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A RELATIONSHIP BETWEEN MARGINAL AND JOINT DISTRIBUTIONS

To confirm that our feature importance measure is reasonable, we consider the following two relationships:

• If the discrepancy between marginal potential outcome distributions P(Y0 | Xm) and P(Y1 | Xm) varies with feature
Xm’s values, then joint distribution P(Y0,Y1 | Xm) is also changeable depending on Xm’s values.

• If joint distribution P(Y0,Y1 | Xm) changes depending on feature Xm’s values, then some functionals of the joint
distribution depend on Xm’s values.

Since the second relationship is obvious, in this section, we show that the first relationship holds. For simplicity, we consider
binary feature Xm ∈ {0, 1}; however, the following discussion also holds for discrete-valued and continuous-valued Xm.

To prove the first relationship, it is sufficient to show that its contraposition holds: If P(Y0,Y1 | Xm = 0) = P(Y0,Y1 | Xm = 1),
then the discrepancy between P(Y0 | Xm = 0) and P(Y1 | Xm = 0) equals the one between P(Y0 | Xm = 1) and P(Y1 | Xm = 1).
We can easily prove this contraposition. From the equality of the joint distributions, we have P(Y0 | Xm = 0) = P(Y0 | Xm = 1)
and P(Y1 | Xm = 0) = P(Y1 | Xm = 1). These equalities imply that the discrepancy between P(Y0 | Xm = 0) and P(Y1 | Xm = 0)
equals the one between P(Y0 | Xm = 1) and P(Y1 | Xm = 1). Thus we proved the first relationship.

B COUNTEREXAMPLES

As described in Section 3.1, there are several counterexamples where our method cannot find the features related to the
functionals of the joint distribution of potential outcomes.

Let Y0 and Y1 be the potential outcomes and X ∈ {0, 1} be a binary feature. Suppose that the discrepancy between marginal
distributions P(Y0 | X) and P(Y1 | X) is measured as the MMD [Gretton et al., 2012]. Then we can represent such
counterexamples as the cases where the following relations hold:

P(Y0,Y1 | X = 0) , P(Y0,Y1 | X = 1)

MMD2(P(Y0 | X = 0),P(Y1 | X = 0)) = MMD2(P(Y0 | X = 1),P(Y1 | X = 1)).

Letting the potential outcomes be Y0,Y1 ∈ {−1, 0, 1} ⊂ R, we take an example of joint probability tables that satisfies the
above relations in Table A.1. In this example, the MMD between marginal distributions remains unchanged:

MMD2(P(Y0 | X = 0),P(Y1 | X = 0)) = MMD2(P(Y0 | X = 1),P(Y1 | X = 1)) = 0.

By contrast, the joint distribution changes depending on X’s values, as illustrated in Table A.1. As a result, although the
average treatment effect does not change, the treatment effect variance and the covariance between potential outcomes vary
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Table A.1: Joint probability tables of potential outcomes. Nonzero probabilities are shown in bold. Total expresses marginal
potential outcome probabilities.

P(Y0,Y1 | X = 0)

Y0
Y1

-1 0 1 Total

-1 0.5 0 0 0.5
0 0 0 0 0
1 0 0 0.5 0.5

Total 0.5 0 0.5 1.0

P(Y0,Y1 | X = 1)

Y0
Y1

-1 0 1 Total

-1 0 0 0.5 0.5
0 0 0 0 0
1 0.5 0 0 0.5

Total 0.5 0 0.5 1.0

as follows:

E[Y1 − Y0 | X = 0] = E[Y1 − Y0 | X = 1] = 0

Cov[Y0,Y1 | X = 0] = 1; Cov[Y0,Y1 | X = 1] = −1

Var[Y1 − Y0 | X = 0] = 0; Var[Y1 − Y0 | X = 1] = 4.

In this example, since we cannot detect any change in the MMD between marginal distributions, our method fails to find
that feature X is related to treatment effect heterogeneity. Note, however, that the existing mean-based approaches would
also fail because the average treatment effect remains unchanged.

Addressing such counterexamples is extremely difficult. It requires us to estimate the functionals of the joint potential
outcome distribution; however, inferring such a joint distribution is impossible, as described in Section 3.1. One possible
solution is to utilize several techniques for estimating the lower and upper bounds on these functionals by making additional
assumptions [Chen et al., 2016, Russell, 2021, Shingaki and Kuroki, 2021]. Establishing a feature selection framework that
utilizes such lower and upper bounds remains our future work.

C CHARACTERISTIC KERNELS

This section provides a brief overview on characteristic kernels. For the formal definition, see e.g., Sriperumbudur et al.
[2010] and Muandet et al. [2017, Section 3.3.1].

The notion of characteristic kernels is closely related to kernel mean embedding [Smola et al., 2007], which is defined as the
mean of feature mapping induced by a kernel function. Let kX : X × X → R be a symmetric and positive-definite kernel
function and ΦX(x) B kX(x, ·) be the feature mapping of kernel kX that maps point x ∈ X into reproducing kernel Hilbert
space (RKHS)HkX . Then kernel mean embedding is defined as the mean of random variable ΦX(X):

µX B EX[ΦX(X)] ∈ HkX .

Here, the expectation is taken with respect to distribution P(X); therefore, the concept of kernel mean embedding can be
regarded as a mapping of distribution P(X) into the RKHS, i.e., P(X) 7→ µX ∈ HkX .

A characteristic kernel is a kernel function whose kernel mean embedding does not map different distributions to the same
point in the RKHS; that is, the mapping by kernel mean embedding is injective [Sriperumbudur et al., 2010].

Roughly speaking, a kernel function is characteristic if mean EX[ΦX(X)] contains all moments of random variable X. For
instance, Gaussian kernel kX(x, x′) = exp(− (x−x′)2

2h2
X

) for x, x′ ∈ R1 is characteristic because the feature mapping is given as

ΦX(x) = e−x2/2h2
X [1,

√
1

1!h2
X

x,
√

1
2!h4

X
x2, . . . ]⊤, and its expected value EX[ΦX(X)] includes all moments: EX[X],EX[X2], . . . .

By contrast, if kX is given as a polynomial function (i.e., polynomial kernel), kX is not a characteristic kernel. For instance,
if kX is formulated as the 2nd-order polynomial kernel kX(x, x′) = (1 + xx′)2 for x, x′ ∈ R1, the feature mapping is given as
the finite-dimensional vector ΦX(x) = [1,

√
2x, x2]. In this case, no element in expectation EX[ΦX(X)] is represented as a

function of higher-order moments than 2; hence, kernel kX is not characteristic.



D PROOFS

D.1 PROPOSITION 1

Proof. Recall the following definition of WCMMD2
Xm=x:

WCMMD2
Xm=x

BEA,A′,X−m,X′−m,Y,Y ′ |Xm=X′m=x[w0(A,X)w0(A′,X′)kY (Y,Y ′)]

+EA,A′,X−m,X′−m,Y,Y ′ |Xm=X′m=x[w1(A,X)w1(A′,X′)kY (Y,Y ′)]

−2EA,A′,X−m,X′−m,Y,Y ′ |Xm=X′m=x[w0(A,X)w1(A′,X′)kY (Y,Y ′)]. (5)

We show that the first term in Eq. (5) equals the one in D2
m(x) in Eq. (2). Using conditional ignorability and positivity

assumptions, we have

EA,A′,X−m,X′−m,Y,Y ′ |Xm=x,X′m=x[w0(A,X)w0(A′,X′)kY (Y,Y ′)]

=EX−m,X′−m |Xm=x,X′m=x

[
EA,A′,Y,Y ′ |X−m,X′−m,Xm=x,X′m=x

[
I(A = 0)
1 − e(X)

I(A′ = 0)
1 − e(X′)

kY (Y,Y ′)
]]

=EX−m,X′−m |Xm=x,X′m=x,A=0,A′=0

[
EY0,Y0′ |X−m,X′−m,Xm=x,X′m=x,A=0,A′=0

[
P(A = 0)

P(A = 0 | X)
P(A′ = 0)

P(A′ = 0 | X′))
kY (Y,Y ′)

]]
=EX−m,X′−m |Xm=x,X′m=x[EY0,Y0′ |X−m,X′−m,Xm=x,X′m=x[kY (Y0,Y0′)]]

=EY0,Y0′ |Xm=x,X′m=x[kY (Y0,Y0′)].

Similarly, the second and third terms in Eq. (5) equal those in MMD2(P(Y0 | x),P(Y1 | x)) in Eq. (2). Thus we proved
Proposition 1. □

D.2 THEOREM 1

From Proposition 1, we only have to show that D̂2
m(x)

p
→ WCMMD2

Xm=x (n → ∞) under the assumptions of conditional
ignorability and positivity:

Assumption 1 (Conditional ignorability). For treatment A, features X, and potential outcomes Y0 and Y1, the following
conditional independence relation holds:

{Y0,Y1} ⊥⊥ A | X.

Assumption 2 (Positivity). For any value x of features X, propensity score e(X) satisfies the following support condition:

0 < e(x) < 1.

To prove D̂2
m(x)

p
→ WCMMD2

Xm=x (n → ∞), we make several additional assumptions and impose the condition that the
following symmetric function is square integrable:

K((A,X,Y), (A′,X′,Y ′))

B
(
w0(A,X)w0(A′,X′) + w1(A,X,Y)w1(A′,X′,Y ′) − w0(A,X)w1(A′,X′) − w1(A,X)w0(A′,X′)

)
kY (Y,Y ′).

Assumption 3. Symmetric function K is square integrable:

EA,A′,X,X′,Y,Y ′ [K((A,X,Y), (A′,X′,Y ′))] < ∞.

When Xm is continuous-valued, and ωa,x is given by Eq. (8), we make the following standard assumptions on kernel function
kXm :



Assumption 4. Let KXm be the following kernel function that measures the similarity between two values xm and x⋆m on X:

KXm (xm − x⋆m) B
1

hXm

kXm (xm, x⋆m).

Then the order of function KXm (u) is given by integer δ ≥ 2; in other words, the following holds:∫
uδKXm (u)du < ∞.

Assumption 5. Bandwidth hXm of kernel function kXm satisfies

hXm → 0 and nhXm → ∞. (n→ ∞)

In addition, we impose the smoothness conditions on marginal distribution P(Xm) and the joint distribution of features P(X):

Assumption 6. Density functions P(Xm) and P(X) are δ times continuously differentiable.

Using these assumptions, we prove Theorem 1:

Proof. The case where weight ωa,x
i is given by Eq. (6): Let Ki, j B K((ai, xi, yi), (a j, x j, y j)) for i, j ∈ {1, . . . , n} and

nx B
∑n

i=1 I(xm,i = x). Then empirical estimator D̂2
m(x) is given as

D̂2
m(x) =

1
n2

x

n∑
i=1

n∑
j=1

I(xm,i = x) I(xm, j = x)Ki, j

=

(
n
nx

)2 1
n2

n∑
i=1

n∑
j=1

I(xm,i = x) I(xm, j = x)Ki, j

=

(
n
nx

)2

V x
n ,

where

V x
n B

1
n2

n∑
i=1

n∑
j=1

I(xm,i = x) I(xm, j = x)Ki, j

is a V-statistic whose corresponding U-statistic is given as

U x
n B

1

nC2

∑
i< j

I(xm,i = x) I(xm, j = x)Ki, j.

We prove the consistency of D̂2
m(x) by showing the following three relations:

U x
n

a.s.
→ EA,A′,X,X′,Y,Y ′ [I(Xm = x) I(Xm = x)K((A,X,Y), (A′,X′,Y ′))] (A.1)(

n
nx

)2

U x
n

a.s.
→ WCMMD2

Xm=x (A.2)

U x
n − V x

n
p
→ 0. (A.3)

Relation (A.1) holds from the Strong Law of Large Numbers for U-statistics [Hoeffding, 1961]. By combining this relation
with the fact that nx

n =
1
n
∑n

i=1 I(xm,i = x)
a.s.
→ P(Xm = x), we can derive the relation in Eq. (A.2). The relation in Eq. (A.3)

can be shown as follows. Under Assumption 3, since E[K((A,X,Y), (A′,X′,Y ′))] ≤ E[K((A,X,Y), (A,X,Y))] < ∞, by
employing Lemma 5.7.3 in Serfling [2009], we have E[|U x

n − V x
n |] = O(n−1), and thus by applying Markov’s inequality, we

have

P(|U x
n − V x

n | ≥ ϵ) ≤
E[|U x

n − V x
n |]

ϵ
→ 0 as n→ ∞,



which is sufficient to prove the relation in Eq. (A.3).

By combining Eq. (A.1), (A.2), and (A.3), we have D̂2
m(x)

p
→ WCMMD2

Xm=x as n → ∞. Since Proposition 1 holds under

Assumptions 1 and 2, we have D̂2
m(x)

p
→ D2

m(x) as n→ ∞. Thus we prove the consistency of D̂2
m(x).

The case where weight ωa,x
i is given by Eq. (8):

In this case, empirical estimator D̂2
m(x) is given as

D̂2
m(x) =

1
n2h2

Xm

∑n
i=1

∑n
j=1 kXm (xm,i, x)kXm (xm, j, x)Ki, j

1
n2h2

Xm

∑n
i=1

∑n
j=1 kXm (xm,i, x)kXm (xm, j, x)

. (A.4)

From the Strong Law of Large Numbers, as n→ ∞, the numerator in Eq. (A.4) converges to the following expected value:

EA,A′,X,X′,Y,Y ′

 1
h2

Xm

KXm

(
Xm − x

hXm

)
KXm

(
X′m − x

hXm

)
K((A,X,Y), (A′,X′,Y ′))

 .
Under Assumptions 4 and 6, we can reformulate this expected value by performing a Taylor expansion as follows:

EA,A′,X,X′,Y,Y ′

 1
h2

Xm

KXm

(
Xm − x

hXm

)
KXm

(
X′m − x

hXm

)
K((A,X,Y), (A′,X′,Y ′))


=EU=u,V=v[EA,A′,X−m,X′−m,Y,Y ′ |Xm=x+hXm u,X′m=x+hXm v[P(Xm = x + hXm u) P(X′m = x + hXm v)KXm (u)KXm (v)K((A,X,Y), (A′,X′,Y ′))]]

=EA,A′,X−m,X′−m,Y,Y ′ |Xm=x,X′m=x[P2(Xm = x)K((A,X,Y), (A′,X′,Y ′))] + Op

(
hδXm

)
. (A.5)

Regarding the denominator in Eq. (A.4), from the consistency results of the kernel density estimator in Wied and Weißbach
[2012], we have

1
nhXm

n∑
j=1

kXm (xm, j, x)
a.s.
→ P(Xm = x). (A.6)

By combining Eqs. (A.5) and (A.6), under Assumption 5, we have D̂2
m(x)

p
→WCMMD2

Xm=x as n→ ∞. Using Proposition 1,

we have D̂2
m(x)

p
→ D2

m(x) as n→ ∞. Thus we proved the consistency of D̂2
m(x).

□

E ADDITIONAL EXPERIMENTAL RESULTS

In what follows, we present several additional synthetic data experiments to further evaluate the performance of our method.
Appendix E.1 shows the performance on the data where the truly relevant features do not affect the discrepancy between
marginal potential outcome distributions, which is our inference target. Appendix E.2 displays the results when using
different neural network architectures in the models of propensity score and CVAE.

E.1 EXAMINING COUNTEREXAMPLES

This section presents the performance of our method on the synthetic data where the features do not influence the discrepancy
between conditional distributions P(Y0 | Xm) and P(Y1 | Xm) but affect joint distribution P(Y0,Y1 | Xm). With such data, our
method does not work well because it relies on the discrepancy between P(Y0 | Xm) and P(Y1 | Xm), as described in Section
3.1.

To evaluate the performance, we prepared synthetic data in a similar manner to Section 4.2, which only differs in the
generation process of potential outcomes Y0 and Y1. Here, we set the sample size to n = 2000 and sampled the values of Y0

and Y1 from the following 2-dimensional Gaussian distributions:



Table A.2: TPRs and FPRs of our method on LinCovar and NonlinCovar datasets. Mean and standard deviation over 50 runs
are shown.

TPR FPR

LinCovar 0.02 ± 0.06 0.02 ± 0.02
NonlinCovar 0.04 ± 0.08 0.02 ± 0.02

• LinCovar: [
Y0

Y1

]
∼ N

[ −5
0

]
,

 1 1 − 1
h( f (X1,...,X5))

1 − 1
h( f (X1,...,X5)) 1

 , (A.7)

• NonlinCovar: [
Y0

Y1

]
∼ N

[ −5
0

]
,

 1 1 − 1
h(g(X1,...,X5))

1 − 1
h(g(X1,...,X5)) 1

 , (A.8)

where functions f , g, and h are presented in Section 4.2. Under LinCovar and NonlinCovar, features X1, . . . , X5 only influence
the covariance between potential outcomes Y0 and Y1 and do not affect any functionals of the marginal distributions.

We performed 50 experiments and evaluated their mean and standard deviation of TPRs and FPRs. Table A.2 presents
the results. As expected, our method could not correctly select features X1, . . . , X5 because their values do not affect the
discrepancy between conditional potential outcome distributions.

Note, however, that selecting these features is extremely challenging because it is impossible to estimate the covariance
since we cannot infer the joint distribution of potential outcomes, as described in Section 3.1. Due to this difficulty, all of the
existing mean-based methods also fail, and compared with such methods, ours can detect a wider variety of features.

E.2 PERFORMANCE EVALUATION WITH DIFFERENT NEURAL NETWORK ARCHITECTURES

Since our method relies on two neural network models to represent propensity function e(X) and CVAE L(Xm | X−m)
(m = 1, . . . , d), we confirmed how greatly the neural network architectures affect the overall feature selection performance.

For this purpose, we performed additional synthetic data experiments with sample size n = 1000. We evaluated the mean
and standard deviation of TPRs and FPRs over 50 runs by changing the number of neurons of each layer in the two-layered
neural network models, which is fixed to 50 for propensity score and to 128 for CVAE in the experiments in Section 4.2.

Tables A.3 and A.4 display the results. With all synthetic datasets, the number of neurons in propensity score and CVAE did
not greatly affect the performance.



Table A.3: TPRs and FPRs of our method with different numbers of neurons in propensity score model. Mean and standard
deviation over 50 runs are shown.

Number of neurons in propensity score model
25 50 100 200

LinMean TPR 0.80±0.21 0.79±0.22 0.84±0.14 0.84±0.16
FPR 0.06±0.06 0.06±0.07 0.08±0.06 0.08±0.06

NonlinMean TPR 0.95±0.10 0.94±0.12 0.98±0.06 0.97±0.08
FPR 0.04±0.04 0.04±0.04 0.03±0.03 0.05±0.04

LinVar TPR 0.71±0.19 0.73±0.19 0.77±0.16 0.76±0.18
FPR 0.08±0.07 0.07±0.08 0.10±0.07 0.09±0.07

NonlinVar TPR 0.64±0.25 0.62±0.25 0.63±0.26 0.64±0.25
FPR 0.04±0.04 0.04±0.04 0.04±0.04 0.04±0.04

Table A.4: TPRs and FPRs of our method with different numbers of neurons in CVAE model. Mean and standard deviation
over 50 runs are shown.

Number of neurons in CVAE model
16 64 128 256

LinMean TPR 0.82±0.18 0.82±0.17 0.79±0.22 0.83±0.16
FPR 0.08±0.06 0.07±0.06 0.06±0.07 0.10±0.07

NonlinMean TPR 0.96±0.09 0.98±0.06 0.94±0.12 0.94±0.05
FPR 0.04±0.04 0.03±0.03 0.04±0.04 0.05±0.04

LinVar TPR 0.68±0.19 0.66±0.17 0.73±0.19 0.70±0.16
FPR 0.07±0.05 0.06±0.05 0.07±0.08 0.08±0.07

NonlinVar TPR 0.58±0.25 0.56±0.25 0.62±0.25 0.60±0.20
FPR 0.02±0.03 0.03±0.03 0.04±0.04 0.04±0.05
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