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1 PROOFS

Proof of Theorem 2.

Let ζ ⊆ ζ ′ ⊆ H and both non-empty. Then, for any x ∈ X , u ∈ U , we have that

(f(x, ζ ′, u))ζ = ((fh(x, u))h∈ζ′)ζ = (fh(x, u))h∈ζ = f(x, ζ, u).

Proof of Theorem 3. LetM′ be constructed fromM by changing causal mechanism f with f ′. To prove equivalence of
M andM′, we only need to show that, for any u ∈ U , x ∈ X , ζ ∈ P(H) \ ∅, it holds that

y = f(x, ζ, u)⇐⇒ y = f ′(x, ζ, u), (1)

as only the causal mechanism was altered in the construction ofM′. Let h ∈ ζ be an arbitrary expert, then

(f ′(x, ζ, u))h
def.
= f(x, {h}, u) = (f(x, ζ, u))h,

where the last equality holds because f is set invariant. Thus, f(x, ζ, u) = f ′(x, ζ, u) for all x ∈ X , ζ ∈ H, u ∈ U .

Proof of Theorem 4. For clarity, we explicitly write YZ={h′} and YZ=ζ to better distinguish the two interventional
outcomes. For discrete probability distribution P (U) the right probability is given by

PM ;do[Z:=ζ′](Yζ = y | X = x) =
∑
u∈U

P (U = u) · 1[f(x, ζ ′, u))ζ = y)],

whereas the left is given by

PM ;do[Z:=ζ](Y = y | X = x) =
∑
u∈U

P (U = u) · 1[f(x, ζ, u) = y].

Because f is a set invariant mechanism over Z, (f(x, ζ ′, u))ζ = f(x, ζ, u), thus,∑
u∈U

P (U = u) · 1[f(x, ζ, u) = y] =
∑
u∈U

P (U = u) · 1[f(x, ζ ′, u))ζ = y].

The proof is analogous for the continuous probability distributions P (U).

Proof of Corollary 1. Choose ζ = {h} in Theorem 4 and note that abusing notation YZ=ζ is in this case equivalent to Yh.

Proof of Corollary 2. Using the definition of counterfactual distributions, the proof is analogous to the proof of Theorem 4
but using the posterior distribution P (U | X = x, Z = {h}, Yh = c). Let ζ ⊆ H be so that h, h′ ∈ ζ. For all c ∈ Y , by
definition, we have that

PM |X=x,Z={h},Y=c;do[Z:={h′}](Y = c′) =
∑
u∈U

P (U = u | X, (YZ={h})h = c) · 1[f(x, {h′}, u) = c′]. (2)
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Using thatM is set invariant we get that

(YZ={h})h = f(x, {h}, U) = (f(x, ζ, U))h = (YZ=ζ)h and 1[f(x, {h′}, u)) = c′] = 1[(f(x, ζ, u))h′ = c′].

Thus, Eq. (2) is equal to∑
u∈U

P (U = u | X, (YZ=ζ)h = c) · 1[(f(x, ζ, u))h′ = c′]
def.
= PM ;do[Z:=ζ](Yh′ = c′ | X = x, Yh = c).

Proof of Theorem 7. Note that for all ζ1, ζ2, ζ3 ⊆ H so that h ∈ ζ1, h′ ∈ ζ2, h, h′ ∈ ζ3 holds that

PM|X=x,Z=ζ1,Yh=c;do[Z=ζ2](Yh′ = c′) = 0 ⇐⇒ PM|X=x,Z={h},Yh=c;do[Z={h′}](Yh′ = c′) = 0, (3)

PM|X=x,Z={h},Yh=c;do[Z={h′}](Yh′ = c′) = 0 ⇐⇒ PM;do[Z=ζ3](Yh′ = c′ | X = x, Z = ζ3, Yh = c) = 0, (4)

where Eq. (3) follows from the definition of set invariance and Eq. (4) follows from Corollary 2. Recall that pζ(h, c) :=
PM;do[Z=ζ](Yh = c | X) and ph(c) := PM;do[Z={h}](Yh = c | X).

It follows from Corollary 1 that, for all h ∈ H , c ∈ Y and ζ, ζ ′ so that h ∈ ζ and h ∈ ζ ′, we have that

pζ(h, c) = ph(h, c) = pζ′(h, c).

Thus, following implications hold

pζ2(h′, c)
pζ1(h, c)

≥ pζ2(h′, c′)
pζ1(h, c′)

⇐⇒ ph′(h′, c)
ph(h, c)

≥ ph′(h′, c′)
ph(h, c′)

⇐⇒ pζ3(h′, c)
pζ3(h, c)

≥ pζ3(h′, c′)
pζ3(h, c′)

.

With these set of implications, it is straight forward to imply one statement from the other.

Proof of Theorem 10. Let ψ be a subgroup in Ψ so that |ψ| ≥ 2. Let h and h′ denote two arbitrary experts in subgroup ψ.
As the Gumbel-Max SI-SCMM(Ψ) is set invariant, it is enough to show that pairwise conditional stability condition is
satisfied for pair h and h′. Analogously to Oberst and Sontag [2019], we proceed by proving the contrapositive, that for all
sets ζ, so that h, h′ ∈ ζ, and c 6= c′

PM(Ψ);do[Z=ζ](Yh′ = c′ | X,Yh = c) 6= 0 =⇒ pζ(h
′, c)

pζ(h, c)
<
pζ(h

′, c′)
pζ(h, c′)

.

If the conditional probability is positive, almost surely there must exist Gumbel noise variables gψ,c and gψ,c′ such that

logP (Yh = c | X) + gψ,c > logP (Yh = c′ | X) + gψ,c′

logP (Yh′ = c | X) + gψ,c < logP (Yh′ = c′ | X) + gψ,c′ ,

as the sub-mechanisms fh and fh′ of each expert share the noise vector of the subgroup ψ.

Recall that, by set invariance, pζ(h, c) = P (Yh = c | X) for all ζ, h, c. Hence, we can substitute the probabilities in both
inequalities. Then, we further subtract the first inequality from the second which cancels out the Gumbel noises. Finally,
using the properties of the logarithm function, the inequality is rearranged deriving the implication.

log pζ(h
′, c)− log pζ(h, c) < log pζ(h

′, c′)− log pζ(h, c
′),

pζ(h
′, c)

pζ(h, c)
<
pζ(h

′, c′)
pζ(h, c′)

.

This proves that the Gumbel-Max SI-SCMM(Ψ) satisfies the pairwise conditional stability condition

pζ(h
′, c)

pζ(h, c)
≥ pζ(h

′, c′)
pζ(h, c′)

=⇒ PM(Ψ);do[Z=ζ](Yh′ = c′ | X,Yh = c) = 0,

for any two experts in the same subgroup in Ψ.



2 RANDOMIZED GREEDY ALGORITHM FOR THE CLIQUE PARTITIONING
PROBLEM

The idea behind the simple greedy randomized Algorithm 1 is to sequentially grow a clique starting from a random vertex in
G until no vertices can be added, remove this clique from the graph and repeat this process on the remaining graph until no
vertices are left. For the current clique ψ the set of vertices that can be added, called candidate set, consists of vertices that
have edges to all the vertices in ψ so that the sum these edge weights is non-positive. The expert with minimum sum is
added next to the clique, and the candidate set is updated.

The updated candidate set is a subset of the previous set, thus, the sum of edge weights of a vertex connected to the updated
clique can be computed in constant time by considering the previous value and the weight of the edge to the newly added
vertex. If no edge exists, the vertex can be removed from the candidate set. Algorithm 1 can thus be implemented in O(|E|).

Algorithm 1 Greedy Algorithm for the Clique Partitioning Problem, N(ψ) denotes the set of vertices not in ψ with edges to
all vertices in ψ

Input: weighted, undirected graph G = (H, E , w)
while G not empty do

pick random vertex h
ψ ← h
while N(ψ) not empty do
h∗ ← arg minh′∈N(ψ)

∑
h∈ψ w({h′, h})

if
∑
h∈ψ w({h∗, h}) ≤ 0 then

ψ ← h∗

else
break

end if
end while
Ψ← ψ
delete ψ from G
ψ = ∅

end while
return Ψ

We note that, since the algorithm minimizes the sum of weights for each clique sequentially, it’s performance in recovering
a partition minimizing the overall sum depends on the sequence of sampled vertices which we start each clique from. To
stabilize the algorithm’s performance, one can rerun the algorithm a few times and choose among the returned partitions the
one minimizing the overall sum of edge weights between vertices in the same set (see objective function in optimization
problem 7). In the experiments on real (synthetic) data, we run Algorithm 1 10 (5) times.

3 EXPERIMENTS ON SYNTHETIC DATA

In this section, we assess the performance of Algorithm 1 at recovering the groups of mutually similar experts underpinning
our Gumbel-Max SI-SCM using synthetic data.

Experimental setup. We consider a synthetic prediction task with k = 5 labels and 20 features per sample, whose values
we sample uniformly at random from the interval [0, 1], and a setH of 48 synthetic experts. These synthetic experts make
label predictions according to a Gumbel-Max SI-SCM with five disjoint groups of mutually similar experts Ψ, i.e., each
expert within a group ψ ∈ Ψ use the same Gumbel noise within the model1. Moreover, for each expert, the probability
P (Yh = c | X = x) is given by a multinomial logit model with random weight coefficients w = (w1, . . . , w5), which we
also sample uniformly at random from the interval [0, 1] independently for each expert, i.e.,

P (Yh = c | X = x) =
exp(wc · x)∑
j∈Y exp(wj · x)

. (5)

1The groups in the partition Ψ contain 6, 7, 11, 11 and 13 experts.
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Figure 1: Performance of Algorithm 1 at recovering the partition Ψ given the true probabilities P (Yh = c | X = x) under
different amounts of data m and sparsity levels s ∈ (0, 1). To compute the mean and the standard deviation in panels (a), (b)
and (c), we run each experiment five times.

We measure the performance of Algorithm 1 at recovering the partition Ψ given the true probabilities P (Yh = c | X = x)
under different amounts of training data m and sparsity levels s ∈ (0, 1). The sparsity level s controls the average
number of observed expert predictions per sample, i.e., for each sample, all experts make a prediction but we only observe
max{2, (1 − s)|H|}, picked at random. Here, note that, as the sparsity level s decreases (increases) and the amount of
training data increases (decreases), it is easier (harder) to recover the partition Ψ.

As a measure of the difficulty of each inference problem, we will use the edge ratio r, defined as the fraction of pair of
experts who belong to the same group ψ ∈ Ψ, among all pairs whose predictions did not violate conditional stability and
were at least once observed for the same sample. As performance metrics, we will use:

• The adjusted random index (ARI), which measures similarity between the partition Ψ̂ returned by Algorithm 1 and the
true partition Ψ. Its value lies in the interval [0, 1] where 1.0 means full recovery and 0.0 means a completely random
partition was recovered with no similarity to the true one.

• The average 0/1-loss on a held-out set (with 1000 samples) of a predictor that, given an observed label Yh, returns the
most likely label Yh′ under the inferred counterfactual distribution PM(Ψ̂) |X=x,Z={h}Y=yh;do(Z={h′})(Y). Here, to
estimate the inferred counterfactual distributions, we use 500 samples.

As a point of comparison, for the second performance metric, we also compute the average 0/1-loss over the same held-out
set of two other predictors that, given an observed label Yh, return the most likely label Yh′ under the true counterfactual distri-
butions PM(Ψ) |X=x,Z={h}Y=yh;do(Z={h′})(Y) and the counterfactual distribution PM(H) |X=x,Z={h}Y=yh;do(Z={h′})(Y),
respectively.

Results. Figure 1 summarizes the results, which show that, as long as the edge ratio r > 0.3, the inferred partition Ψ̂ is
very similar to the true partition Ψ (i.e., the value of ARI is very close to 1) and the 0/1-losses of the predictors that use
M(Ψ̂) andM(Ψ) respectively are very similar. Here, note however that, even the predictor that uses the true modelM(Ψ)
has a non zero 0/1-loss is not error free because, given an observed expert prediction Yh and feature vector x, the expert
prediction Yh′ is not deterministic.

4 ADDITIONAL FIGURES FOR EXPERIMENTS ON REAL DATA
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Figure 2: Different models used in our experiments on real data.
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Figure 3: Size of the mutually similar expert groups returned by Algorithm 1 for the preprocessed CIFAR-10H dataset.
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(a) Gumbel-Max SI-SCM
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Figure 4: Confusion matrices of the counterfactual predictions of our model and the predictions of the two baselines for
expert’s labels on the test dataset.
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Figure 5: Per-expert test accuracy achieved by the baseline GNB+CNB on the preprocessed CIFAR-10H dataset. For each
expert h′, the y-axis measures the test accuracy whenever the observed expert h belongs to the same group of mutually
similar experts as h′ and the x-axis measures the test accuracy whenever h does not belong to the same group. For each cell,
the darkness is proportional to the number of experts with the corresponding test accuracies.
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