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Abstract

Machine learning classifiers are probabilistic in na-
ture, and thus inevitably involve uncertainty. Pre-
dicting the probability of a specific input to be
correct is called uncertainty (or confidence) esti-
mation and is crucial for risk management. Post-
hoc model calibrations can improve models’ un-
certainty estimations without the need for retrain-
ing, and without changing the model. Our work
puts forward a geometric-based approach for un-
certainty estimation. Roughly speaking, we use
the geometric distance of the current input from
the existing training inputs as a signal for estimat-
ing uncertainty and then calibrate that signal (in-
stead of the model’s estimation) using standard
post-hoc calibration techniques. We show that our
method yields better uncertainty estimations than
recently proposed approaches by extensively evalu-
ating multiple datasets and models. In addition, we
also demonstrate the possibility of performing our
approach in near real-time applications. Our code
is available at our Github [Leman and Chouraqui,
2022].

1 INTRODUCTION

Machine learning models such as neural networks, random
forests, and gradient boosted trees are extensively used in
domains ranging from computer vision to transportation
and are slowly revolutionizing computer science [Niculescu-
Mizil and Caruana, 2006, Zhang and Haghani, 2015]. Deal-
ing with uncertainty is a fundamental challenge for all
machine learning-based applications. In principle, clas-
sifications are always probabilistic, implying that miss-
classifications are inevitable.

*Equal Contribution

Uncertainty calibration is the process of adapting machine
learning models’ confidence estimations to be consistent
with the actual success probability of the model [Guo et al.,
2017a]. The model’s confidence evaluation on its classifica-
tions, i.e., the model’s prediction of the success ratio on a
specific input, is an essential aspect of mission-critical ma-
chine learning applications as it provides a realistic estimate
of the classification’s success probability and facilitates in-
formed decisions about the current situation. Even a very
accurate model may run into an unexpected situation, which
could then be communicated to the user by the confidence
estimation. For example, consider an autonomous driver that
uses a model to identify and classify traffic signs. The model
is very accurate, and in most cases, its classifications are cor-
rect with high confidence. However, one day, it encountered
a traffic sign obscured by, e.g., heavy vegetation. In such a
case, the model’s classification is more likely to be incorrect.
Thus, estimating confidence (i.e., uncertainty) is an essen-
tial tool for assessing unavoidable risks, enabling system
designers to address the risks better, potentially avoiding
unexpected and catastrophic implications. Our autonomous
driver, for example, may reduce the speed and activate ad-
ditional sensors until it reaches higher confidence. Thus,
indeed, all popular machine learning models have mecha-
nisms for determining confidence that can be calibrated to
maximize the quality of confidence estimations [Niculescu-
Mizil and Caruana, 2005, Guo et al., 2017b, Kumar et al.,
2019] and there is a concentrated effort to calibrate models
better and facilitate more dependable applications [Leistner
et al., 2009, Sun et al., 2007].

Existing calibration methods can be divided into two types:
post-hoc methods that preform a transformation that maps
from classifiers raw outputs to their expected probabili-
ties [Kull et al., 2019, Guo et al., 2017a, Gupta and Ramdas,
2021b], and ad-hoc methods that adapt the training pro-
cess to generate better calibrated design [Thulasidasan et al.,
2019, Hendrycks et al., 2019a]. Post-hoc calibration meth-
ods are easier to apply as they do not change the model and
do not require us to retrain a model. That said, ad-hoc meth-
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ods may lead us to better model training in the first place and
thus better models. With the success of the two approaches,
recent approaches suggest using ensemble methods whose
estimation is a (weighted) average of multiple calibration
methods [Ashukha et al., 2020, Ma et al., 2021].

This paper presents a post-hoc uncertainty estimation
method, but of a different kind. While current post-hoc
methods use the model itself as their signal for calibration,
we use the training dataset (without modifying the model).
More precisely, our method is based on geometric notions
calculated on the training dataset. In fact, our geometric
choice of the signal is orthogonal to the preformed calibra-
tion method in the sense that we can employ it using various
post-hoc calibration methods.

Roughly speaking, we examine the geometric distance of
the current input from the existing training inputs and use
it to estimate the model’s confidence. Intuitively, the con-
fidence is high when the current input is close to training
set inputs in the same classification and is far from training
set inputs with other classifications. Dually, the confidence
would be low when there are very close training set inputs
with different classifications. To maximize this geometric
signal the inputs should be normalized. That is, the size,
format, etc. of the images should be consistent. Thus, in this
paper, we employ such well behaved datasets.

Our work demonstrates that geometry can facilitate better
uncertainty estimations for diverse models and datasets. We
first provide an algorithm for calculating the maximal ge-
ometric separation of an input. However, calculating the
geometric separation for an input requires evaluating the
whole space of training inputs, making it a computationally
expensive method that is not always feasible. For exam-
ple, an autonomous driver needs to reach decisions within a
short time frame to be effective. Therefore, we also suggest a
lightweight approximation called fast-separation, and show
that it provides an approximation of geometric separation.

Our next challenge is to move from a separation value to a
confidence estimation. For this, we apply numerical analysis
tools. Thus, to obtain a confidence estimation in real-time
we only need to apply a regression function to the calcu-
lated separation value. Interestingly, our extensive simula-
tion across different models and datasets shows that our
geometric-based method yields better confidence estima-
tions when compared to popular libraries used in the indus-
try [Pedregosa et al., 2011] , as well as recently proposed
calibration methods [Kumar et al., 2019, Gupta and Ramdas,
2021a, Guo et al., 2017a, Zhang et al., 2020]. Furthermore,
our evaluation shows that using our method with the fast-
separation approximation allows for multiple confidence
estimations per second, making it real-time applicable.

2 RELATED WORKS

The dependability of machine learning models is a key chal-
lenge in the research community [Johnson, 2018]. Various
works demonstrate vulnerabilities in popular machine learn-
ing models [Biggio et al., 2014b,a], or show explicit meth-
ods to generate adversarial inputs to such models [Zhou
et al., 2012]. Unfortunately, such vulnerabilities are funda-
mental to the field and cannot be avoided.

As mentioned above, uncertainty calibration is about es-
timating the model’s success probability of classifying a
given example. Post-hoc calibration methods apply some
transformation to the model’s confidence (without changing
the model) such transformations include Temperature Scal-
ing (TS) [Guo et al., 2017a, Kull et al., 2019], Ensemble
Temperature Scaling (ETS) [Zhang et al., 2020], and cubic
spline [Gupta and Ramdas, 2021a]. In brief, these meth-
ods are limited by the best learnable mapping between the
model’s confidence estimations, and the actual confidence.
That is, post-hoc calibration methods are limited in mapping
each confidence value to another calibrated value. In com-
parison, our method uses geometric distance as a signal for
calibration and its improvement over post-hoc calibration
is because geometric distances better differentiate than the
model’s predicted probabilities in the models and datasets
included in our evaluation. Another work that uses a geo-
metric distance in this context is [Dalitz, 2009]. There, the
confidence score is computed directly from the geometric
distance, while we first fit a function on a subset of the
data in order to learn the specific behavior of the dataset
and model. Moreover, the work in [Dalitz, 2009] only ap-
plies to the k-nearest neighbor model, while our method is
applicable to all models.

The recently proposed work of [Kumar et al., 2019] uses a
fitting function on the confidence values and then divides the
inputs into bins of equal size and outputs the function’s av-
erage in each bin. The work of [Gupta and Ramdas, 2021a]
uses a similar idea but divide the inputs into uniform-mass
(rather than equal size) bins. It is interesting to note that
while most post-hoc calibration methods are model agnos-
tic, recent methods have begun to look on a neural network
non-probabilistic output called logits(before applying soft-
max) [Guo et al., 2017b, Z.Ding et al., 2020, J.Wenger et al.,
2019]. Thus, some of the new post-hoc calibration methods
are applicable only to neural networks.

Ensemble methods are similar to post-hoc calibration meth-
ods as they do not change the model, but they consider mul-
tiple signals to determine the model’s confidence [Ashukha
et al., 2020, Ma et al., 2021]. In principle, ensemble methods
complement our approach. For example, one can include
our estimator in an ensemble, e.g., by averaging its pre-
diction with other methods. Ad-hoc calibration is about
training models in new manners aimed to yield better uncer-
tainty estimations. Important techniques in this category
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include mixup training [Thulasidasan et al., 2019], pre-
training [Hendrycks et al., 2019a], label-smoothing [Müller
et al., 2019], data augmentation [Ashukha et al., 2020], self-
supervised learning [Hendrycks et al., 2019b], Bayesian
approximation (MC-dropout) [Gal and Ghahramani, 2016,
Gal et al., 2017], Deep Ensemble (DE) [Lakshminarayanan
et al., 2017], Snapshot Ensemble [Huang et al., 2017a], Fast
Geometric Ensembling (FGE) [Garipov et al., 2018], and
SWA-Gaussian (SWAG) [Maddox et al., 2019].

Ad-hoc calibration is perhaps the best approach in public
as it tackles the core of model’s calibration directly. How-
ever, because it offers specific training methods it is of
less use to large and already trained models, and the im-
pact of each work is limited to a specific model type (e.g.,
DNNs in [Garipov et al., 2018]). In compression, ad-hoc
and ensemble methods (and our own method) often work
for numerous models.

Our geometric method is largely inspired by the approach
of robustness proving in machine learning models. In this
field, formal methods are used to prove that specific inputs
are robust to small adversarial perturbations. That is, we
formally prove that all images in a certain geometric radius
around a specific train-set image receive the same classifica-
tion [Narodytska et al., 2018, Katz et al., 2017, Huang et al.,
2017b, Gehr et al., 2018, Ehlers, 2017, Einziger et al., 2019].
These works are not applicable to uncertainty calibration
as they can only produce proves in an offline manner, and
thus only to training set inputs rather than to the current
input. However, the underlying intuition is that inputs that
are geometrically similar should be classified the same also
appears in our approach. Indeed, our work shows that ge-
ometric properties of the inputs can help us quantify the
uncertainty in certain inputs, and that in general inputs that
are less geometrically separated and are ’on the edge’ be-
tween multiple classifications are more error prune than
points that are highly separated from other classes. Thus
our work reinforces the intuition behind applying formal
methods to prove robustness and support the intuition that
more robust training models would be more dependable.

3 GEOMETRIC CONFIDENCE
EVALUATION

This section lays the foundations for a geometric estimation
of the model’s confidence level on a given instance. Our
work assumes that the inputs are normalized. That is, they
are fixed-sized images and within the same format. Under
such conditions, we can measure the geometric distance
between various inputs.

Formally, a model receives a data input, x, and outputs the
pair 〈C(x), conf (x)〉, where C(x) is the model’s classifica-
tion of x and conf (x) reflects the probability that the classi-
fication is correct. Our current work evaluates conf (x) from

a geometric point of view. We estimate the environment
around x where points are closer to inputs of certain classifi-
cations over the others. In Section 3.1 we define a geometric
separation measure, and provide an algorithm to calculate
it. We explain that such a computation is too cumbersome
for real-time systems, and so we suggest a lightweight ap-
proximation in Section 3.2. Finally, Section 3.3 explains
how we use the geometric signal to derive conf (x). That is,
mapping a real number corresponding to the geometric sepa-
ration to a number in [0, 1] corresponding to the confidence
ratio.

3.1 SEPARATION MEASURE

We look at the displacement of x compared to nearby data
inputs within the training set. Intuitively, when x is close to
other inputs in C(x) (i.e., inputs with the same classification
as x) and is far from inputs with other classifications, then
the model is correct with a high probability, implying that
conf (x) should be high. On the other hand, when there are
training inputs with a different classification close to x, we
estimate that C(x) is more likely to be incorrect.

Below we provide definitions that allow us to formalize
this intuitive account. In what follows, we consider a model
M to consist of a machine learning model (e.g., a gradient
boosted tree or a neural network), along with a labeled train
set, Tr , used to generate the model. We use an implicit no-
tion of distance, and denote by d(x, y) the distance between
inputs x and y, and by D(x,A) the distance between the
input x and the set A (i.e., the minimal distance between x
and the inputs in A).

Definition 1 (Safe and Dangerous inputs). Let M be a
model. For an input x in the sample space we define:

FM(x) := {x′ ∈ Tr : C(x′) = C(x)}.

We denote by FM(x) the set Tr \ FM(x).
An input x ∈ X is labeled as safe if it is closer to FM(x)
than to FM(x), and it is labeled as dangerous otherwise.

Definition 2 (Zones). Let x be a safe (dangerous) point.
A zone for x, denoted zx, is such that for any input y,
if d(x, y) < zx, then D(y,FM(x)) < D(y,FM(x))
(D(y,FM(x)) ≥ D(y,FM(x))). For each x we denote
the maximal such zone by Z(x).

In other words, a zone of a safe (dangerous) input x, Z(x),
is a radius around x such that all inputs in this ball are closer
to an input in FM(x) (FM(x)) than to any input in FM(x)
(FM(x)), respectively.

Definition 3 (Separation). The separation of a data input x
with respect to the model M is Z(x) when x is a safe input,
and −1 · Z(x) when x is a dangerous input.
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Figure 1: Geometric representation of safe and dangerous
inputs, maximal zones, and separation values. The various
classifications are illustrated via different shapes.

That is, the separation of x encapsulates the maximal zone
for x (provided by the absolute value) together with an indi-
cation of whether the point is safe or dangerous (provided
by the sign). The separation of x depends only on the classi-
fication of x by the model and the train set. This is because
our definition partitions the inputs in Tr into two sets: one
with C(x), FM(x), and one with all other classifications,
FM(x). These sets vary between models only when they
disagree on the classification of x. Note that x’s for which
the distance from FM(x) equals the distance from FM(x)
are considered dangerous inputs, and their separation mea-
sure will be zero.

As mentioned, Definition 2 and Definition 3 use an implicit
notion of distance. Such notion can accept any distance
metric (e.g., L1, L2 or L∞). However, in this work, we
fix the metric to L2 as it is a standard measure for safety
features in adversarial machine learning [Moosavi-Dezfooli
et al., 2017], in addition to it being easy to illustrate and
intuitive to understand. Furthermore, our methodology relies
on calculating the nearest neighbors of a given input, and
for L2, this can be done using standard and well-optimized
libraries. Accordingly, all our definitions and calculations
assume the L2 metrics (Euclidean distances).

Figure 1 provides a geometric illustration of safe and danger
zones, and separation values. For illustration purposes, the
figure uses the L2 norm with two dimensions, whereas our
data usually includes many more dimensions. For example,
a 30×30 traffic sign image will have 900 dimensions. In the
figure, x is a safe input, and the green highlighted ball rep-
resents its maximal zone which reflects how far we can get
from x and still be closer to training set inputs classified the
same as x than any other inputs. The input y is a dangerous
input, and the red highlighted ball represents its maximal
zone which dually represents how far we need to distance
ourselves from x so that inputs classified as x become closer
than other inputs. Thus, x will have a positive separation
value, while y will have a negative one.

Next, we provide a formula for calculating the separation of
a given input x within the L2 distance metric.

Definition 4. Given a model M and an input x, define:

SM
(x) = min

x′′∈FM(x)
max

x′∈FM(x)

d2(x, x′′)− d2(x, x′)

2d(x′, x′′)

Lemma 1. Let x, x′, x′′ ∈ Rn be inputs such that
d(x, x′) < d(x, x′′). The maximal distance M(x, x′, x′′)
for which if y ∈ Rn such that d(x, y) < M(x, x′, x′′), then
d(y, x′) < d(y, x′′) is

d2(x, x′′)− d2(x, x′)

2d(x′, x′′)
.

Proof. Since any three points in space define a plane we
focus on the plane defined by these three points.

Figure 2: Illustration of the proof of Lemma 1

Figure 2 demonstrates a geometric positioning of the points,
and the main constructions in the proof. The perpendicular
bisector to the line between x′ and x′′ divides the plane into
two parts: one in which all the points are closer to x′′ than
to x′ (the lower part in the figure) and one in which all the
points are closer to x′ than to x′′ (the upper part in the figure).
Our goal is thus to establish the distance between x and the
lower part of the plane. Hence, M(x, x′, x′′) amounts to
the distance from x to the perpendicular bisector to the line
between x′ and x′′. Using trigonometric calculations, it is
straightforward to verify that indeed

M(x, x′, x′′) =
d2(x, x′′)− d2(x, x′)

2d(x′, x′′)
.

Proposition 1. SM
(x) is the separation of x with respect

to the model M (in Definition 3).

Proof. Let x be a safe input, and y be an input such that

d(x, y) < min
x′′∈FM(x)

max
x′∈FM(x)

d2(x, x′′)− d2(x, x′)

2d(x′, x′′)
.
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We first show that y is closer to FM(x) than to FM(x).
Let z′′ ∈ FM(x), it suffices to show that there exist z′ ∈
FM(x) such that d(y, z′) < d(y, z′′). Notice that

d(x, y) < max
x′∈FM(x)

d2(x, z′′)− d2(x, x′)

2d(x′, z′′)
.

Therefore, there exist a z′ ∈ FM(x) for which

d(x, y) <
d2(x, z′′)− d2(x, z′)

2d(z′, z′′)

Thus, since x is a safe point, using Lemma 1, we conclude
that d(y, z′) < d(y, z′′). The proof follows similar argu-
ments for dangerous points, taking the distances as −SM

and flipping the inequalities.

To show maximality, observe that the intersection point
marked by w in Figure 2, which is at distance SM

(x) from
x, can be easily shown to be of equal distances from FM(x)
and FM(x).

While separation provides the maximal zone, it is expensive
to calculate. As can be seen in Definition 4, to estimate the
separation of one specific input, we go over many triplets
of inputs. The exact amount is unbounded and depends on
the dataset. Thus, separation is infeasible to compute in near
real-time. Therefore, when time or computation resources
are limited, we require a different and computationally sim-
pler notion. Accordingly, the following section provides an
efficient approximation of the separation measure.

3.2 FAST-SEPARATION APPROXIMATION

We approximate the separation of a given input using only
its distance from FM(x) and its distance from FM(x). This
simplification allows us to calculate a zone for any given
point, which is not necessarily the maximal one. The re-
liance on these two distances enables a faster calculation
since we do not perform an exhaustive search over many
triplets of inputs. In particular, we do not consider the geo-
metric positioning of the inputs that determine the distance
from these sets.

Definition 5 (Fast-Separation). Given a model M, the fast-
separation of an input x, denoted SM(x), is defined as:

SM(x) =
D(x,FM(x))−D(x,FM(x))

2

Notice that just as is the case for separation, if x is a safe
input, its fast-separation value will be strictly positive and
non-positive otherwise.

Figure 3 illustrates the notion of fast-separation. In particu-
lar, it exemplifies why it only provides an approximation of
the more accurate separation measure. It encapsulates a zone

4 3

(a) SM(x) = SM
(x) = 0.5

3 1

(b) 0.5 = SM(x) 6= SM
(x) = 3.5

Figure 3: Geometric representation of the induced zones of
SM and SM

for different input alignments. SM is repre-
sented by blue arrows and SM

by green arrows.

that is less than or equal to that of separation. Sub-figure
(a) demonstrates a case in which SM(x) = SM

(x), while
sub-figure (b) presents a case where SM

(x) is considerably
larger than SM(x).

Proposition 2. SM is a lower bound of the separation
SM

in the sense that for every safe (dangerous) input 0 ≤
SM(x) ≤ SM

(x) (SM
(x) ≤ SM(x) ≤ 0).

Proof. Let x be a safe input. Since Proposition 1 shows that
SM

(x) is the maximal zone, it suffices to show that SM(x)
is a zone of x. Let y be a point such that

d(x, y) < SM =
D(x,FM(x))−D(x,FM(x))

2
.

We show that D(y,FM(x)) < D(y,FM(x)). Take
z′ ∈ FM(x) and z′′, w ∈ FM(x) such that d(x, z′) =
D(x,FM(x)), d(x, z′′) = D(x,FM(x)), and d(y, w) =
D(y,FM(x)). Using the triangle inequality we get:

D(y,FM(x)) ≤ d(y, z′) ≤ d(x, z′) + d(x, y)

< d(x, z′) +
d(x, z′′)− d(x, z′)

2
=

d(x, z′′) + d(x, z′)

2

= d(x, z′′)− d(x, z′′)− d(x, z′)

2
< d(x, z′′)− d(x, y)

≤ d(x,w)− d(x, y) ≤ d(y, w) = D(y,FM(x))

For dangerous points, the proof follows similar arguments,
switching FM(x)) and FM(x)).

Proposition 2 shows that the absolute value of SM(x) is
always smaller than or equal to that of SM

(x) and that they
have the same sign. Thus, fast-separation is an approxima-
tion of separation in the sense that it uses smaller zones. The
following proposition further provides an approximation
bound for fast-separation.

Proposition 3. The following holds for any point x:

|SM
(x)− SM(x)| ≤ D(x,FM(x)) +D(x,FM(x))

2
.
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Proof. We here prove the bound for safe points x, the proof
for dangerous points is similar. Let x be a safe point. By
definition:

|SM
(x)− SM(x)| = SM

(x)− SM(x) =

= min
x′′∈FM(x)

max
x′∈FM(x)

d2(x, x′′)− d2(x, x′)

2d(x′, x′′)

− D(x,FM(x))−D(x,FM(x))

2

Let z′′ ∈ FM(x) be a point such that d(x, z′′) =
D(x,FM(x)), and let z′ ∈ FM(x) be a point for which the
maximum on the expression above is obtained. Then, we
have:

|SM
(x)− SM(x)|

≤ max
x′∈FM(x)

d2(x, z′′)− d2(x, x′)

2d(x′, z′′)
− d(x, z′′)−D(x,FM(x))

2
(1)

=
d2(x, z′′)− d2(x, z′)

2d(z′, z′′)
− d(x, z′′)−D(x,FM(x))

2
(2)

≤d(x, z′′) + d(x, z′)

2
− d(x, z′′)−D(x,FM(x))

2
(3)

=
d(x, z′) +D(x,FM(x))

2
(4)

≤D(x,FM(x)) +D(x,FM(x))

2
(5)

The first inequality (Equation (1)) holds due to the def-
inition of the minimum function. The second inequality
(Equation (3)) is due to the triangle inequality. The last in-
equality (Equation (5)) holds because, since x is a safe point,
the maximal distance between x and z′ can’t be greater than
the distance from x to FM(x).

Notice that the above bound is tight, in the sense that there
exists an example witnessing the exact bound, as shown
in Figure 4 below.

Figure 4: Example of a point x with |SM
(x)− SM(x)| =

D(x,FM(x))+D(x,FM(x))
2

3.3 PREDICTING CONFIDENCE FROM
SEPARATION

At this point, we showed how to calculate geometric sepa-
ration and fast-separation for points (the latter can be done
efficiently). Next, we take the calculated (fast-)separation
value and derive a confidence estimation conf . We use a
validation set that is disjoint from the train and test sets to

calculate for each input SM
or SM values. We perform a

fitting to map SM
or SM values to confidence probabili-

ties. The fitting is done between SM
(or SM) values and

the ratios of correct classifications (on the validation set)
for each unique value. E.g., if for SM value of 10 we see
that 90% of the points are classified correctly then we’ll
add the pair 〈10, 0.9〉 to the fitting function. We expect very
low confidence values for highly negative (fast-)separation
values, and we expect to approach 100% confidence when
the values become positive enough. The regression function
we finally get accepts a (fast-)separation value in R and out-
puts a scalar in [0, 1] indicating the confidence estimation,
i.e., the predicted success probability for inputs with that
(fast-)separation score.

In principle, our method can accept most post-hoc calibra-
tion methods to perform the fitting. In this paper, we use
isotonic regression as our fitting fuction. Such a function
was shown to work best for the tested workloads both for
our geometric signal and for the model’s original signal, as
done in [Pedregosa et al., 2011].

4 EXPERIMENTAL RESULTS

This section provides experimental results following the
method described in the previous section. We first intro-
duce the datasets, models, and evaluation criteria and then
continue to experimental results.

4.1 METHODOLOGY

4.1.1 Datasets

Our evaluation uses the following standard datasets.

• Modified National Institute of Standards and Tech-
nology database (MNIST) [LeCun and Cortes, 2010],
which consists of hand-written images designed for
training various image processing systems. It includes
70,000 28Œ28 grayscale images belonging to one of
ten labels.

• Fashion MNIST (Fashion) [Xiao et al., 2017], which
is a dataset comprising of 28Œ28 grayscale images of
70,000 fashion products from 10 categories.

• German Traffic Signs Recognition Benchmark (GT-
SRB) [Houben et al., 2013], which is a large image
set of traffic signs devised for the single-image, multi-
class classification problem. It consists of 50,000 RGB
images of traffic signs, belonging to 43 classes.

• American Sign Language (SignLang) [Techperson,
2017], which is a database of hand gestures represent-
ing a multi-class problem with 24 classes of letters. It
consist of 30,000 28Œ28 grayscale images.
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• Canadian Institute for Advanced Research (CI-
FAR10) [A.Krizhevsky et al., 2009], which is a dataset
containing 32x32 RGB images of 60,000 objects from
10 classes.

For each dataset1, we randomly partitioned the data into
three subsets: train set Tr (60%), validation set Vs (20%)
and test set Ts (20%). The train set is used to calculate fast
separation and train the model. The validation set is used
to evaluate the confidence estimation associated with each
fast-separation value. These values, in turn, are used to fit a
Sigmoid function. Finally, the test set is used to evaluate the
confidence on new inputs that were not present in the train
and validation sets.

4.1.2 Models

In our evaluation, we use the following popular machine
learning models: Random Forest (RF) [Breiman, 2001],
Gradient Boosting Decision Trees (GBDT) [Mason et al.,
1999], and Convolutional Neural Network (CNN) [Gu et al.,
2018]. We chose these models because they are different: RF
and GBDT are tree-based, while CNN is a neural network.
For RF and GBDT, we configured the meta parameters
(e.g., the maximal depth of trees) by cross-validation on the
train set. For CNN, we used the configuration suggested
by practitioners. Our specific configurations as well as the
accuracy scores of each of the models are detailed in Leman
and Chouraqui [2022].

4.1.3 Evaluation Criteria

To evaluate our method, we compare our (fast-)separation-
based confidence estimation to: (a) the built-in confidence
in the Sklearn library, (b) the scaling-binning calibrator [Ku-
mar et al., 2019] which we call SBC, (c) the histogram
binning calibrator [Gupta and Ramdas, 2021a] which we
call HB, (d) the temperature scaling calibrator [Guo et al.,
2017a] which we call TS, and (e) the ensemble temperature
scaling calibrator [Zhang et al., 2020] which we call ETS.
TS and ETS are calibration methods for neural networks
thus we only apply those to CNNs. Each method received
the same baseline model as an input yielding a slightly dif-
ferent calibrated model. Note that our method is evaluated
against the uncalibrated model as our method does not affect
the model. Moreover, it allows us to compare our method
against different calibration methods, as shown in Table 1.

To evaluate the confidence predictions, we use the Expected
Calibration Error (ECE), which is a standard method to
evaluate confidence calibration of a model [Xing et al., 2020,
Krishnan and Tickoo, 2020]. Concretely, the predictions
sample of size n are partitioned into M equally spaced

1As is standard practice, we used normalized datasets (e.g.,
same image size). See our github for details.
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Figure 5: An illustration of the inputs to the fitting function
(blue and red dots), and the functions fitted by Sigmoid
(black line) and isotonic regression (green line). The inputs
are for the MNIST dataset, and the Random Forest model.

bins (Bm)m≤M , and ECE measures the difference between
the sample accuracy in the mth bin and the the average
confidence in it [Naeini et al., 2015]. Formally, ECE is
calculated by the following formula:

ECE =

M∑
m=1

|Bm|
n

|acc (Bm)− conf (Bm)|

where:

• acc (Bm) = 1
|Bm| · |{x ∈ Bm : C(x) is correct}|, and

• conf (Bm) = 1
|Bm|

∑
x∈Bm

conf (x).

4.2 FITTING FUNCTION

Post-hoc calibration methods based on fitting functions typ-
ically use either a logistic (Sigmoid) or an isotonic regres-
sion [Zadrozny and Elkan, 2002]. Isotonic regression fits a
non-decreasing free-form line to a sequence of observations.
In comparison, Sigmoid is a continuous step function. We
used both fitting functions on our (fast-)separation values
and obtained similar accuracy. We opt here to present the iso-
tonic regression as it provides the best results, as motivated
by Figure 5.

Figure 5 illustrates an example of the success ratio of the
Random Forest model for MNIST inputs with varying val-
ues of SM scores (similar behavior were observed for the
various models and datasets). We clustered inputs with a
similar score together (into 50 bins overall) as each classifi-
cation is correct or not, and we are looking for the average.
The black line represents the Sigmoid function and the green
line represents the isotonic regression. As can be observed,
both regressions are nearly identical on all the points with
positive SM values. We eventually chose isotonic regres-
sion because it better fitted the few points with negative SM
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Table 1: ECE(%) measures with 95% confidence intervals when varying the calibration method, model and dataset. The
parentheses value show the percentage of relative improvement of SM over other calibration method.

Dataset Model SM SM Sklearn-Iso Sklearn-Platt SBC HB TS ETS

MNIST
CNN .19±.04 .19±.04 - - 8.71±.83(97.8%) .49±.09(61.2%) .29±.06(34.4%) .27±.05(29.6%)

RF .39±.06 .40±.06 .90±.12(56.6%) 1.48±.07(73.6%) 3.66±.38(89.3%) .53±.04(26.4%) - -
GB .36±.07 .35±.09 1.74±.15(79.3%) 1.94±.13(81.4%) 8.23±.24(95.6%) .48±.08(24.9%) - -

GTSRB
CNN .40±.10 .38±.07 - - 28.44±2.08(98.5%) .88±.32(54.5%) 1.11±.40(63.9%) .99±.41(59.5%)

RF .37±.04 .36±.07 2.57±.13(85.6%) 4.27±.14(91.3%) 13.71±.38(97.3%) .81±.16(54.3%) - -
GB .65±.11 .67±.13 9.96±.30(93.4%) 20.25±2.17(96.7%) 31.08±.43(97.9%) 1.36±.24(52.2%) - -

SignLang
CNN .01±.01 .01±.01 - - 17.83±.90(99.9%) .22±.12(95.4%) .25±.09(96.0%) .24±.09(95.8%)

RF .08±.02 .09±.03 .39±.06(79.4%) 1.74±.08(95.4%) 16.88±.66(99.5%) .19±.06(57.8%) - -
GB .08±.03 .08±.02 4.05±0.18(98.0%) 5.96±.17(98.6%) 30.97±.17(99.7%) .47±.04(82.9%) - -

Fashion
CNN .79±.13 .76±.13 - - 7.33±.51(89.2%) 1.93±.20(59.0%) .84±.11(5.9%) .88±.15(10.2%)

RF .74±.16 .79±.10 .91±.11(18.6%) 3.74±.12(80.2%) 3.45±.31(78.5%) 1.08±.15(31.4%) - -
GB .73±.13 .73±.08 3.80±.20(80.7%) 5.71±3.91(87.2%) 3.90±.46(81.2%) 1.06±.14(31.1%) - -

CIFAR-10
CNN 1.27±.19 1.20±.15 - - 3.57±.40(64.4%) 5.99±.26(78.7%) 5.16±.22(75.3%) 5.16±.43(75.3%)

RF 1.15±.24 1.19±.23 3.25±.28(64.6%) 4.59±.24(74.9%) 2.99±.26(61.5%) 2.51±.39(54.1%) - -
GB 1.25±.21 1.31±.16 7.57±.25(83.4%) 8.39±.18(85.1%) 2.70±.34(53.7%) 2.80±.24(55.3%) - -

values. Interestingly, these points were consistently a poor fit
for the Sigmoid regression rendering slightly less accurate
on average. Also, observe that the transition is around the
value 0, indicating that the distinction of safe and dangerous
points is meaningful in confidence evaluation.

4.3 CONFIDENCE EVALUATION

Table 1 presents the main experimental results of our work.
The table summarizes ECEs for our method (with bin size
30).

Each entry in the table describes the ECE, the 95% confi-
dence interval, and (in parenthesis) the improvement of our
fast-separation-based method over each competitor method.
The improvement is calculated using the ratio between the
difference between our ECE and the competitor’s ECE. In
this experiment, we perform ten random splits of the data
into train, validation, and test sets for each model and dataset.
We then measure the ECE of the confidence estimation for
all test set items, average the result and take the 95% confi-
dence intervals.

First, observe that SM and SM
yield very similar ECEs,

and that the differences between them are usually statisti-
cally insignificant. Thus, we conclude that SM is a very
good approximation of SM

despite being considerably sim-
pler to compute. The next interesting comparison is between
SM and SKlearn. We use the same fitting function (Isotonic
regression) in both cases, but SKlearn performs the calibra-
tion on the model’s natural uncertainty estimation, and SM

performs the calibration on geometric distances. Thus, the
benefit of our approach stems from the geometric signal and
not from the chosen fitting function.

Observe that our SM improves the confidence estima-
tions consistently and across the board when compared to
SKlearn, SBC, and HB. Specifically, we derive improve-
ments up to 99% in all tested models, and for all tested
datasets. Such results demonstrate the potential of geometric
signals to improve the effectiveness of uncertainty estima-
tion.

4.4 REAL-TIME COMPUTATION

Table 2 provides the computational advantage of our method.
We used a Macbook Pro with an Intel Core i5 with four
processor cores@2.3 GHz and 8GB RAM in this experiment.
We measure the throughput of confidence evaluations in
predictions per second and the 95% confidence intervals
using five trials for each measurement.

Observe that the dominant factor in operation speed is the
dataset. These differences are due to variations in training
set sizes, where larger training sets result in slower opera-
tion. Importantly, our method runs in 23–46 predictions per
second in all but the CIFAR-10 datasets. Such performance
is within the ballpark for camera-based applications. For
reference, a TV is broadcast in 60 frames per second, and
most animation films use up to 24 frames per second. Thus
our performance is within an applicable scale. CIFAR-10
is considerably larger, and thus our performance on that
dataset is a bit slow. While we can also use parallelism to
obtain a faster runtime and mitigate this issue, we plan to
address larger training sets in future work.
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Table 2: Number of confidence estimations per second for
the SM-based method with 95% confidence intervals.

Dataset Model Predictions per second

MNIST
CNN 22.73 ±1.90

RF 22.42 ±0.66

GBDT 22.91 ±0.46

GTSRB
CNN 25.29 ±0.69

RF 23.23 ±1.19

GBDT 21.78 ±2.18

SignLang
CNN 46.61 ±0.18

RF 45.16 ±2.71

GBDT 46.84 ±0.40

Fashion
CNN 22.99 ±0.16

RF 22.85 ±0.03

GBDT 23.20 ±0.31

CIFAR10
CNN 7.08 ±0.24

RF 6.76 ±0.27

GBDT 6.84 ±0.41

5 CONCLUSION

Our work uses post-hoc calibration techniques but on a
geometry-based signal rather than on the model’s confi-
dence estimation. We demonstrated the feasibility of our
approach in estimating uncertainty for multiple models, and
for multiple datasets. Our evaluation shows that our fast-
separation method (SM) outperforms post-hoc calibration
methods based on the model’s confidence consistently and
across the board. Our approach reduces the error in con-
fidence estimations by up to 99% compared to alternative
methods (depending on the specific dataset and model).

In addition, we showed that for moderately-sized standard
datasets our method achieves near-real time operation. As
suggested by our analysis and indicated by the experimen-
tal results, the complexity of calculating SM depends on
the training-set size which implies that very large datasets
would be slower, and not run in near real-time. Another
related limitation of the work presented in this paper is that
our current approach requires using also the training set.
Since shipping the model with as little communication or
storage overhead is important, our future research focuses
on utilizing a smaller data structure that approximates the
entire training set. Thus, we will develop ways to control
the effect of the dataset size on the run-time by calculat-
ing confidence estimations only on a subset of the dataset.
E.g., by pre-processing the data and removing data inputs
that are geometrically close to each other and reducing the
overheads.
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