖fh −Q∗h‖∞, Q̃∗F,∞ = argmin
f∈F

max
h∈[H]

‖fh −Q∗h‖∞.

Similarly, we can define the version for F(gap(Q∗)).

Then we have the following corollary.

Corollary 5 (Corollary from Theorem 4). Suppose Assumption 3, Assumption 4 hold, the weight function class satisfies the
additional mild regularity assumptions stated in Lemma 4. Assume we are given εF,∞, gap(Q∗) and 2εF,∞ < gap(Q∗). If
the total number of samples nH satisfies

nH ≥ 8C2H7 log(2|F||W|H/δ)
ε2(gap(Q∗)− 2εF,∞)2

,

then with probability 1− δ, running Algorithm 1 with Cgap = gap(Q∗)− 2εF,∞ and α = ε(gap(Q∗)− 2εF,∞)/(2H2) +
2εF,∞ guarantees

vπf̂ ≥ v∗ − ε− (2H2 +H)εF,∞ +H2εW
gap(Q∗)− 2εF,∞

.

Proof. From the definition of gap(Q∗), εF,∞ and Q̃∗F,∞, we know that

gap(Q̃∗F,∞) ≥ gap(Q∗)− 2εF,∞ > 0.

Therefore, we have Q̃∗F,∞ ∈ F(gap(Q∗) − 2εF,∞). Together with the definition that Q̃∗F,∞ is the best approximator of
Q∗ within F (under `∞ norm), we know that Q̃∗F,∞ is also the best approximator within F(gap(Q∗)− 2εF,∞) (under `∞
norm). This implies that

εF(gap(Q∗)−2εF,∞),∞ = εF,∞.

In addition, under the mild regularity assumptions stated in Lemma 4, applying Lemma 4 tells us

εF(gap(Q∗)−2εF,∞) ≤ 3 min
f∈F(gap(Q∗)−2εF,∞)

max
h∈[H]

‖fh −Q∗h‖∞ = 3εF(gap(Q∗)−2εF,∞),∞ = 3εF,∞.

The remaining part of the proof follows a similar approach as the proof of Theorem 4. Firstly, we have the 1 − δ high
probability event that for any f ∈ F , w ∈ W, h ∈ [H]

|LD(f, w, h)− E[LD(f, w, h)]| ≤ εstat,n ≤ ε(gap(Q∗)− 2εF,∞)/(2H2).



Then following the proof Lemma 4, we have

|E[LD(Q̃∗F,∞, w, h)]| =
∣∣∣EdDh [wh · (Q̃∗F,∞,h − ThQ̃∗F,∞,h+1)]

∣∣∣
≤
∣∣∣EdDh [wh · (Q̃∗F,∞,h −Q∗h)]∣∣∣+ ∣∣∣EdDh [wh · (ThQ̃∗F,∞,h+1 − ThQ∗h+1)]

∣∣∣+ 0

≤ 2 max
h∈[H]

‖Q̃∗F,∞,h −Q∗h‖∞ = 2εF,∞.

The empirical loss of Q̃∗F,∞ satisfies∣∣∣LD(Q̃∗F,∞, w, h)∣∣∣ ≤ ∣∣∣E[LD(Q̃∗F,∞, w, h)]∣∣∣+ εstat,n

≤ ε(gap(Q∗)− 2εF,∞)/(2H2) + 2εF,∞ = α,

which implies that Q̃∗F,∞ will satisfy all constraints.

In addition, for any f ∈ F(gap(Q∗)− 2εF,∞) that satisfies all constraints, we have that for any w ∈ W, h ∈ [H],

|E[LD(f, w, h)]| ≤ LD(f, w, h) + εstat,n ≤ α+ εstat,n = ε(gap(Q∗)− 2εF,∞)/H2 + 2εF,∞.

Similarly, we further have

|E(f, π∗, h)| ≤ |E[LD(f, w̃∗, h)]|+ εW ≤ ε(gap(Q∗)− 2εF,∞)/H2 + 2εF,∞ + εW := ε′.

The final performance difference bound is

V
πf̂

0 (x0) ≥ v∗ −H (Hε′ + εF,∞) /(gap(Q∗)− 2εF,∞) ≥ v∗ − ε− (2H2 +H)εF,∞ +H2εW
gap(Q∗)− 2εF,∞

,

where the difference compared with the derivation in the proof of Theorem 4 is that we use `∞ bound to get

Q∗0(x0, π
∗(x0)) + εF,∞ ≥ Q̃∗F,∞,0(x0, πQ∗F,∞

(x0)).

This completes the proof.

C PROOF OF THE UNKNOWN GAP PARAMETER SETTING

In this section, we present the formal proof of Theorem 5. We start with a standard helper lemma in Appendix C.1, which
shows the concentration result of Monte Carlo estimate. Then we show the proof of Theorem 5 in Appendix C.2.

C.1 A HELPER LEMMA

Lemma 6 (Concentration for Monte Carlo estimate). Assume we run policy π and collect m trajectories{
x
(i)
0 , a

(i)
0 , r

(i)
0 , . . . , x

(i)
H−1, a

(i)
H−1, r

(i)
H−1

}m
i=1

and our Monte Carlo estimate is defined as

v̂π :=
1

m

m∑
i=1

H−1∑
h=0

r
(i)
h .

Then we have

|v̂π − vπ| ≤ 2H

√
log(2/δ)

2m
.

Proof. Define random variable Yi :=
∑H−1
h=0 r

(i)
h . From the definition, we know that Yi are i.i.d. samples with mean vπ.

Applying Hoeffding’s inequality and noticing that |Yi| ≤ H gives us with probability 1− δ,∣∣∣∣∣ 1m
m∑
i=1

Yi − vπ
∣∣∣∣∣ ≤ 2H

√
log(2/δ)

2m
.

This completes the proof.



C.2 PROOF OF THEOREM 5

Theorem (Sample complexity of finding a near-optimal policy with unknown gap(Q∗), restatement of Theorem 5). Suppose
Assumption 1, Assumption 2, Assumption 3, Assumption 4, Assumption 5 hold but gap(Q∗) is unknown. Assume we have a
dataset D with size n for each Dh and additional online access to collect

(log(2H/gap(Q∗)))2 · n log(24/δ)
C2H

= Õ

(
n log(1/δ)

C2H

)
samples. Then with probability at least 1− δ, the output policy π̂ from Algorithm 2 satisfies

vπ̂ ≥ v∗ − 5

√
32C2H6ι(log(2H/gap(Q∗)))

ngap(Q∗)2
,

where ι(t) = log(24|F||W|H · 2t/δ).

Proof. For Theorem 1, Theorem 2 and Monte Carlo roll out estimate at iteration t, we set their high probability event
parameter as δ′t := δ/(6× 2t). Then union bounding over all of them gives us 1− δ high probability event. Our following
analysis is conditioned on these high probability events.

Firstly, we show that Algorithm 2 will terminate once our guess gapguesst drops below the true gap(Q∗). From Theorem 1,
we know that |v̂∗t − v∗| ≤ εt. Further, when gapguesst ≤ gap(Q∗), we can guarantee that Q∗ ∈ F(gapguesst ). Therefore,
Theorem 2 tells us vπ̂t ≥ v∗ − εt. Finally, for Monte Carlo estimate v̂π̂t , we have |v̂π̂t − vπ̂t | ≤ εt. Combining them
together yields

v̂π̂t ≥ vπ̂t − εt ≥ v∗ − εt − εt ≥ v̂∗t − εt − εt − εt = v̂∗t − 3εt,

which means our algorithm will stop in this iteration.

So if we assume the algorithm terminates at iteration T , then T satisfies H/2T ≥ gap(Q∗)/2, thus

T ≤ log(2H/gap(Q∗)).

Then we prove that the output policy π̂T satisfies vπ̂T ≥ v∗ − 5εt. This can be seen from

vπ̂T ≥ v̂π̂T − εT ≥ v̂∗T − 3εT − εT ≥ v∗ − εT − 3εT − εT = v∗ − 5εT .

Notice that εt will increase as t increases. Therefore, if our algorithm terminates before gapguesst drops below gap(Q∗), we
will have a better performance guarantee. More specifically, we have

εT ≤ εlog(2H/gap(Q∗)) =

√
32C2H6ι(log(2H/gap(Q∗)))

ngap(Q∗)2
.

Therefore, π̂T satisfies

vπ̂T ≥ v∗ − 5

√
32C2H6ι(log(2H/gap(Q∗)))

ngap(Q∗)2
,

which has the same order of the accuracy as running Algorithm 1 with known gap(Q∗) in Theorem 2 up to polylog terms.

Finally we calculate the required number of online samples. For iteration t, applying Lemma 6, we require

H · 2H
2 log(12× 2t/δ)

ε2t
≤ 2H3 log(12× 2T /δ)

ε2t
=
n log(12× 2T /δ)

4C2Hι(t)22t
≤ n log(12× 2T /δ)

C2H
≤ nT log(12× 2/δ)

C2H

samples. Then since we have at most log(2H/gap(Q∗)) iterations, the required number of online samples is at most

log(2H/gap(Q∗)) · nT log(12× 2/δ)

C2H
≤ (log(2H/gap(Q∗)))2 · n log(24/δ)

C2H
.

This completes the proof.



D LAGRANGIAN FORM ALGORITHM AND RESULTS

In this section, we introduce the Lagrangian form variant of PABC (Algorithm 1) and its sample complexity guarantees. We
start with showing its variant PABC-L (Algorithm 1) in Appendix D.1. Then we provide the main results of PABC-L in
Appendix D.2 and its robustness results in Appendix D.3.

D.1 ALGORITHM

In this part, we introduce the PABC-L (PABC with Lagrangian form) algorithm as shown in Algorithm 1. Compared with
PABC (Algorithm 1), PABC-L does not take the threshold α as input. In addition, it moves the constraints (Eq. (2)) to the
objective (Eq. (5)). Furthermore, to estimate v∗, it returns f̂0(x0, πf̂ (x0)) +H ·maxw∈W,h∈[H] |LD(f̂ , w, h)| instead of

f̂0(x0, πf̂ (x0)).

Algorithm 1 PABC-L (PABC with Lagrangian form)

Input: gap factor Cgap, function class F , weight function classW , and dataset D.
1: Perform prescreening according to input Cgap:

F(Cgap) := {f ∈ F : gap(f) ≥ Cgap}. (4)

2: Find the pessimism value function in F(Cgap) with the Lagrangian form objective

f̂ = argmin
f∈F(Cgap)

(
f0(x0, πf (x0)) +H · max

w∈W,h∈[H]
|LD(f, w, h)|

)
(5)

where the empirical loss LD(f, w, h) is defined as

LD(f, w, h) =
1

n

n∑
i=1

[wh(x
(i)
h , a

(i)
h )(fh(x

(i)
h , a

(i)
h )− r(i)h − fh+1(x

(i)
h+1, πf (x

(i)
h+1)))]. (6)

Output: policy πf̂ and return estimation f̂0(x0, πf̂ (x0)) +H ·maxw∈W,h∈[H] |LD(f̂ , w, h)|.

Remark In the objective (Eq. (5)), we can also use

f̂ = argmin
f∈F(Cgap)

(
f0(x0, πf (x0)) +

H−1∑
h=0

max
w∈W

|LD(f, w, h)|

)
. (7)

From the detailed proofs in the subsequent parts, it is easy to see that the theoretical results hold under this objective
(Eq. (7)).

D.2 MAIN GUARANTEES

In this part, we present the main sample complexity results of PABC-L (Algorithm 1). In parallel with Section 4, we show
that PABC-L can identify v∗ without the gap assumption in Appendix D.2.1 and show that PABC-L with the gap assumption
learns a near-optimal policy in Appendix D.2.2.

D.2.1 ESTIMATING OPTIMAL EXPECTED RETURN

We show the sample complexity bound and the proof for PABC-L to identify v∗. The bound is the same as that of PABC
(Theorem 1).



Theorem 7 (Sample complexity of identifying v∗, Lagrangian version). Suppose Assumption 1, Assumption 2, Assumption 3,
Assumption 4 hold and the total number of samples nH satisfies

nH ≥ 8C2H5 log(2|F||W|H/δ)
ε2

.

Then with probability at least 1− δ, running Algorithm 1 with Cgap = 0 guarantees

|Vf̂ (x0)− v
∗| ≤ ε.

Proof. The proof mostly follows the proof of Theorem 1, and we only show the different and crucial steps here. We still
condition on the high probability event from concentration (Lemma 1).

From the concentration result and the choice of n, we have the bound for Q∗:

V ∗0 (x0) +H · max
w∈W,h∈[H]

|LD(Q∗, w, h)| ≤ V ∗0 (x0) +Hεstat,n,

where εstat,n ≤ ε/H .

From pessimism and the objective in Algorithm 1, we have

V ∗0 (x0) +H · max
w∈W,h∈[H]

|LD(Q∗, w, h)| ≥ Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|.

Therefore, we get

V ∗0 (x0) +Hεstat,n ≥ Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|. (8)

For any f ∈ F , following the telescoping step in the proof of Theorem 1, we know that

Vf (x0) = f0(x0, πf (x0))

≥ f0(x0, π
∗(x0))

= E[R0(x0, a0) + f1(x1, a1) | a0 ∼ π∗, a1 ∼ πf ] + E(f, π∗, 0)
≥ E[R0(x0, a0) | a0 ∼ π∗] + E[f1(x1, a1) | a0:1 ∼ π∗] + E(f, π∗, 0)
≥ E[R0(x0, a0) | a0 ∼ π∗] + E[R1(x1, a1) + f2(x2, a2) | a0:1 ∼ π∗, a2 ∼ πf ] + E(f, π∗, 1) + E(f, π∗, 0)
≥ . . .

≥ E

[
H−1∑
h=0

Rh(xh, ah) | a0:H−1 ∼ π∗
]
+

H−1∑
h=0

E(f, π∗, h)

≥ V ∗0 (x0)−
H−1∑
h=0

|E(f, π∗, h)|.

Therefore, we get

Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|

≥ V ∗0 (x0)−
H−1∑
h=0

|E(f̂ , π∗, h)|+H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|

≥ V ∗0 (x0)−
H−1∑
h=0

|E(f̂ , π∗, h)|+H · max
w∈W,h∈[H]

|E[LD(f̂ , w, h)]| −Hεstat,n

≥ V ∗0 (x0)−
H−1∑
h=0

|E(f̂ , π∗, h)|+
H−1∑
h=0

|E[LD(f̂ , w∗, h)]| −Hεstat,n

= V ∗0 (x0)−
H−1∑
h=0

|E(f̂ , π∗, h)|+
H−1∑
h=0

|E(f̂ , π∗, h)| −Hεstat,n



= V ∗0 (x0)−Hεstat,n. (9)

Combining Eq. (8) and Eq. (9) yields

|Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)| − v∗| = |Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)| − V ∗0 (x0)| ≤ Hεstat,n ≤ ε,

which completes the proof.

D.2.2 LEARNING A NEAR-OPTIMAL POLICY

Here we present the result for learning a near optimal policy. Compared with its counterpart (Theorem 2), the sample
complexity only differs in the constant.

Theorem 8 (Sample complexity of learning a near-optimal policy, Lagrangian version). Suppose Assumption 1, Assumption 2,
Assumption 3, Assumption 4, Assumption 5 hold and the total number of samples nH satisfies

nH ≥ 32C2H7 log(2|F||W|H/δ)
ε2gap(Q∗)2

.

Then with probability at least 1− δ, running Algorithm 1 with Cgap = gap(Q∗) guarantees

vπf̂ ≥ v∗ − ε.

Proof. The proof mostly follows the proof of Theorem 2 and Theorem 7, and we only show the different and crucial steps
here. We still condition on the high probability event from concentration (Lemma 1).

Similar as the proof of Theorem 7, from pessimism, we have

V ∗0 (x0) +Hεstat,n ≥ Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|, (10)

where εstat,n ≤ εgap(Q∗)/(2H2).

On the other hand, following the proof of Theorem 2 and Theorem 7, we have

Vf (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|

≥ V ∗0 (x0) + gap(Q∗)E

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
−
H−1∑
h=0

|E(f̂ , w∗, h)|+H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|

≥ V ∗0 (x0) + gap(Q∗)E

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
−
H−1∑
h=0

|E(f̂ , w∗, h)|+
H−1∑
h=0

|E(f̂ , w∗, h)| −Hεstat,n

≥ V ∗0 (x0) + gap(Q∗)E

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
−Hεstat,n. (11)

Combining Eq. (10) and Eq. (11) yields

E

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
≤ 2Hεstat,n/gap(Q

∗) ≤ ε.

The remaining steps are followed from the proof of Theorem 2.

D.3 ROBUSTNESS TO MISSPECIFICATION

In this part, we present the sample complexity results of PABC-L (Algorithm 1) under misspecification. In parallel with
Section 5, we show that PABC-L can identify v∗ in Appendix D.3.1 and show its results for learning a near-optimal policy
in Appendix D.3.2. The major advantage of PABC-L is that it does not take α as the input, therefore, we no longer require
the knowledge of approximation errors.



D.3.1 ESTIMATING OPTIMAL EXPECTED RETURN

We present the result for identifying v∗. The sample complexity of PABC-L is the same as its counterpart (Theorem 3).

Theorem 9 (Robust version of Theorem 7). Suppose Assumption 3, Assumption 4 hold and the total number of samples nH
satisfies

nH ≥ 8C2H5 log(2|F||W|H/δ)
ε2

.

Then with probability 1− δ, running Algorithm 1 with Cgap = 0 guarantees

|Vf̂ (x0)− v
∗| ≤ ε+HεF +HεW .

Proof. The proof mostly follows the proof of Theorem 3 and Theorem 7, and we only show the different and crucial steps
here. We still condition on the high probability event from concentration (Lemma 1).

For Q̃∗F , from the concentration result and the definition of εF , we get

Q̃∗F,0(x0, πQ∗F (x0)) +H · max
w∈W,h∈[H]

|LD(Q̃∗F , w, h)| ≤ V ∗0 (x0) +HεF +Hεstat,n,

where εstat,n ≤ ε/H .

From pessimism and the objective in Algorithm 1, we have

Q̃∗F,0(x0, πQ∗F (x0)) +H · max
w∈W,h∈[H]

|LD(Q̃∗F , w, h)| ≥ Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|.

Therefore, we get

V ∗0 (x0) +HεF +Hεstat,n ≥ Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|. (12)

For any f ∈ F , following the telescoping step in the proof of Theorem 7, we know that

Vf (x0) ≥ V ∗0 (x0)−
H−1∑
h=0

|E(f, π∗, h)|.

Therefore, similar as the proof of Theorem 7 and applying Lemma 3, we get

Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|

≥ V ∗0 (x0)−
H−1∑
h=0

|E(f̂ , π∗, h)|+H · max
w∈W,h∈[H]

|E[LD(f̂ , w, h)]| −Hεstat,n

≥ V ∗0 (x0)−
H−1∑
h=0

|E(f̂ , π∗, h)|+
H−1∑
h=0

|E[LD(f̂ , w̃∗, h)]| −Hεstat,n

≥ V ∗0 (x0)−
H−1∑
h=0

|E(f̂ , π∗, h)|+
H−1∑
h=0

|E(f̂ , π∗, h)| −HεW −Hεstat,n

= V ∗0 (x0)−HεW −Hεstat,n. (13)

Combining Eq. (12) and Eq. (13) yields

|Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)| − v∗| = |Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)| − V ∗0 (x0)|

= H(εF + εW + εstat,n)

≤ ε+H(εF + εW),

which completes the proof.



D.3.2 LEARNING A NEAR-OPTIMAL POLICY

In this part, we show the results for learning a near-optimal policy. Compared with the ones for PABC (Theorem 4 and
Corollary 5), the differences are only the constants.

Theorem 10 (Robust version of Theorem 8). Suppose Assumption 3, Assumption 4 hold and the total number of samples
nH satisfies

nH ≥ 32C2H7 log(2|F||W|H/δ)
ε2C2

gap

.

Then with probability 1− δ, running Algorithm 1 with a user-specified Cgap guarantees

vπf̂ ≥ v∗ − ε−
H2εF(Cgap) +H2εW

Cgap
.

Proof. The proof mostly follows the proof of Theorem 8 and Theorem 9, and we only show the different and crucial steps
here. We still condition on the high probability event from concentration (Lemma 1).

Similar as the proof of Theorem 9, we have

V ∗0 (x0) +HεF(Cgap) +Hεstat,n ≥ Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|, (14)

where εstat,n ≤ εCgap/(2H
2).

On the other hand, following the proof of Theorem 8 and Theorem 9, we have

Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|

≥ V ∗0 (x0) + CgapE

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
−
H−1∑
h=0

|E(f̂ , w∗, h)|

+H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|

≥ V ∗0 (x0) + CgapE

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
−HεW −Hεstat,n. (15)

Combining Eq. (14) and Eq. (15) yields

E

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
≤ H(2εstat,n + εW + εF(Cgap))/Cgap.

The remaining steps can be followed from the proof of Theorem 2.

Corollary 11 (Corollary from Theorem 10). Suppose Assumption 3, Assumption 4 hold, the weight function class satisfies
the additional mild regularity assumptions stated in Lemma 4. Assume we are given εF,∞, gap(Q∗) and 2εF,∞ < gap(Q∗).
If the total number of samples nH satisfies

nH ≥ 8C2H7 log(2|F||W|H/δ)
ε2(gap(Q∗)− 2εF,∞)2

,

then with probability 1− δ, running Algorithm 1 with Cgap = gap(Q∗)− 2εF,∞ guarantees

vπf̂ ≥ v∗ − ε− 2H2εF,∞ +H2εW
gap(Q∗)− 2εF,∞

.

Proof. The proof mostly follows the proof of Corollary 5 and Theorem 10, and we only show the different and crucial steps
here. We still condition on the high probability event from concentration (Lemma 1).



Similar as the proof of Corollary 5 and Theorem 10, we have

V ∗0 (x0) + 2HεF,∞ +Hεstat,n ≥ Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|. (16)

On the other hand, following the proof of Theorem 10, we have

Vf̂ (x0) +H · max
w∈W,h∈[H]

|LD(f̂ , w, h)|

≥ V ∗0 (x0) + (gap(Q∗)− 2εF,∞)E

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
−HεW −Hεstat,n. (17)

Combining Eq. (16) and Eq. (17) yields

E

[
H−1∑
h=0

1{πf (xh) 6= π∗(xh)} | a0:H−1 ∼ π∗
]
≤ H(2εstat,n + εW + 2εF,∞)/(gap(Q∗)− 2εF,∞).

The remaining steps can be followed from the proof of Theorem 2.

E DISCUSSION ON THE DATA COVERAGE ASSUMPTION

In this section, we provide an example that shows our data coverage assumption is more relaxed than the π∗-concentrability
assumption in Zhan et al. (2022) (their Assumption 1) based on raw density ratios. Notice that their assumption translates
into d∗h(xh, ah)/d

D
h (xh, ah) ≤ C,∀h ∈ [H], xh ∈ Xh, ah ∈ A in our finite-horizon episodic setting. We will show an

instance where there exists some h, (xh, ah) such that d∗h(xh, ah)/d
D
h (xh, ah) = ∞ and w∗ does not even exist (thus

w∗ /∈ W), but we still have εW = 0. Therefore, our robust version of sample complexity results can give us meaningful
guarantees, however, we cannot apply the (robustness) results in Zhan et al. (2022).

x0

Null

π∗,L
M R

Figure 1: Example for comparison with π∗-concentrability assumption (Zhan et al., 2022).

(x0,L) (x0,M) (x0,R)

R 0.8 0.6 0.3
Q∗ 0.8 0.6 0.3
f 0.7 0.3 0.8

d∗ 1 0 0
dD 0 0.5 0.5
w 0 1 1

Table 1: Example for comparison with π∗-concentrability assumption (Zhan et al., 2022).

As shown in Figure 1, circles denote states and arrows denote actions with deterministic transitions. In this MDP, the length
of horizon is H = 1 and taking any action L, M, or R at the initial state x0 transits to the Null terminal state. Since H = 1,
in the following discussion we drop the subscript h for simplicity. In Table 1, we show the reward function, the optimal value
function Q∗, the bad function f , the density-ratio function of the optimal policy d∗, the data distribution dD, and the weight
function w. We construct a singleton weight function classW = {w} and a realizable function class F = {Q∗, f}. One can
easily verify that d∗(x0,L)/dD(x0,L) =∞, w∗ does not exist, and the approximation error εW as defined in Eq. (4) is 0.



References

Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong Wang. Bilinear classes:
A structural framework for provable generalization in rl. In International Conference on Machine Learning, pages
2826–2836. PMLR, 2021.

Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl problems, and sample-
efficient algorithms. Advances in Neural Information Processing Systems, 34, 2021.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. JMLR Workshop and Conference Proceedings, 2010.

Tengyang Xie and Nan Jiang. Q* approximation schemes for batch reinforcement learning: A theoretical comparison. In
Conference on Uncertainty in Artificial Intelligence, pages 550–559. PMLR, 2020.

Wenhao Zhan, Baihe Huang, Audrey Huang, Nan Jiang, and Jason D Lee. Offline reinforcement learning with realizability
and single-policy concentrability. arXiv preprint arXiv:2202.04634, 2022.


	Proof of Main Results
	Helper Lemmas
	Proof of Theorem 1
	Proof of Theorem 2

	Proof of Robustness Results
	Helper Lemmas
	Proof of Theorem 3
	Proof of Theorem 4
	Corollary from Theorem 4

	Proof of the Unknown Gap Parameter Setting
	A Helper Lemma
	Proof of Theorem 5

	Lagrangian Form Algorithm and Results
	Algorithm
	Main Guarantees
	ESTIMATING OPTIMAL EXPECTED RETURN
	LEARNING A NEAR-OPTIMAL POLICY

	Robustness to Misspecification
	ESTIMATING OPTIMAL EXPECTED RETURN
	LEARNING A NEAR-OPTIMAL POLICY


	Discussion on the Data Coverage Assumption

