Greedy Modality Selection via Approximate Submodular Maximization
(Supplementary material)

Runxiang Cheng*! Gargi Balasubramaniam*! Yifei He*! Yao-Hung Hubert Tsai’ Han Zhao'

!'University of Illinois Urbana-Champaign, Illinois, USA
2Carnegie Mellon University, Pennsylvania, USA

1 PRELIMINARY FOR MISSING PROOFS
Proposition 1.1. Let X, Y € {0, 1} be random variables, H be the class of functions of X such that Vh € H,h(X) € [0, 1],
and ((-, ) be the cross-entropy loss. We have:

inf E[A(Y; h(X))] = H(Y | X) )

Proof. Let 7 be the instantiation of X,Y respectively, where Y := h(X). 1(-) denotes the indicator function, and
Dxr (- || -) denotes the Kullback-Leibler divergence.

Ep[l(Y,h(X))] = Ex y[-1(Y = 1)log Y — 1(Y = 0)log(1 — Y] ©)
=~ Ex By [L(Y = 1)logg+ 1Y = 0) log(1 — §)]] )
= —Ex[Pr(Y =1|z)logg+Pr(Y =0 x)log(l —9)] (€))
:EX[Pr(Yzl|x)1og%+Pr(Y:0\x)log1_g] )
=Ex[Pr(Y =1 |x)1ogw+Pr(Y:0|m)logW] (6)

+Ex[-Pr(Y =1]2) logP;"(Y =1|z)-Pr(Y =0]2) logPr(}; =0]2x)] @)
= Ex[Dxr(Pr(Y | 2) | h(z))] + Ex[H(Y | 2)] ®)
= Dk (Pr(Y | X) || A(X)) + H(Y | X) ©)
Since H(Y | X) > 0 and is unrelated to h(X), Ep[¢(Y, h(X))] is minimum when h(X) = Pr(Y | X). [ |
2 MISSING PROOFS
Proposition 2.1. Given Y € {0,1} and ((Y,Y) := 1(Y = 1)log ¥ + 1(Y = 0)log(1 —Y), fu(S) = I(S;Y).
Proof. By Definition [3.1]and Proposition[I.T] we have:
£u(S) = inf EIU(Y,c)] — inf BI(Y, () (10)
—H(Y | ¢)— H(Y | 8) (an
— H(Y)— H(Y| §) (12)
= I(S;Y) (13)
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Proposition 2.2. VM C N CV, I(N;Y) — I(M;Y) = I(N\ M;Y | M) >0

Proof. Let N = {Xy,.., X}, M ={X1,... X}, n >m.

n m

I(N;Y) = I(M;Y) = > I(X3Y | Xioa, o X1) = D I(X3Y | Xioy, o, X)) (14)
=1 =1
= Z I(X“Y | Xi—17~-~7X1) (15)
i=m-+1
=I(N\M;Y | M) (16)
>0 a7

Proposition 2.3. Under Assumption I(S;Y) is e-approximately submodular, i.e, VA C B C V,e € V\ B,
I(AU{e};)Y)—I(A;Y)+e>1I(BU{e};Y)—I(B;Y).

Proof. For subset A, we have:

I(AU{e};Y) - I(A;Y) = I({e}; Y | A) (18)
=I({e}; Y, A) — I({e}; A) (19)
=I({e};Y) +I({e}; A|Y) — I({e}; A) (20)

Similarly, I(B U {e};Y) — I(B;Y) = I({e};Y) + I({e}; B | Y) — I({e}; B). Given Assumption 2.1 holds, we denote
I({e};A|Y)=€aand I({e}; B|Y) = ep where €4, ep < €. In the worst case where €4 = 0, absolute submodularity is
still satisfied if eg < I({e}; B) — I({e}; 4), i.e.,

I(BU{e};Y) = I(B;Y) =I({e};Y)+I({e}; B|Y) —I({e}; B) (@2
—I({e}:Y) — I({e}: B) + e 22)
<I({e};Y)—I({e}; B) + I({e}; B) — I({e}; A) = (AU {e};Y) — I(4;Y)  (23)

Butif eg > I({e}; B) — I({e}; A), the submodularity above will not hold. However, because e < €, we can define
approximate submodularity characterized by the constant ¢ > 0. Specifically:

I(BU{e}Y)—I(B;Y)=1I({e};Y)+I({e}; B|Y)—I({e}; B) (24)
=I({e};Y) —I({e}; B) +en (25)

<I({e};Y)—I({e}; B) + (26)

<I({e};Y) —I({e}; A) + 27)

< I({e};Y)—I({e};A)—!—eA—i-e (28)
<T(AUu{e};Y)—I(A4;Y)+e (29)

|

Theorem 2.1. Under Assumption let g € Z7", and S, be the solution from Algorithmat iteration p, we have:

Y)>(1—e 4 Y) -
I(S;Y)>(1—e )Sn‘}galu)éql(S ) — qe (30)



Proof. Let S* := maxg:|s|<q [(S;Y") be the optimal subset with cardinality at most . By Proposition |S*| = q. We
order S* as { X7, ..., X }. Then for all positive integer i < p,

I(S*;Y) < I(S*US;Y) 31
q
=I(S5;Y)+ > I(X5;Y | S;U{X] 4, ... X{}) (32)
j=1
q
=I1(S5;Y)+ > (I({X}, ... X;}US;Y) = I({X] 1, ... X[} U S;Y)) (33)
j=1
q
SI(SsY)+ Y (I((X;}USiY) —I(SsY) +e) (34)
j=1

-

Il
-

<I(SHY)+ D) (I(Si41:Y) —I(Si;Y) +¢) (35

J

Eq. (1) is from Proposition [3.2] Eq. (32) and Eq. (33) are by the chain rule of mutual information, Eq. (34) is from
Proposition Eq. is by the definition of Algorit that 7(S;+1;Y) — I(S;;Y) is maximized in each iteration
i. Let §; = I(S*;Y) — I(S;;Y), we can rewrite Eq. (36) into §; < ¢(d; — d;+1 + €), which can be rearranged into
dip1 < (1—2)0i +e

Let 6o = I(S*;Y) — I(Sp;Y). Since Sy = 0, we have 6o = I(S*;Y). By the previous results, we can upper bound the
quantity 6, = I(S*;Y) — I(S,;Y) as follows:

5, < (1— é)ép_l te 37)
<(1- $><<1 - 3)5,9_2 +Ote (38)
<(1- é)pao (41— é) bt (- %)P*l)e (39)

1 1— (-
_ _ _\p
= (1= )00 + TRy e (40)
1 1
=(1- 6)péo+(q—q(1— 5)'7)6 (41)
<(- é)% T ge “2)
< 67250 + qe 43)

Eq. to Eq. is through the summation of the geometric series 1 + (1 — é) +.o..+ (1= %)p_l. Eq. 1) is by the
inequality 1 — 2z < e~ ” for all x € R. Substitute the definitions of 6, and &y into Eq. completes the proof. |

Corollary 2.1. Assume conditions in Theoremhold, there exists optimal predictor h*(S,) = Pr(Y | Sp) such that

Eltor (V. 1" (5,))] < Elfee (V. 1*(S,))]
<H(Y) ~ (1 - ¢ 5)I(S%Y) + ge (“4)

Proof. Denote the quantity (1 — e_g) maxg:|sj<q 1(S;Y) — qe from Theoremas letter b. By the definition of mutual
information, we have H (Y | S,,) < H(Y') — b. Following Proposition 1.1} infy,.s, ~{0,1) E[lce (Y, h(Sp))] < H(Y') = b. In
other words, 3h* = Pr(Y | S,) s.t. B[l (Y, h*(S,))] < H(Y) —b.

When the predictor is probabilistic (i.e., h(X) = 0 if and only if 2(X) < 0.5), £o1(Y, Y) =LY # Y') naturally extends to
Y1(Y <€0.5) 4+ (1 = Y)1(Y > 0.5), which is upper bounded by £..(Y,Y) for all (Y,Y"). Therefore, for the same h* as



above, we have:
E[lo1(Y, h*(Sp))] < El[lee(Y,h*(Sp))] < H(Y) —b (45)

|
Corollary 2.2. Assume conditions in Theorem[3.1|hold. There exists optimal predictors b} = Pr(Y | S,), h3 = Pr(Y | %)
such that
E[gce (K hslK (Sp))] - E[gce (Yv h; (S*))]

< e TI(S*:Y) + qe (46)

Proof. Following Theorem and denote arg maxg, /<, [(S;Y) as S*, we have:

I(S,;Y) > (1—e ) max I(S;Y)— qe (47)
5:5]<q
— H(Y)—H(Y |S,) > (1—e ) (H(Y) = H(Y | §*)) - ge (48)
— H(Y|S,) ~ H(Y | S*) <e s (H(Y) = H(Y | §)) + qe 49)
= H(Y |S,) = H(Y | §7) < e a(I(S*;Y)) + qe (50)
Using Proposition [I.T] completes the proof. |

Proposition 2.4. Under Assumption 1(S;Y) is e-approximately sub-additive for any S C V, i.e., I(SUS";Y) <
I(S;Y)+ I(S;Y) +e

Proof.
I(SUS,Y)=1(S;Y)+I(S;Y|S) (51)
=I(S;Y)+I(SuUY;S) —1I(S;9) (52)
=I1(S;Y)+ I(S;Y)+I(S;8|Y)—-1(S;9) (53)
<I(S;Y)+I(SY)+e (54)
Eq. to Eq. because I(S; 5" | V) < e by Assumption[2.1} and I(S; S”) is always non-negative. [ |

Proposition 2.5. Under Assumption[3.1] 1(S;Y) is e-approximately super-additive for any S C V, i.e., I(SU S Y) >
I(S;Y)+1(S;Y) —e

Proof. Similarly to the proof of Proposition [3.4] we have:

I(SUS,Y)=1(S;Y)+I(S;Y)+1(S;8|Y)—1(S;9) (55)
> I(S;Y)+ I(S:Y) —¢ (56)
Eq. to Eq. because 1(S; ") < e by Assumption[3.1] and I(S; " | Y) is non-negative. [ |

Proposition 2.6. If conditions in Propositionand Propositionhold, we have I(X;;Y) —e < ¢r x, <I(X;;Y) +e
forany X; € V.

Proof. By Proposition [3.4]and Proposition[3.5] for any X; € V and S C V, we have:

I(X;Y)—e<ISU{X;};Y)—I(S;)Y)<I(X;Y)+e (57)



Let’s first apply the right inequality in Eq. to Deﬁnition Because I(X;;Y) + ¢ is independent of .S, we can simplify
the calculation of the upper bound of ¢ x, as follows.

S|V — 18] — 1)
or.x, = Z 1S1M(] ||V||' |—1) (I(SU{ik;Y)—1(S;Y)) (58)
SCVA{X;} :
SV | =S| —1)!
< 2 = |V|'| D (I(X5Y) +e€) 59
SCV\{i} :
V|-1
V] =1\ |S(V] =S| = 1)!
-y (I ||S )I (] ||V||' | )([(Xi;Y)—&-e) 60)
|S|=0 !
R (1 R VLI LT\ A R VL
> 1S|(|F| —1—1S])! V]! (I(X5Y) +€) 1)
|S|=0
vi-t
= W(I(Xi;Y)Jre) .
1S]=0
=I1(XyY)+e .

Applying the same procedure to the left inequality in Eq. to Deﬁnition we have ¢1 x, > I(X;;Y) — e. Combining
both results completes the proof. |

Proposition 2.7. UnderAssumption VX; €V, wehave I(X;;Y) < gb’[’fg(’l <I(Xy;Y)+e

Proof. By Proposition 1(-;Y) would be approximately submodular under Assumption 2.1} thus:

I(X;Y)4+e=T10UX;Y)—I(0;Y) +e€ (64)
> rsnca‘);I(SUXi;Y) —I(S;Y) = ??%7 (65)

On the other hand, if argmaxgcy I(S U X3 Y) — I(S;Y) = (), we have ¢}'f§}l =IQUX;Y)—I10;Y)=I(X;Y).
If arg maxgcy 1(S U X;;Y) — I(S;Y) is some non-empty subset A, we have ¢7°¢, = I(AU X;;Y) — I(A;Y) >
I(0U X;Y) — I(0;Y). In this case, ¢7'%, > I(X;;Y). Combining both inequalities completes the proof. [
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