
On Provably Robust Meta-Bayesian Optimization (Supplementary material)

Zhongxiang Dai1 Yizhou Chen1 Haibin Yu2 Bryan Kian Hsiang Low1 Patrick Jaillet3

1Department of Computer Science, National University of Singapore, Republic of Singapore
2Department of Data Platform, Tencent

3Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, USA

A PROOF OF THEOREM 1

To begin with, we need the following lemma to give a high-probability confidence bound on the target function, which will
be used in the theoretical analysis of both Theorems 1 and 2.

Lemma 2. Let δ ∈ (0, 1) and βt = B + σ
√

2(γt−1 + 1 + log(4/δ)), then

|f(x)− µt−1(x)| ≤ βtσt−1(x) ∀x ∈ D, t ≥ 1

which holds with probability of ≥ 1− δ/4.

Lemma A follows directly from Theorem 2 of [Chowdhury and Gopalan, 2017].

To facilitate the theoretical analysis of RM-GP-UCB, we introduce the following auxiliary term:

ζ̃t(x) = νt

 M∑
i=1

ωi
[
µ̃i(x) + τ σ̃i(x)

]+ (1− νt)
[
µt−1(x) + βtσt−1(x)

]
(8)

in which µ̃i(x) and σ̃i(x) are obtained by replacing each noisy output of the meta-observations yi,j in the calculation of
µi(x) and σi(x) (2) by the (hypothetically available) noisy target function output observation at the corresponding input
xi,j . Eq. (8) will serve as the bridge to connect the acquisition function of RM-GP-UCB (2) with the target function f
in the subsequent theoretical analysis, which will be demonstrated in Appendix A.2. To simplify exposition, we omit the
superscript in our notation to represent the acquisition function (2), i.e., we use ζt to denote the acquisition function of
RM-GP-UCB instead of ζ

UCB
t . The next lemma shows that the difference between ζt(x) (2) and ζ̃t(x) (8) is bounded

∀x ∈ D, whose proof is given in Appendix A.1.

Lemma 3. Let δ ∈ (0, 1). Suppose the RM-GP-UCB algorithm is run with parameters νt ∈ [0, 1] ∀t ≥ 1, and ωi ≥ 0 for
i = 1, . . . ,M and

∑
i=1,...,M ωi = 1. Then with probability of ≥ 1− δ/4,∣∣∣ζt(x)− ζ̃t(x)

∣∣∣ ≤ νtα ∀x ∈ D

in which

α ,
M∑
i=1

ωi
Ni
σ2

(2

√
2σ2 log

8Ni
δ

+ di).

Next, because µ̃i(x) and σ̃i(x) are calculated using the (hypothetically available) noisy observations of the target function
(i.e., same as µt−1(x) and σt−1(x)), we can also get the following lemma on the concentration of the target function f
which, similar to Lemma 2 above, also follows directly from Theorem 2 of [Chowdhury and Gopalan, 2017].

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<dzx@nus.edu.sg>?Subject=Your UAI 2022 paper

Lemma 4. Let τ = B + σ
√

2(γN + 1 + log(4M/δ)), we have that

|f(x)− µ̃i(x)| ≤ τ σ̃i(x) ∀x ∈ D, i = 1, ...,M,

which also holds with probability ≥ 1− δ/4.

A.1 PROOF OF LEMMA 3

Let Ki = [k(xi,j ,xi,j′)]j,j′=1,...,Ni represent the Gram matrix corresponding to the inputs of the meta-observations from
meta-task i, and ki = [k(xi,j ,x)]>j=1,...,Ni

. Denote by λj [A] the j-th eigenvalue of matrix A. Firstly, we need the following
lemma proving an upper bound on matrix L2 norm:

Lemma 5. For all i = 1, . . . ,M , we have that∥∥∥∥(Ki + σ2I
)−1∥∥∥∥

2

≤ 1

σ2
.

Proof. ∥∥∥∥(Ki + σ2I
)−1∥∥∥∥

2

=

√
max

j=1,...,Ni
λj

[(
(Ki + σ2I)

−1
)>

(Ki + σ2I)
−1
]

=

√
max

j=1,...,Ni
λj

[
(Ki + σ2I)

−1
]2

≤ 1

σ2

Next, define f i = [fi(xi,j)]j=1,...,Ni (in which fi(xi,j) represents the value of meta-function i at input xi,j), and
f̃i = [f(xi,j)]j=1,...,Ni (in which f(xi,j) represents the value of target function at input xi,j). Similarly, define yi =
[yi,j]j=1,...,Ni (in which yi,j represents the noisy output observation of meta-task i at input xi,j), and ỹi = [y(xi,j)]j=1,...,Ni

(in which y(xi,j) represents the hypothetically observed noisy output observation of the target function at input xi,j). With
these definitions, the next lemma shows upper bounds on the distance between yi and f i, as well as that distance between ỹi
and f̃i.

Lemma 6. With probability ≥ 1− δ/4,

∥∥∥yi − f i

∥∥∥
2
≤
√
Ni

√
2σ2 log

8Ni
δ
,∥∥∥ỹi − f̃i

∥∥∥
2
≤
√
Ni

√
2σ2 log

8Ni
δ
.

Proof. Following the same analysis as Lemma 5.1 of [Srinivas et al., 2010], we have that for the standard Gaussian random
variable z ∼ N (0, 1),

P(|z| > c) ≤ e− c
2

2 . (9)

Since for each j = 1, . . . , Ni, we have that yi,j − fi(xi,j) ∼ N (0, σ2) and that y(xi,j)− f(xi,j) ∼ N (0, σ2), which leads
to the following,

P

(∣∣∣∣yi,j − fi(xi,j)σ

∣∣∣∣ >
√

2 log
8Ni
δ

)
= P

(∣∣yi,j − fi(xi,j)∣∣ >√2σ2 log
8Ni
δ

)
≤ δ

8Ni
,

P

(∣∣∣∣y(xi,j)− f(xi,j)

σ

∣∣∣∣ >
√

2 log
8Ni
δ

)
= P

(∣∣y(xi,j)− f(xi,j)
∣∣ >√2σ2 log

8Ni
δ

)
≤ δ

8Ni
.

Taking a union bound over j = 1, . . . , Ni for each of the two equations above, we have that for all j = 1, . . . , Ni,∣∣yi,j − fi(xi,j)∣∣ ≤√2σ2 log
8Ni
δ
,

∣∣y(xi,j)− f(xi,j)
∣∣ ≤√2σ2 log

8Ni
δ
,

both of which hold with probability ≥ 1− δ/8. Therefore, with probability ≥ 1− δ/8,

∥∥∥yi − f i

∥∥∥
2

=

√√√√ Ni∑
j=1

∣∣yi,j − fi(xi,j)∣∣2 ≤
√√√√ Ni∑

j=1

2σ2 log
8Ni
δ
≤
√
Ni

√
2σ2 log

8Ni
δ
. (10)

Repeating the procedure above leads to ∥∥∥ỹi − f̃i

∥∥∥
2
≤
√
Ni

√
2σ2 log

8Ni
δ

(11)

which also holds with probability ≥ 1− δ/8. Taking a union bound over equations (10) and (11) completes the proof.

With these supporting lemmas, Lemma 3 can be proved as follows:

∣∣∣ζt(x)− ζ̃t(x)
∣∣∣ =

∣∣∣∣∣∣νt
 M∑
i=1

ωi[µi(x) +
√
τσi(x)]

− νt
 M∑
i=1

ωi[µ̃i(x) +
√
τ σ̃i(x)]

∣∣∣∣∣∣
(a)
=

∣∣∣∣∣∣νt
M∑
i=1

ωi[µi(x)− µ̃i(x)]

∣∣∣∣∣∣
≤ νt

M∑
i=1

ωi
∣∣µi(x)− µ̃i(x)

∣∣
≤ νt

M∑
i=1

ωi

∣∣∣ki(x)>(Ki + σ2I)−1(yi − ỹi)
∣∣∣

(b)
≤ νt

M∑
i=1

ωi
∥∥ki(x)

∥∥
2

∥∥∥(Ki + σ2I)−1
∥∥∥
2
‖yi − ỹi‖2

(c)
≤ νt

M∑
i=1

ωi
∥∥ki(x)

∥∥
2

1

σ2
‖yi − ỹi‖2

(d)
≤ νt

M∑
i=1

ωi
√
Ni

1

σ2
‖yi − ỹi‖2

≤ νt
M∑
i=1

ωi

√
Ni
σ2

∥∥∥yi − f i + f i − f̃i + f̃i − ỹi

∥∥∥
2

≤ νt
M∑
i=1

ωi

√
Ni
σ2

[∥∥∥yi − f i

∥∥∥
2

+
∥∥∥f i − f̃i

∥∥∥
2

+
∥∥∥f̃i − ỹi

∥∥∥
2

]
(e)
≤ νt

M∑
i=1

ωi

√
Ni
σ2

(
2
√
Ni

√
2σ2 log

8Ni
δ

+
∥∥∥f i − f̃i

∥∥∥
2

)

= νt

M∑
i=1

ωi

√
Ni
σ2

2
√
Ni

√
2σ2 log

8Ni
δ

+

√√√√ Ni∑
j=1

(
fi(xi,j)− f(xi,j)

)2
(f)
≤ νt

M∑
i=1

ωi

√
Ni
σ2

(
2
√
Ni

√
2σ2 log

8Ni
δ

+ di
√
Ni

)

= νt

M∑
i=1

ωi
Ni
σ2

(
2

√
2σ2 log

8Ni
δ

+ di

)
, νtα (12)

which holds with probability≥ 1− δ/4. (a) holds because σi(x) = σ̃i(x) for all x ∈ D, because the posterior standard devi-
ation only depends on the input locations and is independent of the corresponding output responses; (b) follows from Cauchy-
Schwarz inequality, (c) follows from Lemma 5, (d) results from the assumption w.l.o.g. that k

(
x,x′

)
≤ 1 for all x,x′ ∈ D,

(e) follows from Lemma 6, (f) is obtained from the definition of the function gap: di , maxj=1,...,Ni

∣∣f(xi,j)− fi(xi,j)
∣∣

for i = 1, . . . ,M . This completes the proof of Lemma 3.

A.2 PROOF OF THEOREM 1

To begin with, we need the following lemma showing a high-probability upper bound on the global maximum of the target
function.

Lemma 7. Given δ ∈ (0, 1). Let x∗ denote a global maximizer of the target function f , and α be as defined in Lemma 3.
Suppose the RM-GP-UCB algorithm is run with the parameter νt ∈ [0, 1] for all t ≥ 1. Then, with probability ≥ 1− 3δ/4,

f(x∗) ≤ ζt(xt) + νtα ∀t ≥ 1.

Proof. Firstly, as a result of Lemma 2 and Lemma 4 (both hold with probability of ≥ 1− δ/4), at any iteration t ≥ 1 and
for all x ∈ D, we have that with probability ≥ 1− δ/4− δ/4, ζ̃t(x) is an upper bound on f(x):

ζ̃t(x)− f(x) = ζ̃t(x)−

νt M∑
i=1

ωif(x) + (1− ηt)f(x)


= νt

M∑
i=1

ωi
[
µ̃i(x) +

√
τ σ̃i(x)− f(x)

]
+ (1− νt)

[
µt−1(x) +

√
βtσt−1(x)− f(x)

]
≥ 0.

(13)

Therefore, with probability ≥ 1− δ/4− δ/4− δ/4,

f(x∗)
(a)
≤ ζ̃t(x∗)

(b)
≤ ζt(x

∗) + νtα
(c)
≤ ζt(xt) + νtα (14)

in which (a) results from (13), (b) is obtained via Lemma 3 which holds with probability of ≥ 1− δ/4, and (c) follows from
the policy for selecting xt, i.e., by maximizing (2). This completes the proof.

Subsequently, we can show a high-probability upper bound on the instantaneous regret with the following lemma .

Lemma 8. Given δ ∈ (0, 1). Let α be as defined in Lemma 3. Suppose the RM-GP-UCB algorithm is run with the parameters
βt, τ and νt. Then, with probability ≥ 1− 3δ/4, ∀t ≥ 1,

rt ≤ 2νt(α+ τ) + 2(1− νt)βtσt−1(xt).

Proof. The instantaneous regret can be upper-bounded by

rt = f(x∗)− f(xt)
(a)
≤ ζt(xt) + νtα− f(xt)

≤ ζt(xt)− ζ̃t(xt) + ζ̃t(xt)− f(xt) + νtα

(b)
≤ νtα+ νt

M∑
i=1

ωi
[
ũi(xt) + τ σ̃i(xt)

]
+ (1− νt)

[
ut−1(xt) + βtσt−1(xt)

]
− f(xt) + νtα

= νtα+ νt

M∑
i=1

ωi
[
ũi(xt) + τ σ̃i(xt)

]
+ (1− νt)

[
ut−1(xt) + βtσt−1(xt)

]
−

νt M∑
i=1

ωif(xt) + (1− νt)f(xt)

+ νtα

≤ νtα+ νt

M∑
i=1

ωi
[
ũi(xt)− f(xt)

]
+ νt

M∑
i=1

ωiτ σ̃i(xt)

+ (1− νt)
[
ut−1(xt)− f(xt)

]
+ (1− νt)βtσt−1(xt) + νtα

(c)
≤ 2νtα+ 2νt

M∑
i=1

ωiτ σ̃i(xt) + 2(1− νt)βtσt−1(xt)

(d)
≤ 2νtα+ 2νtτ + 2(1− νt)βtσt−1(xt)

≤ 2νt(α+ τ) + 2(1− νt)βtσt−1(xt)

(15)

which holds with probability ≥ 1 − 3δ/4. (a) follows from Lemma 7 which holds with probability of ≥ 1 − 3δ/4, (b)
results from Lemma 3 as well as the definition of ζ̃t(xt) (8), (c) is a result of Lemma 2 and Lemma 4, and (d) follows
because σ̃i(xt) ≤ 1 for all xt ∈ D, which can be easily verified using the formula of the GP posterior variance (1) and the
assumption that k(x,x′) ≤ 1 for all x,x′ ∈ D. The error probabilities 3δ/4 = δ/4 + δ/4 + δ/4 result from Lemmas 2, 3
and 4.

Next, we need to connect the second term from Lemma 8 with the information gain. The following lemma, which is Lemma
5.3 of [Srinivas et al., 2010], defines the information gain on the target function from any set of observations.

Lemma 9. Let fT and yT denote the set of function values and noisy observations of the target function respectively after T
iterations. Then, the information gain about f from the first T observations can be expressed as

I(yT ; fT) =
1

2

T∑
t=1

log
[
1 + σ−2σ2

t−1(xt)
]
.

Subsequently, we can upper bound the second term from Lemma 8 (summed from iterations 1 to T) by the maximum
information gain via the following lemma.

Lemma 10. Suppose the RM-GP-UCB algorithm is run with the parameters βt ∀t ≥ 1 and a non-increasing sequence
νt ∈ [0, 1] ∀t ≥ 1. Define the maximum information gain as γT = maxA∈D,|A|=T I(yA; fA) in which fA and yA represent
the function values and noisy observations from a set A of inputs of size T . Then,

T∑
t=1

[
2(1− νt)βtσt−1(xt)

]2 ≤ (1− νT)2C1β
2
T γT

in which C1 , 8
log(1+σ−2) .

Proof. Each term inside the summation can be upper-bounded by

4(1− νt)2β2
t σ

2
t−1(xt)

(a)
≤ 4(1− νT)2β2

Tσ
2
(
σ−2σ2

t−1(xt)
)

(b)
≤ 4(1− νT)2β2

Tσ
2

(
σ−2

log(1 + σ−2)
log
(

1 + σ−2σ2
t−1(xt)

))

= (1− νT)2β2
T

8

log(1 + σ−2)

[
1

2
log
(

1 + σ−2σ2
t−1(xt)

)] (16)

in which (a) follows since βt is non-decreasing in t and νt is non-increasing in t, (b) follows since σ−2x ≤ σ−2

log(1+σ−2) log(1+

σ−2x) for all x ∈ (0, 1] and σ2
t−1(xt) ∈ (0, 1].

As a result, the summation can be decomposed as

T∑
t=1

[
2(1− νt)βtσt−1(xt)

]2 (a)
≤ (1− νT)2β2

T

8

log(1 + σ−2)

T∑
t=1

[
1

2
log
(

1 + σ−2σ2
t−1(xt)

)]
(b)
= (1− νT)2β2

T

8

log(1 + σ−2)
I(yT ; fT)

(c)
≤ (1− νT)2C1β

2
T γT

in which (a) results from (16), (b) follows from Lemma 9, and (c) is obtained by making use of the definition of C1 and
γT .

Finally, an upper bound on the cumulative regret follows from combining these supporting lemmas:

RT =

T∑
t=1

rt
(a)
≤

T∑
t=1

[
2νt(α+ τ) + 2 (1− νt)βtσt−1(xt)

]
= 2(α+ τ)

T∑
t=1

νt +

T∑
t=1

2(1− νt)βtσt−1(xt)

(b)
≤ 2(α+ τ)

T∑
t=1

νt +
√
T

√√√√ T∑
t=1

[
2(1− νt)βtσt−1(xt)

]2
(c)
≤ 2(α+ τ)

T∑
t=1

νt +
√
C1T (1− νT)2β2

T γT

(d)
≤ 2(α+ τ)

T∑
t=1

νt + βT
√
C1TγT

(17)

which holds with probability ≥ 1− 3δ/4. (a) is a result of Lemma 8, (b) follows from Cauchy-Schwarz inequality, (c) is
obtained using Lemma 10, and (d) follows since 1− νT ≤ 1. This completes the proof.

If the meta-weights ωi’s are allowed to change with t (i.e., when our online meta-weight optimization is used), then the proof
here only needs to be modified to let α depend on t: RT ≤ 2τ

∑T
t=1 νt + 2

∑T
t=1 νtαt + βT

√
C1TγT . In this case, the

no-regret convergence guarantee of RM-GP-UCB (Sec. 4.1) is still preserved since in this case, we can simply upper-bound

every ωi,t by 1. That is RT ≤ 2(α′ + τ)
∑T
t=1 νt + βT

√
C1TγT , with α′ ,

∑M
i=1

Ni
σ2 (2

√
2σ2 log 8Ni

δ + di).

A.3 META-TASKS CAN IMPROVE THE CONVERGENCE BY ACCELERATING EXPLORATION

Here, we utilize the analysis in Appendix A.2 to illustrate how the meta-tasks (if similar to the target task) can help
RM-GP-UCB obtain a better regret bound than standard GP-UCB in the early stage of the algorithm. For simplicity, we focus
on the most favorable scenario where all meta-functions have equal values to the target function at their corresponding input

locations, i.e., all function gaps are 0: di = maxj=1,...,Ni

∣∣f(xi,j)− fi(xi,j)
∣∣ = 0,∀i = 1, . . . ,M . Although not realistic,

this scenario is useful for illustrating how the meta-tasks help our RM-GP-UCB algorithm achieve a better convergence at
the initial stage.

In this case, according to the definition of ζ̃t (8) and ζt (2), we have that ζ̃t(x) = ζt(x),∀x ∈ D, t ≥ 1. As a result, the
analysis of (14) in the proof of Lemma 7 can be similarly applied, yielding:

f(x∗) ≤ ζ̃t(x∗) = ζt(x
∗) ≤ ζt(xt). (18)

Next, we can re-analyze the instantaneous regret following similar steps to (15):

rt = f(x∗)− f(xt) ≤ ζt(xt)− f(xt)

≤ 2νt

M∑
i=1

ωiτσi(xt) + 2(1− νt)βtσt−1(xt)

= 2νt

 M∑
i=1

ωiτσi(xt)− βtσt−1(xt)


︸ ︷︷ ︸

A1

+ 2βtσt−1(xt)︸ ︷︷ ︸
A2

,

(19)

in which some intermediate steps that are identical to those used in (15) have been omitted for simplicity. Note that term A2

in (19) is identical to the upper bound on the instantaneous regret for the standard GP-UCB algorithm [Srinivas et al., 2010].
Therefore, the meta-tasks affect the upper bound on the instantaneous regret through the term A1.

Recall Theorem 1 has told us that we should choose νt → 0 as t → ∞. In the initial stage of the algorithm when νt is
large, the impact of A1 on the regret of the algorithm is large. In this case, the meta-tasks improve the upper bound on the
instantaneous regret (compared with standard GP-UCB) if A1 < 0, that is:

M∑
i=1

ωiσi(xt) <
βt
τ
σt−1(xt). (20)

In other words, RM-GP-UCB converges faster than standard GP-UCB in the initial stage if the (weighted combination
of) meta-tasks have smaller uncertainty (i.e., posterior standard deviation) at xt compared with the target task (scaled by
βt/τ). Fortunately, in the early stage of the algorithm, this condition is highly likely to be satisfied: When the number of
observations of the target task is small, the posterior standard deviation of the target GP posterior (i.e., RHS of Equation (20))
is usually large; therefore, Equation (20) is highly likely to be satisfied. This insight turns out to have an intuitive and elegant
interpretation as well. In the initial stage of the standard GP-UCB algorithm, due to the lack of observations, the algorithm
has large uncertainty regarding the objective function and hence tends to explore; however, the meta-tasks (assuming that
they are similar to the target task) provides additional information for the algorithm, which reduces the uncertainty about
the objective function and hence decreases the requirement for initial exploration. To summarize, in the initial stage, the
meta-tasks, if similar to the target task, help RM-GP-UCB achieve smaller regret upper bound (hence converge faster) than
GP-UCB by reducing the degree of exploration. In less favorable scenarios where the function gaps are nonzero (i.e., the
meta-functions are not exactly equal to the target function), some amount of errors will be introduced to the upper bound on
the instantaneous regret (19). As a results, a positive error term will be added to the LHS of (20), making the theoretical
condition for a faster convergence (20) harder to satisfy. At later stages where νt is already small and close to 0, the impact
of the term A1 is significantly diminished, thus allowing our RM-GP-UCB algorithm to converge to no regret at a similar
rate to standard GP-UCB.

B PROOF OF THEOREM 2

Our theoretical analysis of RM-GP-TS shares similarity with the works of [Dai et al., 2020b, 2021] but has important
differences, e.g., unlike the works of [Dai et al., 2020b, 2021], RM-GP-TS does not suffer from the error introduced by
random Fourier features approximation since we do not need to consider the issues of communication efficiency and
retaining (hence not transmitting) the raw data.

Based on the acquisition function ζt for RM-GP-TS (3) (we have again removed the superscript for simplicity), define E1t as
the event that ζt(x) = f t(x) which happens with probability 1−νt, and define E2t as the event that ζt(x) =

∑M
i=1ωi

[
f
t

i(x)
]

which happens with probability νt. Define Ft−1 as the filtration containing the history of input-output pairs of the target task
up to and including iteration t− 1.

Lemma 11. With τ defined in Lemma 4, we have that

|fi(x)− µi(x)| ≤ τσi(x) ∀x ∈ D, i = 1, ...,M

which holds with probability ≥ 1− δ/4.

Similar to Lemma 2 and Lemma 4, Lemma 11 also follows from Theorem 2 of [Chowdhury and Gopalan, 2017]. Next, we
also need the following lemma showing the concentration of functions sampled from the GP posterior around the posterior
mean, for both the target function and the meta-functions.

Lemma 12. With βt defined in Lemma 2 and τ defined in Lemma 4, we have that

|f t(x)− µt−1(x)| ≤ βt

√
2 log(

|D|t22π2

δ
)σt−1(x), ∀x ∈ D, t ≥ 1,

which holds with probability ≥ 1− δ/12, and that

|f ti (x)− µi(x)| ≤ τ
√

2 log(
M |D|t22π2

δ
)σi(x), ∀x ∈ D, t ≥ 1, i = 1, ...,M

which holds with probability ≥ 1− δ/12.

The proof of Lemma 12 follows straightforwardly from Lemma 5 of [Chowdhury and Gopalan, 2017], together with a
union bound over all x ∈ D and over all t ≥ 1, as well as an additional union bound over all M meta-tasks for the second
inequality.

Lemma 13. Define d′i , maxx∈D |f(x) − fi(x)|. Define ct , βt

(
1 +

√
2 log(|D|t

22π2

δ)

)
, and c′t ,

τ

(
1 +

√
2 log(M |D|t

22π2

δ)

)
. With probability ≥ 1− δ/4− δ/4− δ/12− δ/12 = 1− 2δ/3, we have that

|f t(x)−
M∑
i=1

ωif
t
i (x)| ≤ ct + c′t +

M∑
i=1

ωid
′
i, ∀x ∈ D, t ≥ 1.

Proof. Firstly, we can bound the difference between the target function and a sampled function from its GP posterior.

|f t(x)− f(x)| ≤ |f t(x)− µt−1(x)|+ |µt−1(x)− f(x)|
(a)

≤ βt

√
2 log(

|D|t22π2

δ
)σt−1(x) + βtσt−1(x)

= ctσt−1(x),

(21)

where (a) results from Lemma 12 and Lemma 2, and hence holds with probability of ≥ 1− δ/12− δ/4. Next, we do the
same for all meta-functions i = 1, . . . ,M .

|f ti (x)− fi(x)| ≤ |f ti (x)− µi(x)|+ |µi(x)− fi(x)|
(a)

≤ τσi(x) + τ

√
2 log(

M |D|t22π2

δ
)σi(x)

= c′tσi(x),

(22)

where (a) results from Lemma 12 and Lemma 11, and hence also holds with probability of ≥ 1− δ/12− δ/4. Therefore,
combining the above two inequalities gives us:

|f t(x)− f ti (x)| ≤ |f t(x)− f(x)|+ |f(x)− fi(x)|+ |fi(x)− f ti (x)|
≤ ctσt−1(x) + c′tσi(x) + d′i

≤ ctσt−1(x) + c′t + d′i,

(23)

in which the last inequality follows since σi(x) ≤ 1. Finally, the lemma can be proved as:

|f t(x)−
M∑
i=1

ωif
t
i (x)| ≤

M∑
i=1

ωi|f t(x)− f ti (x)|

≤
M∑
i=1

ωi
(
ctσt−1(x) + c′t + d′i

)
≤ ct + c′t +

M∑
i=1

ωid
′
i.

(24)

Next, we define the set of "saturated points" in an iteration t, which are those inputs which incur large regrets in iteration t.

Definition 1. At iteration t, define the set of saturated points as

St , {x ∈ D|∆(x) > ctσt−1(x)},

where ∆(x) , f(x∗)− f(x).

The next lemma will be useful in proving that the input we query in iteration t is unsaturated (i.e., in proving Lemma 15),
and its proof makes use of Gaussian anti-concentration inequality.

Lemma 14. With probability of ≥ 1− δ/4,

P
(
f t(x) > f(x)|Ft−1, E1t

)
≥ p, ∀t ≥ 1.

where p , e−1

4
√
π

.

Proof. Define θt ,
|f(x)−µt−1(x)|
βtσt−1(x)

.

P
(
f t(x) > f(x)|Ft−1, E1t

)
= P

(
f t(x)− µt−1(x)

βtσt−1(x)
>
f(x)− µt−1(x)

βtσt−1(x)
|Ft−1, E1t

)

≥ P

(
f t(x)− µt−1(x)

βtσt−1(x)
>
|f(x)− µt−1(x)|

βtσt−1(x)
|Ft−1, E1t

)

= P

(
f t(x)− µt−1(x)

βtσt−1(x)
> θt|Ft−1, E1t

)
(a)

≥ e−θ
2
t

4
√
πθt

(b)

≥ e−1

4
√
π
.

(25)

Note that due to the way in which the function f t is sampled from the GP posterior, i.e., f t ∼ GP
(
µt−1(·), β2

t σ
2
t−1(·)

)
(Sec. 3), we have that f

t(x)−µt−1(x)
βtσt−1(x)

follows a standard Gaussian distribution. Therefore, step (a) above results from the

Gaussian anti-concentration inequality: denote by Z the standard Gaussian distribution N (0, 1), then P(Z > θt) ≥ e−θ
2
t

4
√
πθt

.
Step (b) follows from Lemma 2 (i.e., θt ≤ 1) and hence holds with probability of ≥ 1− δ/4.

The next lemma shows that in every iteration, the probability that we choose an unsaturated input is lower-bounded.

Lemma 15. With probability of ≥ 1− δ/4− δ/12 = 1− δ/3,

P
(
xt ∈ D \ St|Ft−1

)
≥ (1− νt)p, ∀t ≥ 1.

Proof. Firstly, we have that

P
(
xt ∈ D \ St|Ft−1

)
≥ P

(
xt ∈ D \ St|Ft−1, E1t

)
P
(
E1t
)

= P
(
xt ∈ D \ St|Ft−1, E1t

)
(1− νt). (26)

Next, we attempt to lower-bound the term P
(
xt ∈ D \ St|Ft−1, E1t

)
.

P
(
xt ∈ D \ St|Ft−1, E1t

)
≥ P

(
f t(x∗) > f t(x),∀x ∈ St|Ft−1, E1t

)
. (27)

The above inequality follows because x∗ is always unsaturated: ∆(x∗) = f(x∗)− f(x∗) = 0 ≤ ctσt−1(x∗). As a result, if
the event on the RHS of the above inequality holds (i.e., an unsaturated input has larger value of f t than all saturated inputs),
then the event on the LHS (i.e., xt is unsaturated) also holds. Next, we also have that ∀x ∈ St,

f t(x) ≤ f(x) + ctσt−1(x) ≤ f(x) + ∆(x) = f(x) + f(x∗)− f(x) = f(x∗), (28)

in which the first inequality follows from (21) and hence holds with probability ≥ 1− δ/12− δ/4, the second inequality is
a result of the definition of saturated inputs (Definition 1). The above inequality implies that

P
(
f t(x∗) > f t(x),∀x ∈ St|Ft−1, E1t

)
≥ P

(
f t(x∗) > f(x∗)|Ft−1, E1t

)
. (29)

Lastly, combining the above inequalities gives us

P
(
xt ∈ D \ St|Ft−1, E1t

)
≥ P

(
f t(x∗) > f(x∗)|Ft−1, E1t

)
≥ p, (30)

where the last inequality follows from Lemma 14. This completes the proof. Note that the error probabilities for this lemma
come from Lemma 12 (δ/12) and Lemma 2 (δ/4).

Next, we prove an upper bound on the expected instantaneous regret rt = f(x∗)− f(xt).

Lemma 16. With probability of ≥ 1− δ/4− δ/4− δ/12− δ/12 = 1− 2δ/3,

E[rt|Ft−1] ≤ ct
(

1 +
2

(1− ν1)p

)
E[σt−1(xt)|Ft−1] + ψt,

where ψt , 2νt

(
ct + c′t +

∑M
i=1 ωid

′
i

)
.

Proof. To begin with, define the unsaturated input with the smallest posterior standard deviation as

xt , arg minx∈D\Stσt−1(x). (31)

This allows us to obtain the following:

E[σt−1(xt)|Ft−1] ≥ E[σt−1(xt)|Ft−1,xt ∈ D \ St]P
(
xt ∈ D \ St

) (a)

≥ σt−1(xt)(1− νt)p, (32)

where (a) results from Lemma 15 and hence holds with probability ≥ 1− δ/12− δ/4 (the error probabilities come from
Lemma 12 and Lemma 2). Subsequently, the instataneous regret can be upper-bounded as

rt = ∆(xt) = f(x∗)− f(xt) + f(xt)− f(xt)

(a)

≤ ∆(xt) + f t(xt) + ctσt−1(xt)− f t(xt) + ctσt−1(xt)

(b)

≤ ctσt−1(xt) + ctσt−1(xt) + ctσt−1(xt) + f t(xt)− f t(xt)
= ct(2σt−1(xt) + σt−1(xt)) + f t(xt)− f t(xt),

(33)

in which (a) follows from (21), and (b) results from the definition of saturated input (Definition 1) and that xt is unsaturated.
Next, we attempt to upper-bound the expected value of the term f t(xt)− f t(xt) from the equation above:

E
[
f t(xt)− f t(xt)|Ft−1

]
= P(E1t)E

[
f t(xt)− f t(xt)|Ft−1, E1t

]
+ P(E2t)E

[
f t(xt)− f t(xt)|Ft−1, E2t

]
(a)

≤ νtE
[
f t(xt)− f t(xt)|Ft−1, E2t

]
(b)

≤ νtE
[M∑
i=1

ωif
t
i (xt) + ct + c′t +

M∑
i=1

ωid
′
i + ct + c′t +

M∑
i=1

ωid
′
i −

M∑
i=1

ωif
t
i (xt)|Ft−1, E2t

]
(c)

≤ 2νt

ct + c′t +

M∑
i=1

ωid
′
i

 , ψt.

(34)

Step (a) follows since conditioned on the event E1t (ζt(x) = f t(x)), we have that f t(x) ≤ f t(xt),∀x ∈ D; step (b)

results from Lemma 13; step (c) follows since conditioned on the event E2t (i.e., ζt(x) =
∑M
i=1ωi

[
f
t

i(x)
]
), we have that∑M

i=1ωi

[
f
t

i(x)
]
≤
∑M
i=1ωi

[
f
t

i(xt)
]
,∀x ∈ D. Lastly,

E[rt|Ft−1] ≤ E[ct(2σt−1(xt) + σt−1(xt)) + ψt|Ft−1]

≤ E

[
ct

(
2

(1− νt)p
σt−1(xt) + σt−1(xt)

)
+ ψt|Ft−1

]

≤ ct
(

1 +
2

(1− ν1)p

)
E[σt−1(xt)|Ft−1] + ψt,

(35)

in which the second inequality results from (32). Note that the error probabilities for this Lemma follow from Lemma 13.

Subsequently, we make use of martingale concentration inequalities to bound the cumulative regret.

Definition 2. Define Y0 = 0, and for t ≥ 1,

Xt = rt − ct
(

1 +
2

(1− ν1)p

)
σt−1(xt)− ψt,

Yt =

t∑
s=1

Xs.

The next lemma shows that {Yt}t≥1 is a super-martingale.

Lemma 17. With probability ≥ 1− δ/4− δ/4− δ/12− δ/12 = 1− 2δ/3, {Yt}t≥1 is a super-martingale with respect to
the filtration Ft−1.

Proof.

E[Yt − Yt−1|Ft−1] = E[Xt|Ft−1]

= E[rt − ct
(

1 +
2

(1− ν1)p

)
σt−1(xt) + ψt|Ft−1]

= E[rt|Ft−1]−

[
ct

(
1 +

2

(1− ν1)p

)
E[σt−1(xt)|Ft−1] + ψt

]
≤ 0,

(36)

where the last inequality follows from Lemma 16.

Finally, we are ready to use martingale concentration inequalities to bound the cumulative regret.

Lemma 18. With probability of ≥ 1− δ/4− δ/4− δ/12− δ/12− δ/12 = 1− 3δ/4,

RT ≤

(
2B + cT

(
1 +

2

(1− ν1)p

)
+ ψ1

)√
T (C1γT + 2 log(12/δ)) + 2

T∑
t=1

νt(ct + c′t +

M∑
i=1

ωid
′
i)

where C1 = 2/ log(1 + σ−2).

Proof. To begin with, we have that

|Yt − Yt−1| = |Xt| ≤ |rt|+ |ct
(

1 +
2

(1− ν1)p

)
σt−1(xt)|+ |ψt|

≤ 2B + ct

(
1 +

2

(1− ν1)p

)
+ ψt,

(37)

where the last inequality follows since |rt| = |f(x∗) − f(xt)| ≤ 2B (because‖f‖k ≤ B as we have assumed in Sec. 2,
which immediately implies that |f(x)| ≤ B, ∀x ∈ D), and σt−1(x) ≤ 1,∀x ∈ D.

Next, we apply the Azuma-Hoeffding Inequality with an error probability of δ/12 (first inequality):

T∑
t=1

rt ≤
T∑
t=1

ct

(
1 +

2

(1− ν1)p

)
σt−1(xt) +

T∑
t=1

ψt+√√√√2 log
10

δ

T∑
t=1

(
2B + ct

(
1 +

2

(1− ν1)p

)
+ ψt

)2

≤ cT
(

1 +
2

(1− ν1)p

) T∑
t=1

σt−1(xt) +

T∑
t=1

ψt+(
2B + cT

(
1 +

2

(1− ν1)p

)
+ ψ1

)√
2T log

12

δ

≤ cT
(

1 +
2

(1− ν1)p

)√
C ′1γTT +

T∑
t=1

ψt+(
2B + cT

(
1 +

2

(1− ν1)p

)
+ ψ1

)√
2T log

12

δ

≤

(
2B + cT

(
1 +

2

(1− ν1)p

)
+ ψ1

)√
T (C ′1γT + 2 log(12/δ))+

2
T∑
t=1

νt(ct + c′t +

M∑
i=1

ωidi).

(38)

The second last inequality makes use of Lemma 10 from the proof of RM-GP-UCB (excluding the factor of (1− νt)βt)
with C ′1 , 2/ log(1 + σ−2).

Recall that ct = O(
√
γt log t), c′t = O(log t). Therefore, Lemma 18 can be further analyzed as:

RT = O

cT√TγT +

T∑
t=1

νt(ct + c′t +

M∑
i=1

ωidi)


= O

((M∑
i=1

ωid
′
i

) T∑
t=1

νt +

T∑
t=1

νt
√
γt log t+ γT log T

√
T
)
.

(39)

Lastly, similar to our analysis of RM-GP-UCB for the case where the ωi’s change with t (i.e., at the end of Ap-
pendix A.2), when our online meta-weight optimization is used, we simply need to slightly modify the definition of

ψt: ψt , 2νt

(
ct + c′t +

∑M
i=1 ωi,td

′
i

)
by allowing ωi,t to change with t, and the subsequent analysis still holds by simply

replacing ωi by ωi,t. As a result, the no-regret guarantee of RM-GP-TS (Theorem 2) still holds (since we can simply
upper-bound every ωi,t by 1):

RT = O
(T∑
t=1

νt

(M∑
i=1

ωi,td
′
i

)
+

T∑
t=1

νt
√
γt log t+ γT log T

√
T
)

= O
((M∑

i=1

d′i

) T∑
t=1

νt +

T∑
t=1

νt
√
γt log t+ γT log T

√
T
)

= Õ
((M∑

i=1

d′i

) T∑
t=1

νt +

T∑
t=1

νt
√
γt + γT

√
T
)
.

C ANALYSIS OF ONLINE META-WEIGHT OPTIMIZATION

C.1 PROOF OF LEMMA 1

From the definitions of Ut,i,j and Lt,i,j (5), and the fact that Lt,i,j ≤ f(xi,j) ≤ Ut,i,j ,∀t, i, j with probability ≥ 1− δ/4
(Section 5.1), we have that

di = max
j=1,...,Ni

∣∣fi(xi,j)− f(xi,j)
∣∣

≤ max
j=1,...,Ni

[
max{

∣∣fi(xi,j)− Ut,i,j∣∣ , ∣∣fi(xi,j)− Lt,i,j∣∣}] ∀ i = 1, . . . ,M,∀t ≥ 1
(40)

which holds with probability ≥ 1− δ/4. Next, we derive upper bounds on
∣∣fi(xi,j)− Ut,i,j∣∣ and

∣∣fi(xi,j)− Lt,i,j∣∣ that
only consist of known or computable terms, such that the upper bounds on di can be efficiently calculated in practice.

Lemma 19. With probability ≥ 1− δ/4, ∀ t ≥ 1, ∀i, j,

∣∣fi(xi,j)− Ut,i,j∣∣ ≤
√

2σ2 log
8
∑M
i=1Ni
δ

+
∣∣yi,j − Ut,i,j∣∣ ,

∣∣fi(xi,j)− Lt,i,j∣∣ ≤
√

2σ2 log
8
∑M
i=1Ni
δ

+
∣∣yi,j − Lt,i,j∣∣ .

Proof. To begin with, note that fi(xi,j)− yi,j ∼ N (0, σ2). Therefore, (9) suggests that

P

∣∣fi(xi,j)− yi,j∣∣ > σ

√
2 log

8
∑M
i=1Ni
δ

 ≤ δ

8
∑M
i=1Ni

(41)

which naturally leads to a high-probability upper bound on
∣∣fi(xi,j)− Ut,i,j∣∣:∣∣fi(xi,j)− Ut,i,j∣∣ = |fi(xi,j)− yi,j + yi,j − Ut,i,j |

≤
∣∣fi(xi,j)− yi,j∣∣+

∣∣yi,j − Ut,i,j∣∣
≤

√
2σ2 log

8
∑M
i=1Ni
δ

+
∣∣yi,j − Ut,i,j∣∣

(42)

which holds with probability ≥ 1 − δ
8
∑M
i=1Ni

. Applying the same reasoning to
∣∣fi(xi,j)− Lt,i,j∣∣ results in a similar

high-probability upper bound:

∣∣fi(xi,j)− Lt,i,j∣∣ ≤
√

2σ2 log
8
∑M
i=1Ni
δ

+
∣∣yi,j − Lt,i,j∣∣ . (43)

Next, the proof is completed by taking a union bound over both Ut,i,j and Lt,i,j , as well as all
∑M
i=1Ni observations of the

meta-tasks.

Finally, Lemma 1 follows by combining (40) and Lemma 19.

C.2 PROOF OF PROPOSITION 1

In iteration t, define αt by replacing di in α with di,t:

αt =

M∑
i=1

ωi
Ni
σ2

(2

√
2σ2 log

8Ni
δ

+ di,t). (44)

Since according to Lemma 1, di ≤ di,t ∀i = 1, . . . ,M, t ≥ 1 with probability ≥ 1 − δ/2, we have that α ≤ αt ∀t ≥ 1,
which also holds with probability ≥ 1− δ/2.

Therefore, Theorem 1 implies that, with probability ≥ 1− δ,

RT ≤ 2

T∑
t=1

αtνt + 2τ

T∑
t=1

νt + βT
√
C1TγT . (45)

In (45), only the underlined term depends on the ωi’s. Define two column vectors α = [αt]
>
t=1,...,T and ν = [νt]

>
t=1,...,T .

Then, the underlined term in (45) can be further decomposed as

2

T∑
t=1

αtνt , 2α>ν
(a)
≤ 2‖α‖2‖ν‖2

(b)
≤ 2‖α‖1‖ν‖1

(c)
= 2

T∑
t=1

αt

T∑
t=1

νt (46)

in which (a) results from Cauchy-Schwarz inequality, (b) follows because the L2 norm is upper-bounded by the L1 norm,
and (c) is obtained because αt > 0, νt ≥ 0,∀t ≥ 1.

In (46), the dependence on the ωi’s appears in the underlined term, which can be further decomposed as

T∑
t=1

αt =

T∑
t=1

 M∑
i=1

ωi
Ni
σ2

(
2

√
2σ2 log

8Ni
δ

+ di,t

)
4
=

1

σ2

T∑
t=1

 M∑
i=1

ωili,t


4
=

1

σ2

T∑
t=1

ω>lt

(47)

in which we have defined ω , [ωi]i=1,...,M , lt , [li,t]i=1,...,M , with

li,t , Ni

(
2

√
2σ2 log

8Ni
δ

+ di,t

)
. (48)

Plugging (46) and (47) in to (45) completes the proof.

C.3 DERIVATION OF EQUATION 7

Recall that our objective is to minimize
t−1∑
s=1

ω′>ls +
1

η

M∑
i=1

ω′i logω′i

subject to the constraint that ω′ forms a probability simplex:
∑M
i=1 ω

′
i = 1.0 and ω′i ≥ 0 for all i = 1, . . . ,M . Define the

Lagrangian as

L(ω, λ) =

t−1∑
s=1

ω′>ls +
1

η

M∑
i=1

ω′i logω′i + λ

1−
M∑
i=1

ω′i

 . (49)

Taking the derivative of L(ω, λ) with respect to ω′i, we get

∂L(ω, λ)

∂ω′i
=

t−1∑
s=1

li,s +
1

η

(
logω′i + 1

)
− λ. (50)

Setting (50) to 0 gives us
ω′i = eηλ−1e−η

∑t−1
s=1 li,s ∝ e−η

∑t−1
s=1 li,s . (51)

Normalizing the ω′i’s for all i = 1 . . . ,M to form a probability simplex leads to (7).

C.4 ANALYSIS FOR RM-GP-TS

Here we use the function gap di to approximate d′i (defined in Theorem 2), i.e., d′i ≈ di,∀i = 1, . . . ,M . Combining
Lemma 1 and Theorem 2, we have for RM-GP-TS that with probability of ≥ 1− δ,

RT = O
(T∑
t=1

νt

 M∑
i=1

ωidi,t

+

T∑
t=1

νt
√
γt log t+ γT log T

√
T
)

≤ O
( T∑

t=1

M∑
i=1

ωidi,t

 T∑
t=1

νt

+

T∑
t=1

νt
√
γt log t+ γT log T

√
T
)
,

(52)

in which the inequality can be proved in a similar way as equation (46). Next, define ω , [ωi]i=1,...,M , dt , [di,t]i=1,...,M ,
then the underlined term above can be denoted as:

T∑
t=1

M∑
i=1

ωidi,t =

T∑
t=1

ω>dt. (53)

Therefore, equation (52) can be further upper-bounded as:

RT = O
( T∑

t=1

ω>dt

 T∑
t=1

νt

+

T∑
t=1

νt
√
γt log t+ γT log T

√
T
)
. (54)

Next, applying similar derivations as Appendix C.3 (treating the underlined term above as the loss to be minimized) leads to
the same update rule for the meta-weights as equation (7). Approximating d′i using di also allows us to derive the same
update rule for νt (Sec. 5.2).

D MORE EXPERIMENTAL DETAILS AND RESULTS

In every experiment, the same set of random initializations are used for all methods to ensure fair comparisons. The kernel
bandwidth parameter ρ in TAF is set to ρ = 0.5 in all experiments, but we have observed that other values of ρ (such as 0.1
and 0.9) lead to similar performances. S = 500 posterior samples are used to compute the ensemble weights in RGPE. All
experiments are run on a server with 16 cores of Intel Xeon processor, 256G of RAM and 5 NVIDIA GTX1080 Ti GPUs.

D.1 OPTIMIZATION OF SYNTHETIC FUNCTIONS

D.1.1 Synthetic Functions Sampled from GPs

The objective functions are drawn from GP’s with the Squared Exponential kernel (with a length scale of 0.05) from the
domain D = [0, 1]. Fig. 3 shows an example of such synthetic functions. The meta-functions and meta-tasks are generated

0.0 0.2 0.4 0.6 0.8 1.0
Input

0.0

0.2

0.4

0.6

0.8

1.0

Fu
nc

tio
n

Va
lu

e

Figure 3: An example synthetic function sampled from a GP.

0 50 100 150 200
Iterations

0.0

0.2

0.4

0.6

M
et

a
W

ei
gh

ts

(a) ηN = 0.01.

0 50 100 150 200
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

M
et

a
W

ei
gh

ts

(b) ηN = 1.0.

0 50 100 150 200
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

M
et

a
W

ei
gh

ts
(c) ηN = 5.0.

Figure 4: Evolution of the meta-weights with different learning rate, η, for online meta-weight optimization in the synthetic
experiments. In each figure, the red and blue curves represent the meta-weights of the two meta-tasks that are more similar
to the target task (i.e., the first two meta-tasks), whereas the green and yellow curves correspond to the meta-weights of the
other two dissimilar meta-tasks. Every color has 10 curves in each figure, which correspond to 10 independent runs of the
algorithm with different random initializations.

in the following way. To begin with, we fix the number of meta-tasks M = 4, the number of observations (input-output
pairs) for each meta-task N = Ni = 20 for i = 1 . . .M , and the function gaps: d1 = d2 = 0.05, d3 = d4 = 4.0. For the
i-th meta-task, firstly, Ni inputs are randomly drawn from the entire domain D = [0, 1]. Then for each of the Ni inputs
xi,j , a number is randomly drawn from [−di, di], which is added to the value of the target function f(xi,j) to produce the
corresponding function value of the meta-function fi(xi,j). Subsequently, a zero-mean Gaussian noise (with a noise variance
of 0.01) is added to fi(xi,j), resulting in the corresponding output of the meta-observation yi(xi,j). The above-mentioned
procedure is repeated for each of the M = 4 meta-tasks. Note that according to the specified function gaps, meta-tasks 1
and 2 are relatively more similar to the target task, whereas meta-tasks 3 and 4 are dissimilar to the target task due to the
larger function gaps.

Fig. 4 plots the evolution of the meta-weights for each of the 4 meta-tasks in the experiments exploring the impact of η,
i.e., corresponding to Fig. 1c in Section 6.1. These figures are used to demonstrate the observations that overly large and
excessively small values of η can both degrade the performance of RM-GP-UCB.

Moreover, we have added another experiment where the Ni’s (i.e., the number of observations from the meta-tasks) are
different. Specifically, we use the same experimental setting involving M = 4 meta-tasks as described above, and let
N1 = 15, N2 = 25, N3 = 10, N4 = 30, where d1 = d2 = 0.05, d3 = d4 = 4.0. The results (Fig. 5) show that when the
Ni’s are different, our RM-GP-UCB algorithm, despite performing worse than the setting where all Ni’s are equal, is still
able to significantly outperform standard GP-UCB.

0 50 100 150 200
Iterations

0.0

0.1

0.2

0.3

Si
m

pl
e

Re
gr

et

GP-UCB
RM-GP-UCB
RM-GP-UCB (different Ni's)

Figure 5: The performance of RM-GP-UCB when the Ni’s are different.

D.2 REAL-WORLD EXPERIMENTS

Hyperparameter Tuning for Convolutional Neural Networks (CNNs). The MNIST, CIFAR-10 and CIFAR-100 datasets
can all be directly downloaded using the Keras Python package1, and the SVHN dataset can be downloaded from http:
//ufldl.stanford.edu/housenumbers/. The MNIST dataset is under the GNU General Public License, CIFAR-
10 adn CIFAR-100 are under the MIT License, and SVHN is under the Custom (non-commercial) License. The image pixel
values are all normalized into the range [0, 1]. The CNN hyperparameters being optimized in this set of experiments are the
learning rate, learning rate decay, and the L2 regularization parameter, all of which have the search space from 10−7 to
10−2. Other than these hyperparameters, a common CNN architecture is used for all datasets, i.e., a CNN containing two
convolutional layers (both with 32 filters and each filter has a size of 3×3) each of which is followed by a Max pooling layer
(with a pooling size of 3× 3), followed by two fully connected layers (both with 64 hidden units); all non-linear activations
are ReLU. The size of the training set and validation set for the four datasets are: 60,000/10,000 for MNIST, 73,257/26,032
for SVHN, 50,000/10,000 for both CIFAR-10 and CIFAR-100. For the evaluation of a set of selected hyperparameters, the
CNN model is trained using the RMSprop algorithm for 20 epochs, and the final validation error is used as the corresponding
output observation. Fig. 6 presents the results when the SVHN and CIFAR-100 datasets are used to produce the target
functions.

Comparing Figs. 1e, 1f and Fig. 6 shows that our RM-GP-UCB performs similarly to RGPE for the CIFAR-10, CIFAR-100
and SVHN datasets, and outperforms RGPE for MNIST. After inspection, we found that this is because for the first three
datasets (Fig. 1f and Fig. 6), both RM-GP-UCB and RGPE assign most meta-weights to the same meta-task. On the other
hand, for MNIST (Fig. 1e), RM-GP-UCB (and RM-GP-TS) is able to assign most weights to SVHN which is indeed more
similar to MNIST since they both contain images of digits. In contrast, RGPE mistakenly assigns more meta-weights to
CIFAR-10. The reason is that RGPE chooses the weights based on how accurately each meta-task’s GP surrogate predicts
the pairwise ranking of the target observations (more details in Sec. 7, second paragraph). However, for MNIST, most target
observations have very similar values since the overall accuracy is very high due to the simplicity of the MNIST dataset.
Therefore, the predicted pairwise rankings become unreliable, thus rendering the weights learned by RGPE inaccurate and
deteriorating the performance.

Hyperparameter Tuning for CNNs Using the Omniglot Dataset. The Omniglot dataset can be downloaded from
https://github.com/brendenlake/omniglot, and it is under the MIT License. The dataset consists of 50
alphabets, 30 from the background set and 20 from the evaluation set. Each alphabet includes a number of characters, and all
alphabets combine to have 1623 characters. Every character only consists of 20 example images, each drawn by a different
person. To perform one-shot classification, we use a Siamese neural network, which takes two images as inputs and outputs
a score indicating whether the pair of input images are predicted to be the same character. The evaluation metric we use in
the experiment is 2-way validation error. That is, we compare a test image in the validation set with two other images, only
one of which is the same character as the test image, and evaluate whether the Siamese network is able to output a higher
predictive score for the correct image which is the same character; we do this using every test image, and use the percentage
of errors as the 2-way validation error. In our setting, each task represents tuning 3 hyperparameters of the Siamese network
(the same hyperparameters and ranges as the CNN experiments above) using one alphabet. For each task, we use 75% of

1https://keras.io/

http://ufldl.stanford.edu/housenumbers/
http://ufldl.stanford.edu/housenumbers/
https://github.com/brendenlake/omniglot
https://keras.io/

5 10 15 20 25 30
Iterations

0.12

0.14

0.16

0.18

0.20

0.22
Va

lid
at

io
n

Er
ro

r
GP-UCB
RGPE
TAF
MTBO
RM-GP-UCB
RM-GP-TS

(a) SVHN.

1 5 10 15 20 25 30
Iterations

0.65

0.70

0.75

Va
lid

at
io

n
Er

ro
r

GP-UCB
RGPE
TAF
MTBO
RM-GP-UCB
RM-GP-TS

(b) CIFAR-100.

Figure 6: Best validation error of CNN (both averaged over 10 random initializations).

1 5 10 15 20 25 30
Iterations

0.14

0.16

0.18

0.20

0.22

Va
lid

at
io

n
Er

ro
r

Omniglot

GP-UCB
RGPE
TAF
RM-GP-UCB
RM-GP-TS

Figure 7: 2-way validation error on the Omniglot dataset.

the characters in the alphabet to produce the training set, and the remaining 25% to generate the validation set. We use 10
alphabets from the background set as 10 meta-tasks. For each meta-task, we generate 30 meta-observations by running BO
(using GP-UCB) for 30 iterations. This in total produces 10× 30 = 300 meta-observations. We use one of the alphabets
from the evaluation set as the target task.

Hyperparameter Tuning for Support Vector Machines (SVMs). This benchmark dataset, which was originally intro-
duced by [Wistuba et al., 2015a] and can be downloaded from https://github.com/wistuba/TST, is created by
performing hyperparameter tuning of SVM using 50 diverse datasets. 6 hyperparameters are tuned: 3 binary parameters
indicating whether a linear, polynomial or radial basis function (RBF) kernel is used, the penalty parameter, the degree of the
polynomial kernel, and the bandwidth parameter for the RBF kernel. A fixed grid of hyperparameters of size 288 is created.
For each dataset, every hyperparameter configuration on the grid is evaluated and the corresponding validation accuracy is
recorded as the observed output of the objective function. In our experiments, each dataset corresponds to a task. We treat
one of the 50 tasks as the target task, and the remaining tasks as 49 meta-tasks. For each meta-task, the meta-observations
are produced by randomly sampling 50 points (hyperparameter configurations) from the grid. The results reported in the
main paper (Fig. 2c) are averaged over 25 trials, each trial treating a different task as the target task; for each trial/target task,
we again average the results over 5 random initializations.

Human Activity Recognition (HAR). The dataset used in this experiment can be downloaded from https://archive.
ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones.

In this experiment of human activity prediction, each data instance (input-output pair) is characterized by a feature vector of
length 561 and a label corresponding to one of the 6 activities. The SVM hyperparameters being optimized are the penalty
parameter C (from 0.01 to 10) and the radial basis function (RBF) kernel coefficient γ (from 0.01 to 1). There are in total
7,352 data instances for the 21 subjects that are used to generate the meta-tasks, and 2,947 instances for the 9 subjects used
for performance validation. For each subject, half of the instances are used as the training set, with the other half being used
for validation.

https://github.com/wistuba/TST
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones

1 5 10 15 20 25 30
Iterations

0.008

0.009

0.010

0.011

0.012
Va

lid
at

io
n

Er
ro

r

RM-GP-UCB (mean)
RM-GP-UCB (max)

1 5 10 15 20 25 30
Iterations

0.30

0.32

0.34

0.36

0.38

0.40

Va
lid

at
io

n
Er

ro
r

RM-GP-UCB (mean)
RM-GP-UCB (max)

5 10 15 20 25 30
Iterations

0.180

0.185

0.190

0.195

0.200

0.205

0.210

Va
lid

at
io

n
Er

ro
r

RM-GP-UCB (mean)
RM-GP-UCB (max)

(a) (b) (c)

Figure 8: Impacts of using max vs empirical mean in estimating the upper bound on the function gaps, using the (a) MNIST,
(b) CIFAR-10 and (c) non-stationary BO (clinical diagnosis) experiments.

Non-stationary Bayesian Optimization. The clinical diagnosis dataset used in this experiment can be found at https:
//www.kaggle.com/uciml/pima-indians-diabetes-database, and it is associated with the CC0 License.
The hyperparameters of the logistic regression (LR) model being optimized are the batch size (20 to 60), the L2 regularization
parameter (10−6 to 0.01) and the learning rate (0.01 to 0.1). The dataset represents a binary classification problem (whether
a patient has diabetes or not), with each input instance consisting of 8 diagnostic features: number of pregnancies, plasma
glucose concentration, blood pressure, skin thickness, insulin, BMI, diabetes pedigree function, and age.

Policy Search for Reinforcement Learning. In this experiment, we use the Cart-Pole environment from OpenAI Gym
(https://github.com/openai/gym), which is under the MIT License. We adopt the linear softmax policy which
linearly maps a state vector of length 4 to an action vector of length 2, followed by a softmax operator. As a result, for a
particular state, the action with the largest softmax value is taken. With this setting, 4× 2 = 8 parameters are tuned in this
experiment. The performance metric used in the experiment is the cumulative rewards (normalized to the range [0, 1]) in an
episode (averaged over 10 independent episodes), and the maximum length of each episode is set to 200.

D.3 IMPACTS OF MAX VS MEAN IN FUNCTION GAP ESTIMATION

Here we explore the impact of the choice between using max (the outer max operator over j = 1, ..., Ni) or the empirical
mean in the estimated upper bound on the function gap (Lemma 1), as mentioned in the first paragraph of Section 6. Fig. 8
plots the different performances using these two choices in the MNIST, CIFAR-10 and clinical diagnosis (non-stationary
BO) experiments. The results show that the performance deficit resulting from the use of the max operator is marginal in
some experiments (Fig. 8a and b), whereas the difference can be larger in some other experiments (Fig. 8c). Therefore, it is
recommended to use the empirical mean when estimating the upper bound on the function gap in practice.

D.4 SCALABILITY OF OUR ALGORITHMS

Here we further demonstrate the scalability of our RM-GP-UCB and RM-GP-TS algorithms. by showing that our algorithms
can be applied to experiments with a very large scale, and still performs competitively. Specifically, we construct a much
larger version of the experiment on policy search for RL, with 60 meta-tasks each containing 130 meta-observations.
Fig. 9a and b plot the performance and runtime in this large-scale experiment. Consistent with Fig. 2e in the main text, our
RM-GP-UCB algorithm still performs the best among all algorithms (Fig. 9a). RM-GP-TS has a better performance here
than in Fig. 2e, performing comparably with RGPE (Fig. 9a). Moreover, RM-GP-TS is again significantly more scalable
than RM-GP-UCB, RGPE and TAF, and its computational cost is comparable with standard GP-UCB (Fig. 9b).

D.5 MORE DETAILS ON RM-GP-TS

In this section, we present more details on the practical implementation of our RM-GP-TS algorithm. In all experiments,
when sampling a function from the GP posterior, we use random Fourier features (RFF) [Dai et al., 2020b, Rahimi and Recht,
2008] with m = 120 random Fourier features. Firstly, we need to construct a set of random features. For an SE kernel with

hyperparameters l and σk (i.e., k(z) = σ2
ke
−‖z‖

2
2

2l2 , with z = x1−x2,∀x1,x2 ∈ D), we firstly samplem vectors {si}i=1,...,m

from the D-dimensional Gaussian distribution: N (0, 1
l2 I), and sample m scalar values {bi}i=1,...,m from the uniform

https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://www.kaggle.com/uciml/pima-indians-diabetes-database
https://github.com/openai/gym

1 5 10 15 20 25 30
Iterations

0.1

0.3

0.5

0.7

0.9

Cu
m

ul
at

iv
e

Re
wa

rd
s

RL (Large Scale)
GP-UCB
RGPE
TAF
RM-GP-UCB
RM-GP-TS

(a) Cumulative rewards.

5 10 15 20 25
Iterations

2

4

6

8

Ru
nt

im
e

(L
og

 S
ec

on
ds

)

Runtime Comparison (RL)

GP-UCB
RGPE
TAF
RM-GP-UCB
RM-GP-TS

(b) Runtime.

Figure 9: Results demonstrating that our algorithms can be applied to experiments with a very large scale, using a larger
version of the RL experiment (with 60× 130 = 7800 meta-observations).

distribution within the domain [0, 2π]. Next, for any input x ∈ D, its corresponding m-dimensional random features can be
constructed as φ(x) = [

√
2/m cos(s>i x + bi)]

>
i=1,...,m. Every φ(x) is then normalized such that

∥∥φ(x)
∥∥2
2

= σ2
k,∀x ∈ D.

Based on these, in order to (approximately) sample a function from the GP posterior, we firstly sample a vector ω from
the Gaussian distribution ω ∼ N (νt, σ

2Σt), with Σt = (Φ>t Φt + σ2I)−1, νt = ΣtΦ
>
t yt, and Φt = [φ(x1, . . . ,xt)]

>.
Finally, we can use the sampled ω to construct the sampled function such that f t(x) = φ(x)>ω,∀x ∈ D. As a result, as
mentioned in Sec. 3, for a meta-task i, in order to sample multiple functions from the meta-function fi before the algorithm
starts, we simply need to draw multiple samples of the vector ω from the corresponding multivariate Gaussian distribution
using the observations from meta-task i. For both the target function and every meta-function, the kernel hyperparameters
(l and σk) used in the posterior sampling steps above are learned by maximizing the marginal likelihood (using full GP
without RFF approximation), which is a common practice in BO.

	Proof of Theorem 1
	Proof of Lemma 3
	Proof of Theorem 1
	Meta-tasks Can Improve the Convergence by Accelerating Exploration

	Proof of Theorem 2
	Analysis of Online Meta-Weight Optimization
	Proof of Lemma 1
	Proof of Proposition 1
	Derivation of Equation 7
	Analysis for RM-GP-TS

	More Experimental Details and Results
	Optimization of Synthetic Functions
	Synthetic Functions Sampled from GPs

	Real-world Experiments
	Impacts of Max vs Mean in Function Gap Estimation
	Scalability of Our Algorithms
	More Details on RM-GP-TS

