
Combating the Instability of Mutual Information-based Losses
via Regularization (Supplementary material)

Kwanghee Choi*1 Siyeong Lee*2

1Sogang University
2NAVER LABS

A PROOFS

In this section, we provide proof of all theoretical results mentioned in the manuscript.

A.1 PROOF OF THE DReDV REPRESENTATION

In this subsection, we consider two probability distributions P and Q, with P absolutely continuous with respect to Q. In
addition, assume that both distributions are absolutely continuous with respect to Lebesgue measure µ on some compact
domain Ω.

We first show that there exists the family of optimal function for the DV representation (Donsker and Varadhan, 1975).

Lemma 1. All functions of the form T = log dP
dQ + C∗ is optimal for the DV representation DDV .

Proof. To show this theorem, we borrow the proof of the dual representation for the KL divergence (Belghazi et al., 2018).

For a function T , let ∆T be the gap

∆T := DKL(P ||Q)−
(
EP(T )− logEQ(e

T )
)
. (1)

By Theorem 1 of MINE (Donsker and Varadhan, 1975), we already knew that there exists an optimal function T ∗ =
log dP

dQ + C for some C ∈ R such that ∆T∗ = 0.

Consider a function T = log dP
dQ + C∗ for C∗ ∈ R. The function T can be rewritten as (T ∗ − C) + C∗.

Since

EP(T ) = EP(T
∗ − C + C∗) (2)

= EP(T
∗)− C + C∗, (3)

and

log(EQ(e
T )) = log(EQ(e

T∗−C+C∗
)) (4)

= log(eC
∗−CEQ(e

T∗
)) (5)

= (C∗ − C) + log(EQ(e
T∗

)), (6)

EP(T )− log(EQ(e
T )) = EP(T

∗)− log(EQ(e
T∗

)). (7)
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Therefore, for the function T ,

∆T = DKL(P ||Q)−
(
EP(T )− logEQ(e

T )
)
= DKL(P ||Q)−

(
EP(T

∗)− logEQ(e
T∗

)
)
= ∆T∗ = 0. (8)

As a result, optimal functions takes the form T = log dP
dQ + C∗ for some constant C∗ ∈ R.

Theorem. (Theorem 1 restated) Let d be a distance function on R. For any constant C∗ ∈ R and any class of functions T
mapping from Ω to R, we have a novel dual representation of KL divergence

DReDV := sup
T∈T

EP(T )− log(EQ(e
T ))− d(log(EQ(e

T )), C∗) = DKL(P||Q). (9)

Proof. i) For any T ,

EP(T )− log(EQ(e
T ))− d(log(EQ(e

T )), C∗) ≤ EP(T )− log(EQ(e
T )). (10)

Therefore, supT :Ω→R EP(T )− log(EQ(e
T ))− d(log(EQ(e

T )), C∗) ≤ DKL(P||Q).

ii) By the lemma above, there exists T ∗ = log dP
dQ + C∗ such that

DKL(P||Q) = EP(T
∗)− log(EQ(e

T∗
)) (11)

and

log(EQ(e
T∗

)) = log(EQ(e
C∗ dP

dQ
)) = log(

∫
eC

∗ dP
dQ

dQ) = C∗. (12)

Therefore,

sup
T :Ω→R

EP(T )− log(EQ(e
T ))− d(log(EQ(e

T )), C∗) ≥ EP(T
∗)− log(EQ(e

T∗
))− d(log(EQ(e

T∗
)), C∗) (13)

= DKL(P||Q). (14)

Combining i) and ii) finishes the proof.

A.2 EXTENSION TO NWJ REPRESENTATION

In this subsection, we show that our regularizer can also be applied to the NWJ representation (Nguyen et al., 2010).

Theorem. Let d be a distance function on R. We have another dual representation such that

DReNWJ := (P||Q) = sup
T :Ω→R

EP(T )− EQ(e
T−1)− d(EQ(e

T−1), 1) = DKL(P||Q). (15)

Proof. As d is a distance function, d(EQ(e
T−1), 1) ≥ 0.

i) For any T ,
EP(T )− EQ(e

T−1)− d(EQ(e
T−1), 1) ≤ EP(T )− EQ(e

T−1). (16)

Therefore, supT :Ω→R EP(T )− EQ(e
T−1)− d(EQ(e

T−1), 1) ≤ DKL(P||Q).

ii) By Poole et al. (2019), there exists T ∗ = log dP
dQ + 1 such that

DKL(P||Q) = EP(T
∗)− EQ(e

T∗−1). (17)

EP(T
∗) = EP(1 + log(

dP
dQ

)) = 1 +DKL(P||Q). (18)



and
EQ(e

T∗−1) = EQ(
dP
dQ

) = 1. (19)

Therefore,

sup
T :Ω→R

EP(T )− EQ(e
T−1)− d(EQ(e

T−1), 1) ≥ EP(T
∗)− EQ(e

T∗−1)− d(EQ(e
T∗−1), 1) (20)

= DKL(P||Q). (21)

Combining i) and ii) finishes the proof.

A.3 MATHEMATICAL PROPERTIES OF IReMINE

This subsection presents the proof of the consistency and the sample complexity of IReMINE. To show these properties, we
assume that the input space of the functions below is a compact domain, and all measures are absolutely continuous with
respect to the Lebesgue measure. We will restrict to families of feedforward functions with continuous activations, with a
single output neuron. To avoid unnecessary heavy notation, we denote P = PXY and Q = PX ⊗ PY as the joint distribution
and the product of marginals unless specified.

First, we define the sample complexity of the MI estimator. As mentioned by Belghazi et al. (2018), this property is related
to the approximation problem, which addresses the size of the family of function Tθ, and the estimation problem, which
addresses whether it is a reliable estimator.

Definition 1. The MI estimator Î(X,Y )n is strongly consistent if for all ϵ > 0, there exists a positive integer N and a
choice of statistics networks such that ∀n ≥ N, |I(X,Y )− Î(X,Y )n| ≤ ϵ, where the probability is over a set of samples.

Consistency proof

Lemma 2. (Approximation) Let η > 0. There exists a neural network function Tθ with parameters θ ∈ Θ such that

|ÎReMINE(X,Y )− IReMINE(X,Y )| ≤ η, (22)

where
ÎReMINE(X,Y ) = sup

θ∈Θ
EP(Tθ)− log(EQ(e

Tθ )− d(log(EQ(e
Tθ ), C∗)). (23)

Proof. Without loss of generality, we set T ∗ = log dP
dQ . By construction, T ∗ satisfies:

EP(T
∗) = I(X,Y ), EQ(e

T∗
) = 1, log(EQ(e

T∗
)) = 0 (24)

For a function T ,

IReMINE(X,Y )− ÎReMINE(X,Y ) (25)

≤ EP(T
∗ − T ) + log(EQ(e

T )) + d(log(EQ(e
T ), C∗)− d(log(EQ(e

T∗
), C∗) (26)

≤ EP(T
∗ − T ) + log(EQ(e

T )) + d(log(EQ(e
T ), log(EQ(e

T∗
)) (27)

≤ EP(T
∗ − T ) + EQ(e

T − eT
∗
) + d(EQ(e

T )− 1, 0) (28)

where we used the inequality log x ≤ x− 1 and d(·) is the distance function induced by norm on R (e.g., absolute or square
error). Fix η > 0. By the universal approximation theorem, we may choose a feedforward network function Tθ ≤ M such
that

EP|T ∗ − Tθ| ≤
η

3
, EQ|T ∗ − Tθ| ≤

η

3
e−M , and d(EQ|Tθ − T ∗|, 0) ≤ η

3 · d(eM , 0)
(29)

Since exp is Lipschitz continuous with constant eM on (−∞,M ], we have

EQ|eT
∗
− eTθ | ≤ eMEQ|T ∗ − Tθ| ≤

η

3
, (30)



and

d(EQ(e
T )− 1, 0) = d(EQ(e

Tθ )− EQ(e
T∗

), 0) = d(EQ|eTθ − eT
∗
|, 0) (31)

≤ d(eMEQ|Tθ − T ∗|, 0) ≤ d(eM , 0) · d(EQ|Tθ − T ∗|, 0) ≤ η

3
. (32)

From ??, ??, ??, ?? and the triangular inequality, we then obtain:

|ÎReMINE(X,Y )− IReMINE(X,Y )| < η. (33)

Lemma 3. (Esitmation) Let η > 0. Given a neural network function Tθ with parameters θ ∈ Θ, there exists N ∈ N such
that

∀n ≥ N,P(|ÎReMINE(X,Y )n − ÎReMINE(X,Y )| ≤ η) = 1, (34)

where ÎReMINE(X,Y )n is the ReMINE representation which is empirically obtained by n samples.

Proof. We start by using the triangular inequality to write,

|ÎReMINE(X,Y )n − sup
θ∈Θ

ÎReMINE(Tθ)| ≤ sup
θ∈Θ

|EP(Tθ)− EPn(Tθ)|+ sup
θ∈Θ

| logEQ(e
Tθ )− logEQn(e

Tθ )|

+ sup
θ∈Θ

d(| logEQ(e
Tθ )− logEQn

(eTθ )|, 0). (35)

Since the function Tθ is uniformly bounded by a constant M and log is Lipschitz continuous with constant eM , we have

| logEQ(e
Tθ )− logEQn

(eTθ )| ≤ eM |EQ(e
Tθ )− EQn

(eTθ )| (36)

and
d(| logEQ(e

Tθ )− logEQn
(eTθ )|, 0) ≤ d(eM , 0) · d(|EQ(e

Tθ )− EQn
(eTθ )|, 0). (37)

Since Θ is compact and the feedforward network function is continuous, Tθ and eTθ satisfy the uniform law of large numbers
(Belghazi et al., 2018). Given ϵ > 0, we can thus choose N ∈ N such that ∀n ≥ N and with probability 1,

sup
θ∈Θ

|EP(Tθ)− EPn
(Tθ)| ≤

η

3
, (38)

sup
θ∈Θ

|EQ(e
Tθ )− EQn

(eTθ )| ≤ e−M η

3
, (39)

sup
θ∈Θ

d(|EQ(e
Tθ )− EQn(e

Tθ )|, 0) ≤ 1

d(eM , 0)

η

3
. (40)

Hence, this leads to
|ÎReMINE(X,Y )n − ÎReMINE(X,Y )| ≤ η

3
+

η

3
+

η

3
= η. (41)

Theorem. ReMINE is strongly consistent.

Proof. Let ϵ > 0. We apply ?? and ?? to find a neural network function Tθ and N ∈ N such that ?? and ?? hold with
η = ϵ/2. By the triangular inequality, for all n ≥ N and with probability one, we have:

|I(X,Y )− ÎReMINE(X,Y )n| = |IReMINE(X,Y )− ÎReMINE(X,Y )n| (∵ Theorem 1)

≤ |IReMINE(X,Y )− ÎReMINE(X,Y )|+ |ÎReMINE(X,Y )n − ÎReMINE(X,Y )| ≤ ϵ (42)

which proves the consistency.



Sample complexity proof

Theorem. Assume that the function Tθ are M -bounded and L-lipschitz with respect to the parameter θ. The domain θ is
bounded, so that ||θ|| ≤ K for some constant K. When using k mini-batches to estimate MI, we have

P(|ÎReMINE(X,Y )− I(X,Y )| ≤ ϵ) ≥ 1− δ (43)

whenever the number of samples n for each batch satisfies

n ≥ 2M2(d log(24KL
√
d/ϵ) + 2dM + log(2/δ))

ϵ2k
. (44)

Proof. As the optimal T ∗ of IReMINE is also the solution of IMINE , we can use the same proof process of the Theorem 6 in
(Belghazi et al., 2018). Contrast to MINE (Belghazi et al., 2018), we start from P(|EQ[f ]− EQ̂[f ]| > ϵ/6) ≤ 2 exp(−ϵ2nk

2M2 )
by the Hoeffding inequality, because we use n · k samples and our loss function consists of three terms including the
regularization term.

A.4 MATHEMATICAL PROPERTIES OF IReNWJ

Consistency Proof We show the proof of the consistency for the ReNWJ based estimator. Same to the proof of ReMINE
consistency, we assume that the input space of the functions below is a compact domain, and all measures are absolutely
continuous with respect to the Lebesgue measure. We will also restrict to families of feedforward functions with continuous
activations, with a single output neuron. We provide a proof for the case where d(·, ·) is the log-Euclidean distance in this
subsection.

Lemma 4. (Approximation) Let η > 0. There exists a neural network function Tθ with parameters θ ∈ Θ such that

|ÎReNWJ(X,Y )− IReNWJ(X,Y )| ≤ η (45)

where
ÎReNWJ(X,Y ) = sup

θ∈Θ
EP(Tθ)− EQ(e

Tθ−1)− d(EQ(e
Tθ−1), 1). (46)

Proof. Without loss of generality, we set T ∗ = log dP
dQ + 1. By construction, T ∗ satisfies

EP(T
∗) = 1 + I(X,Y ), EQ(e

T∗−1) = 1. (47)

For a function T ,

IReNWJ(X,Y )− ÎReNWJ(X,Y ) (48)

≤ EP(T
∗ − T ) + EQ(e

T−1)− EQ(e
T∗−1) + d(EQ(e

T−1), 1)− d(EQ(e
T∗−1), 1) (49)

≤ EP(T
∗ − T ) + EQ(e

T−1 − eT
∗−1) + d(EQ(e

T−1),EQ(e
T∗−1)) (50)

≤ EP(T
∗ − T ) + e−1EQ(e

T − eT
∗
) + d(EQ(e

T−1), 1) (51)

where d(·, ·) is the log-Euclidean distance on R. Fix η > 0. By the universal approximation theorem, we may choose a
feedforward network function Tθ ≤ M with M > 1 such that

EP|T ∗ − Tθ| ≤
η

3
, EQ|T ∗ − Tθ| ≤

η

3
e1−M , and d(EQ(e

Tθ ), e) ≤ η

3
. (52)

Since exp is Lipschitz continuous with constant eM on (−∞,M ], we have

EQ|eT
∗
− eTθ | ≤ eMEQ|T ∗ − Tθ| ≤

η

3
e. (53)

And
d(EQ(e

T−1), 1) = d(EQ(e
Tθ ),EQ(e

T∗
)) ≤ d(EQ(e

Tθ ), e) ≤ η

3
. (54)



From ??, ??, ?? and the triangular inequality, we then obtain

|ÎReNWJ(X,Y )− IReNWJ(X,Y )| < η. (55)

Lemma 5. (Estimation) Let η > 0. Given a neural network function Tθ with parameters θ ∈ Θ, there exists N ∈ N such
that

∀n ≥ N,P(|ÎReNWJ(X,Y )n − ÎReNWJ(X,Y )| ≤ η) = 1, (56)

where ÎReNWJ(X,Y )n is the ReNWJ representation which is empirically obtained by n samples.

Proof. We start by using the triangular inequality to write,

|ÎReNWJ(X,Y )n − sup
θ∈Θ

ÎReNWJ(Tθ)| ≤ sup
θ∈Θ

|EP(Tθ)− EPn(Tθ)|+ sup
θ∈Θ

|EQ(e
Tθ−1)− EQn(e

Tθ−1)|

+ sup
θ∈Θ

d(EQ(e
Tθ−1),EQn

(eTθ−1)). (57)

Since Θ is compact and the feedforward network Tθ is continuous and uniformly bounded by a constant M , Tθ and eTθ

satisfy the uniform law of large numbers (Belghazi et al., 2018). Given ϵ > 0, we can thus choose N ∈ N such that ∀n ≥ N
and with probability 1,

sup
θ∈Θ

|EP(Tθ)− EPn
(Tθ)| ≤

η

3
, (58)

sup
θ∈Θ

e−1|EQ(e
Tθ )− EQn

(eTθ )| ≤ η

3
e−M , (59)

sup
θ∈Θ

d(
EQ(e

Tθ )

EQn
(eTθ )

, 1) ≤ η

3
. (60)

Hence, this leads to
|ÎReNWJ(X,Y )n − ÎReNWJ(X,Y )| ≤ η

3
+

η

3
+

η

3
= η. (61)

Theorem. The ReNWJ estimator is strongly consistent.

Proof. Let ϵ > 0. We apply ?? and ?? to find a neural network function Tθ and N ∈ N such that ?? and ?? hold with
η = ϵ/2. By the triangular inequality, for all n ≥ N and with probability one, we have

|I(X,Y )− ÎReNWJ(X,Y )n| = |IReNWJ(X,Y )− ÎReNWJ(X,Y )n| (∵ ReNWJ representation)

≤ |IReNWJ(X,Y )− ÎReNWJ(X,Y )|+ |ÎReNWJ(X,Y )n − ÎReNWJ(X,Y )| ≤ ϵ (62)

which proves the consistency.

Sample complexity proof

Theorem. Assume that the function 1 ≤ |Tθ| < M is L-lipschitz with respect to the parameter θ. The domain θ is bounded,
so that ||θ|| ≤ K for some constant K. When using k mini-batches to estimate MI and d(x, 1) ≤ |x− 1|, we have

P(|ÎReNWJ(X,Y )− I(X,Y )| ≤ ϵ) ≥ 1− δ (63)

whenever the number of samples n for each batch satisfies

n ≥ 2M2(d log(24KL
√
d/ϵ) + 2dM + log(2/δ))

ϵ2k
. (64)



Proof. By taking the assumptions of ??, we begin with ??, ?? and ??. By the Hoeffding inequality, for all function f ,

P(|EQ[f ]− EQ̂[f ]| > ϵ/6) ≤ 2 exp(
−ϵ2(n · k)

2M2
). (65)

To extend this inequality to a uniform inequality over all functions Tθ and eTθ , we choose a minimal cover of the domain
Θ ⊂ Rd by a finite set of small balls of radius η, Θ ⊂ ∪jBη(θj), and the union bound. The minimal cardinality of such
covering is bounded by the covering number Nη(Θ) of Θ,

Nη(Θ) ≤

(
2K

√
d

η

)d

. (66)

Successively applying a union bound in ?? with the set of functions {Tθj}j , and {eTθj }j , We have

P
(
maxj |EQ(Tθj )− EQ̂(Tθj )| ≥

ϵ

6

)
≤ 2Nη(Θ) exp(−ϵ2(n · k)

2M2
), (67)

P
(
maxj |EQ(e

Tθj )− EQ̂(e
Tθj )| ≥ ϵ

6

)
≤ 2Nη(Θ) exp(−ϵ2(n · k)

2M2
). (68)

We now choose that ball radius to be η = ϵ
12Le

−2M . Solving for n the inequation,

2Nη(Θ) exp(− ϵ2n

2M2
) ≤ δ, (69)

we deduce from ?? that, whenever ?? holds, with probability at least 1− δ, for all θ ∈ Θ,

|EQ(Tθ)− EQ̂(Tθ)| ≤ |EQ(Tθ)− EQ(Tθj )|+ |EQ(Tθj )− EQ̂(Tθj )|+ |EQ̂(Tθj )− EQ̂(Tθ)|

≤ ϵ

12
e−2M +

ϵ

6
+

ϵ

12
e−2M <

ϵ

3
.

(70)

Similarly, using ??, we get that with probabilty at least 1− δ,

|EQ(e
Tθ−1)− EQ̂(e

Tθ−1)| ≤ ϵ

3
< e · ϵ

3
. (71)

Hence,

|ÎReNWJ(X,Y )− I(X,Y )| ≤ |EQ(Tθj )− EQ̂(Tθj )|+ |EQ(e
Tθj

−1)− EQ̂(e
Tθj

−1)|+ d(EQ(e
Tθj ),EQ̂(e

Tθj ))

≤ |EQ(Tθj )− EQ̂(Tθj )|+ e−1|EQ(e
Tθj )− EQ̂(e

Tθj )|+ |EQ(e
Tθj )− EQ̂(e

Tθj )| ≤ ϵ. (72)

A.5 THE PROPERTY OF MI ESTIMATORS

The variance of the exponential value of the statistic network’s output according to the bias of optimal functions on
the distribution Q.

Theorem. Let Q(n) be the empirical distributions of n i.i.d. samples from Q. For the optimal T1 = log dp
dq + C1 and

T2 = log dp
dq + C2 where C1 ≥ C2,

VarQ(EQ(n)(eT1)) ≥ VarQ(EQ(n)(eT2)). (73)



Proof. Consider that

VarQ(eT1) = e2C1

(
EQ((

dP
dQ

)2)− (EQ(
dP
dQ

))2
)
, (74)

and

VarQ(eT2) = e2C2

(
EQ((

dP
dQ

)2)− (EQ(
dP
dQ

))2
)
. (75)

By Song and Ermon (2020), the variance of the mean of n i.i.d. random variable then gives us

VarQ(EQ(n)(eT1)) =
VarQ(eT1)

n
, VarQ(EQ(n)(eT2)) =

VarQ(eT2)

n
. (76)

Since ex ≥ 1 for all x ≥ 0,

VarQ(EQ(n)(eT1))

VarQ(EQ(n)(eT2))
=

VarQ(eT1 )
n

VarQ(eT2 )
n

= e2(C1−C2) ≥ 1. (77)

Therefore, the variance of T1 is equal to or less than the that of T2 on Q.

Proof of estimation bias caused by drifting

Theorem. When used on DV representation, the two averaging strategies below produce a biased MI estimate if the drifting
problem occurs.

1. Macro-averaging (similar to that of Poole et al. (2019)): Establish a single estimate through the average of estimated
MI from each batch.

2. Micro-averaging: Calculate the DV representation using the average of the each individual network outputs.

Proof. We start from the definition of IDV, where

IDV(X,Y ) = EP(T (x, y))− log(EQ(e
T (x,y))) (78)

becomes the objective function to estimate MI, i.e. MINE.

Let T (J)
ij and T

(M)
ij denote the ij-th element of outputs for Pm and Qn respectively, where i is the index of batch and j is

the index of sample inside the batch, and the non-drifting output as T ∗
ij , and the drifting constant for each batch Ci. Then,

Tij = T ∗
ij + Ci.

When the number of batch is B and each batch size is N ,

1. Macro averaging:

1

B
Σi[

1

N
ΣjT

(J)
ij − log(

1

N
Σje

T
(M)
ij )] (79)

=
1

B
Σi[

1

N
Σj(T

(J∗)
ij + Ci)− log(

1

N
Σje

T
(M∗)
ij +Ci)] (80)

=
1

B
Σi[

1

N
Σj(T

(J∗)
ij + Ci)− log(

1

N
eCiΣje

T
(M∗)
ij )] (81)

=
1

B
Σi[

1

N
ΣjT

(J∗)
ij − log(e−Ci

1

N
eCiΣje

T
(M∗)
ij )] (82)

=
1

B
Σi[

1

N
ΣjT

(J∗)
ij − log(

1

N
Σje

T
(M∗)
ij )] (83)

=
1

NB
ΣijT

(J∗)
ij − 1

B
Σi[log(

1

N
Σje

T
(M∗)
ij )] (84)

̸= 1

NB
ΣijT

(J∗)
ij − log(

1

NB
Σije

T
(M∗)
ij ) (85)



2. Micro averaging:

1

NB
ΣijT

(J)
ij − log(

1

NB
Σije

T
(M)
ij ) (86)

=
1

NB
Σij(T

(J∗)
ij + Ci)− log(

1

NB
Σije

(T
(M∗)
ij +Ci)) (87)

=
1

NB
ΣijT

(J∗)
ij − log[(

1

NB
Σije

(T
(M∗)
ij +Ci))

1
BΣiCi ] (88)

̸= 1

NB
ΣijT

(J∗)
ij − log(

1

NB
Σije

T
(M∗)
ij ) (89)

We emphasize that we have to stop the drifting via the regularization term of ReDV.

Wrong estimation derived from biased values According to the theorem above, the MI estimate derived from the
average of the values estimated from the mini-batch in DV representation-based estimators will lead to erroneous results.
However, the micro-averaging strategy is often used to measure the performance of MI estimators (MINE or InfoNCE), as
shown in Fig. 6 of Cheng et al. (2020).

A.6 THE PROOF FOR THE VALIDITY OF OUR BENCHMARK

We assume that the dataset used for our benchmark satisfies the single label assumption where there exists exactly one label
for every sample inside the dataset. Note that the assumption implies that p(y|x) = 1. In other words, we assume statistical
dependence between X and Y (Tishby and Zaslavsky, 2015).

Theorem. (Supervised Learning Benchmark) Consider a dataset D = (X,Y ) where Y is the label for sample X , and
H(Y ) is the entropy of Y .

I(X,Y ) = H(Y ) (90)

Proof.

I(X;Y ) =

∫
X,Y

P (X,Y ) log
P (X,Y )

P (X)P (Y )
(91)

=

∫
x

∫
y

P (x, y) log
P (y|x)
P (y)

dydx (92)

=

∫
x

∫
y

P (x)P (y|x) log P (y|x)
P (y)

dydx (93)

=

∫
x

P (x)

(∫
y

P (y|x) log P (y|x)
P (y)

dy

)
dx (94)

=

∫
R

P (x∗) log
1

P (y∗)
(where R is the region where y∗ is a correct label for the given x∗) (95)

=
∑
c

∫
Rc

P (x∗, c) log
1

P (c)
(where R is partitioned by the label c to yield Rc) (96)

=
∑
c

log
1

P (c)

∫
Rc

P (x∗, c) (∵ P (c) is constant inside the Rc) (97)

=
∑
c

log
1

P (c)
P (c) (∵

∫
Rc

P (x∗, c) = P (c), i.e., marginalization) (98)

= H(Y ) (99)



Theorem. (Contrastive Learning Benchmark) Consider a dataset D = (X,Y ). Let X1 be a sample drawn from the dataset
with the label Y and X2 be another sample drawn from the subset of D where all the samples inside the subset are with the
same label Y . Assume that D also satisfies the single label assumption.

I(X1, X2) = I(X1, Y ) = I(X2, Y ) = H(Y ) (100)

Proof.

P (X1, X2) =
∑
yi

P (X1, X2, Y ) (∵ marginalization)

=
∑
yi

P (X1)P (Y |X1)P (X2|Y,X1) (∵ factorization)

=
∑
yi

P (Y )P (X1|Y )P (X2|Y ) (∵ X1 and X2 are independent for given Y )

=
∑
i

P (yi)P (X1|yi)P (X2|yi)

P (X1) =
∑
yi

P (X1, Y ) =
∑
yi

P (Y )P (X1|Y ) =
∑
i

P (yi)P (X1|yi)

P (X2) =
∑
yi

P (X2, Y ) =
∑
yi

P (Y )P (X2|Y ) =
∑
i

P (yi)P (X2|yi)

P (X1, X2)

P (X1)P (X2)
=

∑
i P (yi)P (X1|yi)P (X2|yi)∑

i P (yi)P (X1|yi)
∑

yi
P (yi)P (X2|yi)

=

∑
i P (yi)P (X1|yi)P (X2|yi)∑
i P (yi)2P (X1|yi)P (X2|yi)

(∵ X1 and X2 has the same label)

Let Ri be the region where (X, yi) such as i-th class label yi is a correct label for the given X1.

I(X1, X2) =

∫
X1,X2

P (X1, X2) log
P (X1, X2)

P (X1)P (X2)

=

∫
X1,X2

(∑
i

P (yi)P (X1|yi)P (X2|yi)

)
log

∑
i P (yi)P (X1|yi)P (X2|yi)∑
i P (yi)2P (X1|yi)P (X2|yi)

=
∑
i

P (yi)

∫
X2

P (X2|yi)
(∫

Ri

P (X1|yi) log
P (yi)P (X1|yi)P (X2|yi)
P (yi)2P (X1|yi)P (X2|yi)

dx1

)
dx2

=
∑
i

P (yi)

∫
X2

P (X2|yi)
(∫

Ri

P (X1|yi) log
1

P (yi)
dx1

)
dx2

=
∑
i

P (yi) log
1

P (yi)

∫
X2

P (X2|yi)
(∫

Ri

P (X1|yi)dx1

)
dx2

=
∑
i

P (yi) log
1

P (yi)

= H(Y )



(a) (b)

Figure 1: Histogram of the exponential of the network outputs eT (x,y) which is trained with CLB CIFAR10. Training
samples and unseen samples are fed to (a) and (b), respectively.

B DIRECTLY UTILIZING THE STATISTICS NETWORK OUTPUTS FOR
OUT-OF-DISTRIBUTION TASK

We observe the SLB CIFAR10-trained network outputs when seen or unseen samples are fed to the statistics network
T in ??. Note that we can take eT (x,y) = dPXY

dPX⊗PY
for granted, thanks to regularization. ?? (a) shows the distribution of

eT (x,y) for the training set samples (x, y) ∼ PXTrainYTrain . As 90% of (x, y) ∼ PX ⊗ PY is wrongly labeled, the majority
yields eT (x,y) = 0. The likelihood ratio for the (x, y) ∼ PXY is 10, and all the samples are centered around the ideal
value as expected. CIFAR10 test set samples (x, y) ∼ PXTestYTest also yield similar results, where some of the samples are
wrongly positioned, being the test error of T . Surprisingly, when we feed MNIST (LeCun et al., 1998) training samples
(x, y) ∼ PXMNISTYMNIST , model successfully classifies nearly all the samples to be less likely to occur in PXTrainYTrain . This
implies that exploiting the network outputs with the viewpoints of MI may show usefulness in out-of-distribution detection.
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Figure 2: Training Tθ using IMINE and IReMINE with batch size 100 for 20 epochs. We breakdown the MI loss into two
components. We split both losses into first term EPXX

(T ) and second term logEPX⊗PX
(eT ).

C EXPERIMENTS ON IMAGENET

We test on the ImageNet dataset with 1000 classes, where we use the batch size of 100. We set the batch size to be relatively
small to observe how different losses behave, whereas multiple contrastive learning literature such as Chen et al. (2020); He
et al. (2020) uses large batch sizes to avoid instability. We train for 20 epochs to observe the early stages of training.

First, we can observe in ?? that the regularizer successfully solves the drifting problem of IMINE. Also, ?? shows that INWJ
fails in the contrastive learning benchmark. INWJ explodes within a few steps of training, where the regularizer successfully
avoids the problem to yield a feasible output. Note that we did not observe the losses till convergence; we have to train much
longer to obtain a more accurate performance of MI estimation and test accuracy. However, we can see that in the supervised



Task Loss MI Estimation Test Accuracy
Original Regularized Original Regularized

Supervised Learning Benchmark
CE - - 0.0795 -

MINE 6.147 6.110 0.1056 0.1081
NWJ 6.072 6.075 0.1020 0.1005

Contrastive Learning Benchmark MINE 1.095 1.140 0.0103 0.0098
NWJ 0.000 1.008 0.0010 0.0072

Table 1: Our supervised and contrastive learning benchmark results on ImageNet dataset. We provide the MI estimation and
test accuracy, where we clip the negative MI estimations to 0. We compare the performance of original and regularized
loss. We also add the accuracy of standard cross-entropy loss (CE) for comparison. Similar to Section 5.2, we choose the
regularization weight λ ∈ {0.1, 0.01, 0.001} that shows the best MI estimation results.

learning benchmark, which is the relatively easier benchmark, all the losses are already close to the optimal MI even in the
earlier epochs. We can also observe a similar trade-off between the MI estimation and test accuracy in ??. Future works on
large-scale datasets are needed to observe the behaviors further.

D EXPERIMENTAL DETAILS

In this section, we provide the experiment details in the manuscript with the accompanying code https://github.
com/Siyeong-Lee/Deconstructing-MINE.

D.1 HARDWARE SPECIFICATION

We use a single NVIDIA DGX A100 machine with 8 GPUs for all the experiments. All the experiments except for our
benchmark experiments take less than 10 minutes and a single GPU to compute. It takes less than 2 days to compute all the
benchmark experiments: 4 settings, 12 losses, and 5 seeds running on 8 GPUs and 4 processes per GPU.

D.2 DETAILED SETTINGS FOR ONE-HOT DATASET EXPERIMENTS

We describe the detailed settings for Fig. 1, Fig. 2, Fig. 3, Fig. 4, and Fig. 5. We choose N = 16 for the one-hot discrete
dataset X ∼ U(1, N). We use a simple statistics network T with a concatenated vector of dimension N × 2 = 32 as input.
We pass the input through two fully connected layers with ReLU activation by widths: 32− 256− 1. The last layer outputs
a single scalar with no bias and activation. We use stochastic gradient descent (SGD) with learning rate 0.1 to optimize the
statistics network unless specified.

D.3 DETAILED SETTINGS FOR OUR BENCHMARK

We describe the detailed settings for Table 2 and Fig. 6. We use ResNet-18 (He et al., 2016) as the backbone network and
use Adam optimizer with the default learning rate 0.001, β1 = 0.9 and β2 = 0.999. We use batch size 100 for CIFAR100
and 10 for CIFAR10. We train for different epochs per each benchmark: 40 epochs (SLB CIFAR10), 100 epochs (SLB
CIFAR100), 100 epochs (CLB CIFAR10), and 150 epochs (CLB CIFAR100). We choose enough number of epochs for all
the losses to be fully converged for each of the benchmarks. We rerun the same experiment 5 times with different seeds.

D.4 DETAILED SETTINGS FOR THE 20D CORRELATED GAUSSIAN TASK

We describe the detailed settings for Fig. 7. We sampled (x, y) from d-dimensional correlated Gaussian dataset where
X ∼ N(0, Id) and Y ∼ N(ρX, (1− ρ2)Id) given the correlation parameter 0 ≤ ρ < 1, which is taken from Belghazi et al.
(2018). The true MI for the dataset is I(X,Y ) = −d

2 log(1− ρ2). For the statistics network architecture, we consider the
architecture similar to ?? where we concatenate the inputs (x, y) to pass through three fully connected layers with ReLU
activation (excluding the output layer) by widths 40− 256− 256− 1, same as the network used in Poole et al. (2019). We
used the same optimizer with ??.

https://github.com/Siyeong-Lee/Deconstructing-MINE
https://github.com/Siyeong-Lee/Deconstructing-MINE

