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1 PRELIMINARY FOR MISSING PROOFS

Proposition 1.1. Let X , Y ∈ {0, 1} be random variables,H be the class of functions of X such that ∀h ∈ H, h(X) ∈ [0, 1],
and `(·, ·) be the cross-entropy loss. We have:

inf
h∈H

E[`(Y, h(X))] = H(Y | X) (1)

Proof. Let x, ŷ be the instantiation of X, Ŷ respectively, where Ŷ := h(X). 1(·) denotes the indicator function, and
DKL(· ‖ ·) denotes the Kullback–Leibler divergence.

ED[`(Y, h(X))] = EX,Y [−1(Y = 1) log Ŷ − 1(Y = 0) log(1− Ŷ )] (2)
= − EX [EY |x[1(Y = 1) log ŷ + 1(Y = 0) log(1− ŷ)]] (3)
= − EX [Pr(Y = 1 | x) log ŷ + Pr(Y = 0 | x) log(1− ŷ)] (4)

= EX [Pr(Y = 1 | x) log 1

ŷ
+ Pr(Y = 0 | x) log 1

1− ŷ
] (5)

= EX [Pr(Y = 1 | x) log Pr(Y = 1 | x)
ŷ

+ Pr(Y = 0 | x) log Pr(Y = 0 | x)
1− ŷ

] (6)

+ EX [−Pr(Y = 1 | x) log Pr(Y = 1 | x)− Pr(Y = 0 | x) log Pr(Y = 0 | x)] (7)
= EX [DKL(Pr(Y | x) ‖ h(x))] + EX [H(Y | x)] (8)
= DKL(Pr(Y | X) ‖ h(X)) +H(Y | X) (9)

Since H(Y | X) ≥ 0 and is unrelated to h(X), ED[`(Y, h(X))] is minimum when h(X) = Pr(Y | X). �

2 MISSING PROOFS

Proposition 2.1. Given Y ∈ {0, 1} and `(Y, Ŷ ) := 1(Y = 1) log Ŷ + 1(Y = 0) log(1− Ŷ ), fu(S) = I(S;Y ).

Proof. By Definition 3.1 and Proposition 1.1, we have:

fu(S) = inf
h∈H

E[`(Y, c)]− inf
h∈H

E[`(Y, h(S))] (10)

= H(Y | c)−H(Y | S) (11)
= H(Y )−H(Y | S) (12)
= I(S;Y ) (13)
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Proposition 2.2. ∀M ⊆ N ⊆ V , I(N ;Y )− I(M ;Y ) = I(N \M ;Y |M) ≥ 0.

Proof. Let N := {X1, ..., Xn}, M := {X1, ..., Xm}, n ≥ m.

I(N ;Y )− I(M ;Y ) =

n∑
i=1

I(Xi;Y | Xi−1, ..., X1)−
m∑
i=1

I(Xi;Y | Xi−1, ..., X1) (14)

=

n∑
i=m+1

I(Xi;Y | Xi−1, ..., X1) (15)

= I(N \M ;Y |M) (16)
≥ 0 (17)

�

Proposition 2.3. Under Assumption 2.1, I(S;Y ) is ε-approximately submodular, i.e., ∀A ⊆ B ⊆ V , e ∈ V \ B,
I(A ∪ {e};Y )− I(A;Y ) + ε ≥ I(B ∪ {e};Y )− I(B;Y ).

Proof. For subset A, we have:

I(A ∪ {e};Y )− I(A;Y ) = I({e};Y | A) (18)
= I({e};Y,A)− I({e};A) (19)
= I({e};Y ) + I({e};A | Y )− I({e};A) (20)

Similarly, I(B ∪ {e};Y )− I(B;Y ) = I({e};Y ) + I({e};B | Y )− I({e};B). Given Assumption 2.1 holds, we denote
I({e};A | Y ) = εA and I({e};B | Y ) = εB where εA, εB ≤ ε. In the worst case where εA = 0, absolute submodularity is
still satisfied if εB ≤ I({e};B)− I({e};A), i.e.,

I(B ∪ {e};Y )− I(B;Y ) = I({e};Y ) + I({e};B | Y )− I({e};B) (21)
= I({e};Y )− I({e};B) + εB (22)
≤ I({e};Y )− I({e};B) + I({e};B)− I({e};A) = I(A ∪ {e};Y )− I(A;Y ) (23)

But if εB > I({e};B) − I({e};A), the submodularity above will not hold. However, because εB ≤ ε , we can define
approximate submodularity characterized by the constant ε ≥ 0. Specifically:

I(B ∪ {e};Y )− I(B;Y ) = I({e};Y ) + I({e};B | Y )− I({e};B) (24)
= I({e};Y )− I({e};B) + εB (25)
≤ I({e};Y )− I({e};B) + ε (26)
≤ I({e};Y )− I({e};A) + ε (27)
≤ I({e};Y )− I({e};A) + εA + ε (28)
≤ I(A ∪ {e};Y )− I(A;Y ) + ε (29)

�

Theorem 2.1. Under Assumption 2.1, let q ∈ Z+, and Sp be the solution from Algorithm 1 at iteration p, we have:

I(Sp;Y ) ≥ (1− e−
p
q ) max

S:|S|≤q
I(S;Y )− qε (30)



Proof. Let S∗ := maxS:|S|≤q I(S;Y ) be the optimal subset with cardinality at most q. By Proposition 3.2, |S∗| = q. We
order S∗ as {X∗1 , ..., X∗q }. Then for all positive integer i ≤ p,

I(S∗;Y ) ≤ I(S∗ ∪ Si;Y ) (31)

= I(Si;Y ) +

q∑
j=1

I(X∗j ;Y | Si ∪ {X∗j−1, ..., X∗1}) (32)

= I(Si;Y ) +

q∑
j=1

(I({X∗j , ..., X∗1} ∪ Si;Y )− I({X∗j−1, ..., X∗1} ∪ Si;Y )) (33)

≤ I(Si;Y ) +

q∑
j=1

(I({X∗j } ∪ Si;Y )− I(Si;Y ) + ε) (34)

≤ I(Si;Y ) +

q∑
j=1

(I(Si+1;Y )− I(Si;Y ) + ε) (35)

≤ I(Si;Y ) + q(I(Si+1)− I(Si;Y ) + ε) (36)

Eq. (31) is from Proposition 3.2, Eq. (32) and Eq. (33) are by the chain rule of mutual information, Eq. (34) is from
Proposition 3.3, Eq. (35) is by the definition of Algorithm 1 that I(Si+1;Y ) − I(Si;Y ) is maximized in each iteration
i. Let δi := I(S∗;Y ) − I(Si;Y ), we can rewrite Eq. (36) into δi ≤ q(δi − δi+1 + ε), which can be rearranged into
δi+1 ≤ (1− 1

q )δi + ε.

Let δ0 = I(S∗;Y ) − I(S0;Y ). Since S0 = ∅, we have δ0 = I(S∗;Y ). By the previous results, we can upper bound the
quantity δp = I(S∗;Y )− I(Sp;Y ) as follows:

δp ≤ (1− 1

q
)δp−1 + ε (37)

≤ (1− 1

q
)((1− 1

q
)δp−2 + ε) + ε (38)

≤ (1− 1

q
)pδ0 + (1 + (1− 1

q
) + ...+ (1− 1

q
)p−1)ε (39)

= (1− 1

q
)pδ0 + (

1− (1− 1
q )

p−1+1

1− (1− 1
q )

)ε (40)

= (1− 1

q
)pδ0 + (q − q(1− 1

q
)p)ε (41)

≤ (1− 1

q
)pδ0 + qε (42)

≤ e−
p
q δ0 + qε (43)

Eq. (39) to Eq. (41) is through the summation of the geometric series 1 + (1− 1
q ) + ...+ (1− 1

q )
p−1. Eq. (43) is by the

inequality 1− x ≤ e−x for all x ∈ R. Substitute the definitions of δp and δ0 into Eq. (43) completes the proof. �

Corollary 2.1. Assume conditions in Theorem 3.1 hold, there exists optimal predictor h∗(Sp) = Pr(Y | Sp) such that

E[`01(Y, h∗(Sp))] ≤ E[`ce(Y, h∗(Sp))]

≤ H(Y )− (1− e−
p
q )I(S∗;Y ) + qε (44)

Proof. Denote the quantity (1− e−
p
q )maxS:|S|≤q I(S;Y )− qε from Theorem 3.1 as letter b. By the definition of mutual

information, we have H(Y | Sp) ≤ H(Y )− b. Following Proposition 1.1, infh:Sp→[0,1] E[`ce(Y, h(Sp))] ≤ H(Y )− b. In
other words, ∃h∗ = Pr(Y | Sp) s.t. E[`ce(Y, h∗(Sp))] ≤ H(Y )− b.

When the predictor is probabilistic (i.e., h(X) = 0 if and only if h(X) ≤ 0.5), `01(Y, Ŷ ) = 1(Y 6= Ŷ ) naturally extends to
Y 1(Ŷ ≤ 0.5) + (1− Y )1(Ŷ > 0.5), which is upper bounded by `ce(Y, Ŷ ) for all (Y, Ŷ ). Therefore, for the same h∗ as



above, we have:
E[`01(Y, h∗(Sp))] ≤ E[`ce(Y, h∗(Sp))] ≤ H(Y )− b (45)

�

Corollary 2.2. Assume conditions in Theorem 3.1 hold. There exists optimal predictors h∗1 = Pr(Y | Sp), h∗2 = Pr(Y | S∗)
such that

E[`ce(Y, h∗1(Sp))]− E[`ce(Y, h∗2(S∗))]

≤ e−
p
q I(S∗;Y ) + qε (46)

Proof. Following Theorem 3.1, and denote argmaxS:|S|≤q I(S;Y ) as S∗, we have:

I(Sp;Y ) ≥ (1− e−
p
q ) max

S:|S|≤q
I(S;Y )− qε (47)

=⇒ H(Y )−H(Y | Sp) ≥ (1− e−
p
q )(H(Y )−H(Y | S∗))− qε (48)

=⇒ H(Y | Sp)−H(Y | S∗) ≤ e−
p
q (H(Y )−H(Y | S∗)) + qε (49)

=⇒ H(Y | Sp)−H(Y | S∗) ≤ e−
p
q (I(S∗;Y )) + qε (50)

Using Proposition 1.1 completes the proof. �

Proposition 2.4. Under Assumption 2.1, I(S;Y ) is ε-approximately sub-additive for any S ⊆ V , i.e., I(S ∪ S′;Y ) ≤
I(S;Y ) + I(S′;Y ) + ε.

Proof.

I(S ∪ S′;Y ) = I(S;Y ) + I(S′;Y | S) (51)
= I(S;Y ) + I(S ∪ Y ;S′)− I(S;S′) (52)
= I(S;Y ) + I(S′;Y ) + I(S;S′ | Y )− I(S;S′) (53)
≤ I(S;Y ) + I(S′;Y ) + ε (54)

Eq. (53) to Eq. (54) because I(S;S′ | Y ) ≤ ε by Assumption 2.1, and I(S;S′) is always non-negative. �

Proposition 2.5. Under Assumption 3.1, I(S;Y ) is ε-approximately super-additive for any S ⊆ V , i.e., I(S ∪ S′;Y ) ≥
I(S;Y ) + I(S′;Y )− ε.

Proof. Similarly to the proof of Proposition 3.4, we have:

I(S ∪ S′;Y ) = I(S;Y ) + I(S′;Y ) + I(S;S′ | Y )− I(S;S′) (55)
≥ I(S;Y ) + I(S′;Y )− ε (56)

Eq. (55) to Eq. (56) because I(S;S′) ≤ ε by Assumption 3.1, and I(S;S′ | Y ) is non-negative. �

Proposition 2.6. If conditions in Proposition 3.4 and Proposition 3.5 hold, we have I(Xi;Y )− ε ≤ φI,Xi ≤ I(Xi;Y ) + ε
for any Xi ∈ V .

Proof. By Proposition 3.4 and Proposition 3.5, for any Xi ∈ V and S ⊆ V , we have:

I(Xi;Y )− ε ≤ I(S ∪ {Xi};Y )− I(S;Y ) ≤ I(Xi;Y ) + ε (57)



Let’s first apply the right inequality in Eq. (57) to Definition 2.2. Because I(Xi;Y ) + ε is independent of S, we can simplify
the calculation of the upper bound of φI,Xi as follows.

φI,Xi
=

∑
S⊆V \{Xi}

|S|!(|V | − |S| − 1)!

|V |!
(I(S ∪ {i};Y )− I(S;Y )) (58)

≤
∑

S⊆V \{i}

|S|!(|V | − |S| − 1)!

|V |!
(I(Xi;Y ) + ε) (59)

=

|V |−1∑
|S|=0

(
|V | − 1

|S|

)
|S|!(|V | − |S| − 1)!

|V |!
(I(Xi;Y ) + ε) (60)

=

|V |−1∑
|S|=0

(|V | − 1)!

|S|(|F | − 1− |S|)!
|S|!(|V | − |S| − 1)!

|V |!
(I(Xi;Y ) + ε) (61)

=

|V |−1∑
|S|=0

1

|V |
(I(Xi;Y ) + ε) (62)

= I(Xi;Y ) + ε (63)

Applying the same procedure to the left inequality in Eq. (57) to Definition 2.2, we have φI,Xi
≥ I(Xi;Y )− ε. Combining

both results completes the proof. �

Proposition 2.7. Under Assumption 2.1, ∀Xi ∈ V , we have I(Xi;Y ) ≤ φmci
I,Xi
≤ I(Xi;Y ) + ε.

Proof. By Proposition 3.3, I(·;Y ) would be approximately submodular under Assumption 2.1, thus:

I(Xi;Y ) + ε = I(∅ ∪Xi;Y )− I(∅;Y ) + ε (64)

≥ max
S⊆V

I(S ∪Xi;Y )− I(S;Y ) = φmci
I,Xi

(65)

On the other hand, if argmaxS⊆V I(S ∪Xi;Y ) − I(S;Y ) = ∅, we have φmci
I,Xi

= I(∅ ∪Xi;Y ) − I(∅;Y ) = I(Xi;Y ).
If argmaxS⊆V I(S ∪ Xi;Y ) − I(S;Y ) is some non-empty subset A, we have φmci

I,Xi
= I(A ∪ Xi;Y ) − I(A;Y ) ≥

I(∅ ∪Xi;Y )− I(∅;Y ). In this case, φmci
I,Xi
≥ I(Xi;Y ). Combining both inequalities completes the proof. �
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