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Abstract

This article is the supplement to the UAI 2022
paper ‘Greedy Equivalence Search in the Presence
of Latent Confounders’. It contains all proofs to
the lemmas in the main paper, as well as additional
details and background information. Numbering is
consistent with the main paper.
Software implementation (Matlab) of all code
and experimental settings publicly available via
https://github.com/tomc-ghub/gps_
uai2022.

A REMARK ON SIZE OF MECS

One may wonder whether searching between equivalence
classes is actually worth the trouble, given the famous con-
clusion from Gillispie and Perlman (2002) that the average
size of equivalence classes for DAGs is bounded below 4,
even as n goes to infinity. This was all the more surpris-
ing given that experimental findings from e.g. (Chickering,
2002) reported encountering huge sized equivalence classes.

As demonstrated by He et al. (2015), the main contribu-
tion to this bound comes from graphs with a high average
density of around n/2 that account for the vast majority of
graphs over n nodes, and for which nearly every instance
is almost fully determined. But for sparse graphs with a
density bounded by some constant d� n the size of each
individual equivalence class can become truly huge as n gets
larger. For example (He et al., 2015) report an average equi-
valence class size of 3.5e19 for DAGs over 50 nodes with
average edge density of 4. Therefore despite some potential
overhead, searching over equivalence classes rather than
individual MAGs can still bring a sizeable improvement in
efficiency.

B PROOFS

Below the proof details for the theoretical results in the main
paper.

Lemma 2 In a MAG G, a triple 〈a, b, c〉 is in Ci (resp. Di),
if and only if 〈a, b, c〉 ∈ Ti and 〈a, b, c〉 is a collider (resp.
noncollider) in G.

Proof Clearly the definitions coincide for triples of order
0. First from old to new: if 〈a, b, c〉 ∈ T1 then there is a
discriminating path 〈x, a, b, c〉 in G for which 〈x, a, b〉 is
a collider triple with order 0, hence 〈x, a, b〉 ∈ C0, and
〈x, a, c〉 is a noncollider triple with order 0, 〈x, a, c〉 ∈ D0.
Therefore all conditions for order i = 1 in the new definition
are satisfied, and so 〈a, b, c〉 ∈ C1 resp. D1, depending
on whether the triple is a collider or noncollider in G. By
induction, suppose the mapping is valid up to order i, and
let 〈a, b, c〉 ∈ Ti+1. Then there is a discriminating path
〈x, q1, .., qp, a, b, c〉 in G for which 〈qp, a, b〉 is a collider
triple with order k ≤ i, hence 〈qp, a, b〉 ∈ Ck, and for which
〈qp, a, c〉 is a noncollider triple with order j ≤ i, hence
〈qp, a, c〉 ∈ Dj . Therefore all conditions for order i + 1
in the new definition are satisfied, and so 〈a, b, c〉 ∈ Di+1

resp. Ci+1), again depending on whether the triple is a
noncollider or collider in G.

For the reverse, from new to old: at order i = 1,
if 〈a, b, c〉 ∈ D1 then by definition there is a
∃x : 〈x, a, c〉 ∈ D0 as noncolllider triple, and also
as collider triple 〈x, a, b〉 ∈ C0. But that implies 〈x, a, b, c〉
is a discriminating path in G, and so 〈a, b, c〉 ∈ T1 as we
already saw 〈x, a, b〉 ∈ T0. Similarly when 〈a, b, c〉 ∈ C1.
Again by induction assuming the mapping is valid up to or-
der i, and let 〈a, b, c〉 ∈ Di+1. Then ∃qp : 〈qp, a, c〉 ∈ Dj≤i
and 〈qp, a, b〉 ∈ Ck≤i. If j > 0, then again there is a
qp−1 : 〈qp−1, qp, c〉 ∈ Dm<j and 〈qp−1, qp, a〉 ∈ Cn<k.
The same holds for all subsequent triples until we arrive
at some triple with order 0 for which 〈x, q1, c〉 ∈ D0

and 〈x, q1, q2〉 ∈ Cr. Then 〈x, q1, .., qp, a, b, c〉 is a
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discriminating path, where all required collider triples are
of lower order than i and so also in

⋃
Cj<i. This implies

〈a, b, c〉 ∈ Ti, which proves the lemma.

We can store triples 〈a, b, c〉 as value c stored in a list at
entry (a, b) in an N ×N array. For sparse graphs with node
degree bounded by d, each entry has at most d such entries,
meaning that when searching for a matching triple for, say,
collider 〈a, b, c〉, we do not need to scan the full noncollider
list D, but only at most d such entries at the corresponding
index (a, b) for list D.

Corollary 3 Two MAGs G1 and G2 are Markov equivalent
if and only ifM(G1) =M(G2).

Proof Lemma 2 implies a MEC M(G) is unique and
in a one-to-one correspondence with Lemma 1 which
guarantees ‘if and only if’ Markov equivalence.

In order to prove Lemma 4, we first prove the soundness of
ruleR4′ when applied to the core PAG from definition 4:

R4′: Let Z be a district among the parents of a node y. If
x ∗→ z −→ y, with z ∈ Z and x and y not adjacent, then
orient all u ◦→ y with u ∗→ z′ for some z′ ∈ Z (possibly
z′ = z) as u−→y.

Lemma 1 When applied to a (not necessarily completed)
PAG P that contains all invariant marks of the core PAG,
ruleR4′ is sound.

Proof We prove the triggering condition implies the exist-
ence of a discriminating path for u which means the mark at
u on the edge to y must be invariant. Then we note that an
invariant arrowhead at u would already have been oriented
in the core PAG, which implies any remaining circle mark
must become u−→y.

Firstly, if Z = {z1, .., zn} is a district among parents of
y in P , then all zi ∈ Z have zi −→ y in P , and all zi are
connected among each other by a sequence of one or more
bidirected edges. Suppose R4′ applies with z = z1 and
z′ = zk (possibly z1 = zk). Then there is a path x ∗→
z1(←→ ..zi...←→ zk)←∗u ∗→ y in P . This path is also a
discriminating path for u, as it contains at least three edges,
x is not adjacent to y, and every vertex 〈z1, .., zk〉 is both
collider on this path and also a parent of y. That means
standard FCI orientation ruleR4 applies, and so the triple
〈zk, u, y〉 is either an invariant collider of the form zk←→
u←→y, or an invariant noncolliderzk←∗u−→y. But if it
was an invariant collider, then by Lemma 1 the arrowhead
u←∗ y must have been part of some collider with order
(otherwise there would be two MAGs that are not Markov
equivalent with the same skeleton and colliders with order).
But this does not mean that the triple zk ∗→u←∗ y itself is

necessarily a (collider) triple with order, as definition 1 only
implies that every higher order triple with order corresponds
to a discriminating path, but not the other way around.

As a result, it is possible that there is a discriminating path
for triple zk ∗−∗u−−∗ y, where u is an invariant noncollider
along the path, but where 〈zk, u, y〉 is not a triple with order.
There is no guarantee that in that case the edge u −−∗ y
would be part of some other noncollider triple 〈∗, u, y〉 with
order ≥ 1 (as Lemma 1 only relates to colliders with order),
and hence the invariant tail mark u−−∗ y is not necessarily
present in the core PAG. But that also means that if we
encounter a discriminated node that has not obtained an ex-
plicit edge mark in the core PAG, then it must be noncollider
along that discriminating path, and hence get oriented as
u−→y in the completed PAG.

The reader will notice that the ruleR4′ definition via ‘dis-
trict among parents’ applies to discriminated nodes in gen-
eral, and indeed the standard FCI orientation rule R4 can
be implemented in the same way, without having to look
for specific discriminating paths, at a significant increase in
processing speed.

Lemma 4 For a valid MECM, algorithm 2 will output the
corresponding completed PAG P .

Proof (Rules following the notation in (Zhang, 2008).)
Given the core PAG, all v-structures from rule R0 are
already included. In the eliminated discriminating path rule
R4, for the final 3 nodes 〈.., α, β, γ〉 along a discriminat-
ing path all invariant edge marks at β on the edge to γ are
also already covered in the core PAG via triples with order
k ≥ 1.

All other elements oriented by ruleR4 will get oriented by
R2. In particular: both branches of R4 will also orient an
arrowhead at γ on the edge to β, but this also follows directly
from the second case triggering R2, as 〈α, β, γ〉 together
with already established arc α→ γ satisfy the precondition
for R2 with the roles of α and β reversed, leading to the
invariant arrowhead β ∗→γ. For the remaining arrowhead
orientation at α ∗→β from the second branch of rule R4,
the final three nodes also satisfy the first precondition for
R2, except now with the roles of β and γ reversed.

All other individual orientation rules remain sound, so
that all other rules triggered in creating the PAG by FCI
can/will also be triggered when starting from the MEC,
which means the output PAG is also sound and complete.

C SCORING MECS

This section describes the details behind the BIC score for
MAGs (Richardson and Spirtes, 2002), used to score MECs
as indicated in section 5.1.



To connect a MAG to a linear Gaussian model, we can
associate a MAG G over n = |V| variables with a col-
lection of n × n matrices of structural parameters B(G),
with Bij = 0 iff i = j or j → i /∈ G, and a collection of
positive definite covariance matrices of error/noise terms
Ω(G), where Ωij = 0 iff i 6= j and i←→ j /∈ G. Then the
system of (normal) linear equations V = BV + ε with
B ∈ B(G), ε ∼ N (0,Ω ∈ Ω(G)) implies a multivari-
ate Gaussian distribution over V with covariance matrix
Σ = (I −B)−1Ω(I −B)−T.

For any given choice of B and Ω we can compute the likeli-
hood of the observed sample covariance matrix S. But for
a given MAG G we only have the structure, not the para-
meters. As a reasonable approximation, for a given graph
G we therefore compute the parameters that maximize this
likelihood. For DAGs this boils down to straightforward
regression, but for MAGs in general no such expression ex-
ists, even though they are uniquely identifiable. Instead we
can employ the residual iterative conditional fitting (RICF)
method developed by Drton and Richardson (2008) which
iteratively finds the maximum likelihood solution for the
parameters in the model given the graph G and observed
sample covariance matrix S, and outputs the implied co-
variance matrix Σ̂, from which we can compute the (log)
likelihood of the sample covariance matrix S under the
model covariance Σ̂ for G.

An attractive property, as shown by Nowzohour et al. (2017),
is that this log-likelhood can be decomposed into a sum of
distinct contributions over the separate districts (connected
bidirected components) in the graph G. With each district
Dk a so-called c-component Ck is associated, consisting of
the subgraph Gk of G over the nodes in Dk ∪ paG(Dk),
but with all edges between paG(Ck) ≡ paG(Dk) \ Dk

removed. With this the log-likelihood given N samples
becomes:

l(S|Σ̂G) = −N
2

∑
k

(
|Ck| log 2π+log

|ΣGk |∏
j∈ pa(Ck)

σ2
kj

+

N − 1

N
tr(Σ−1Gk SGk − | pa(Ck)|)

)
(1)

As a result, when computing the score for a modified MEC
we only need to recompute the score for the c-components
that changed relative to the source MEC, providing a signi-
ficant speed improvement for the overall computational cost.
Note that here the use of the arc-augmented MAG extension
for a PAG minimizes the size of the districts, which also
benefits the speed and convergence of the RICF step for
each district in the computation of the score.

To avoid overfitting, the negative log-likehood is typically
regularized by adding a complexity penalty for the number
of free parameters. For that we will use the BIC score for
MAGs from (Richardson and Spirtes, 2002), with n and

e resp. the number of variables and edges in G; see also
(Triantafillou and Tsamardinos, 2016).

BIC(Σ̂,G) = 2l(S|Σ̂G)− log(N)(2n+ e) (2)

Two final remarks: in practice, the score (2) is not guar-
anteed to be a fully equivalent score, as different MAG
instances in the same equivalence class can have different
sized districts, making it harder for the RICF step in 1 to
converge to the same value. However, in theory in the large
sample limit any MAG instance from the true equivalence
class should obtain a higher score than any MAG that is not.
Secondly, the current likelihood score (1) is only defined
for directed graphs, meaning that MAGs with invariant un-
directed edges (identifiable selection bias) cannot be scored
and are therefore skipped in the evaluation. It is possible to
extend the score to include selection bias as well, but that is
left to another article.
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