
Bayesian Structure Learning with Generative Flow Networks
(Supplementary material)

Tristan Deleu1 António Góis1 Chris Emezue2 Mansi Rankawat1

Simon Lacoste-Julien1,4 Stefan Bauer3,5 Yoshua Bengio1,4,6

1Mila, Université de Montréal 2Technical University of Munich 3KTH Stockholm
4CIFAR AI Chair 5CIFAR Azrieli Global Scholar 6CIFAR Senior Fellow

A LIMITATIONS OF DAG-GFLOWNET

Although we have shown in the main paper that DAG-GFlowNet is capable of learning an accurate approximation of the
posterior distribution P (G | D) when the size of the dataset D is moderate (a situation where the benefits of a Bayesian
treatment of structure learning are larger), we observed that as the size of the dataset increases, fitting the detailed-balance
loss in (10) was more challenging. This can be explained by the fact that with a larger amount of data, the posterior
distribution becomes very peaky (Koller and Friedman, 2009). As a consequence, in this situation, the delta-score in (9),
which is required to calculate the loss, can take a wide range of values: adding an edge to a graph can drastically increase or
decrease its score. In turn, the neural network parametrizing Pθ(Gt+1 | Gt) needs to compensate for these large fluctuations,
making it harder to train.

Unfortunately, some of the standard techniques used in Machine Learning to tackle this issue, such as normalization of
the inputs, cannot be applied here. Normalizing the delta-score is equivalent to normalizing the rewards R(G) and R(G′)
themselves, and as a consequence it would change the distribution that is being approximated: instead of approximating the
posterior distribution P (G | D), we would approximate a distribution P (G | D)τ under some temperature τ . Solutions to
this problem include a schedule of temperature, similar to simulated annealing, or a reparametrization of Pθ(Gt+1 | Gt) to
better handle large fluctuations of delta-scores; this exploration is left as future work.

B DETAILED-BALANCE CONDITION WITH ALL COMPLETE STATES

In this section, we will prove a special case of the detailed-balance condition introduced by Bengio et al. (2021) applied to
the case where all the states of the GFlowNet are complete (except the terminal state sf). To simplify the presentation, we
will follow the notations of Bengio et al. (2021), and denote the forward transition probability by PF (st+1 | st)—instead of
Pθ(st+1 | st) in the main paper. Recall that the detailed-balance condition (Bengio et al., 2021, Def. 17) is given by

F (st)PF (st+1 | st) = F (st+1)PB(st | st+1). (B.1)

In the case where all the states are complete, we also know that (Bengio et al., 2021, Def. 16)

PF (sf | st) :=
F (st → sf)∑

s′∈Ch(st)
F (st → s′)

=
R(st)

F (st)
⇔ F (st) =

R(st)

PF (sf | st)
,

where F (s→ s′) represents the flow from state s to s′, as described in Section 3.1, F (s) is the total flow through state s,
and we used Proposition 4 & Equation 34 of Bengio et al. (2021) to introduce F (st) and R(st) respectively. Replacing F (·)
in (B.1) yields the expected condition:

R(st)PF (st+1 | st)PF (sf | st+1) = R(st+1)PB(st | st+1)PF (sf | st). (B.2)

The original formulation in (B.1) would require us to parametrize both PF (st+1 | st) and F (s). On the other hand, using
this alternative condition, we only have to parametrize PF (st+1 | st) (including when st+1 = sf is the terminal state).

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

A

B

C

Gt

mt

A

B

C A

B

C

Gt+1

mt+1

⊗ =

Adjacency
matrix ofGt

Transitive
closure ofG>t

Figure 6: Online update of the mask m. The mask mt associated with Gt represents (in black) the edges that cannot be
added to Gt to obtain a valid DAG. mt is decomposed in two parts: the adjacency matrix of Gt (top), and the transitive
closure of G>t (bottom). To update the mask and obtain mt+1 associated with Gt+1, the result of adding the edge C → A
to Gt, each component must be updated separately, and then recombined. The diagonal elements of mt, corresponding to
self-loops (which are always invalid actions to take) are integrated into the transitive closure of G>t by convention.

C DEFINITION AND UPDATE OF THE MASK OVER ACTIONS

In Section 4.1, we introduced a mask m associated with a DAG G to indicate which edges could be legally added to G to
obtain a new valid DAG G′. This mask must ignore (1) the edges already present in G (which cannot be added further), and
(2) any edge whose addition leads to the introduction of a cycle. The mask m is constructed using (1) the adjacency matrix
of G, and (2) the adjacency matrix of the transitive closure of G>, the transpose graph of G; recall that G> is obtained from
G by inverting the direction of its edges.

Giudici and Castelo (2003) use a similar construction to efficiently obtain the legal actions their MCMC sampler may
take. In particular, they show that this mask m can be updated very efficiently online as edges are added one by one. In
practice, this allows us to circumvent an expensive check for cycles at every stage of the construction of a sample DAG in
the GFlowNet. Since the mask can be composed in 2 parts (as explained above), we can simply update each part anytime a
new edge is added to a DAG G.

In Figure 6, we show how the mask mt associated with a graph Gt can be updated after adding a new edge C → A to
obtain the mask mt+1. The mask is decomposed in 2 parts: the adjacency matrix of Gt, and the transitive closure of G>t .
After adding C → A, each component is updated separately:

1. Adjacency matrix: To update the adjacency matrix, the entry in the adjacency matrix must be set (here, the entry
corresponding to the edge C → A).

2. Transitive closure: To update the transitive closure of the transpose, we need to compute the outer product of the
column corresponding to the target of the edge (here A, in blue) with the row corresponding to the source of the edge
(here C, in red). The outer product is added (more precisely, this is a binary OR) to the initial transitive closure.

These two operations can be done very efficiently in O(d2), where d is the number of nodes in the DAG.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 DETAILS ABOUT THE METRICS

Throughout this paper, we used mainly two metrics to compare the performance of DAG-GFlowNet over alternative
Bayesian structure learning algorithms: the expected SHD (E−SHD), and the area under the ROC curve (AUROC). Let
{G1, . . . , Gn} be samples from the posterior approximation to be evaluated, and G? be the ground truth graph. The E-SHD

MC3 Gadget B-PC B-GES DiBS BCD GFN

50

100

150

200

E-SHD

MC3 Gadget B-PC B-GES DiBS BCD GFN

0.6

0.8

1

AUROC

MC3 Gadget B-PC B-GES DiBS BCD GFN

500

1,000

1,500

2,000

logP (G,D′ | D)

Figure 7: Bayesian structure learning of linear-Gaussian Bayesian networks with d = 50 nodes. Results for E-SHD &
AUROC are aggregated over 10 randomly generated datasets D, sampled from different (ground-truth) Bayesian networks.
Results for logP (G,D′ | D) are given for a single datasetD; the dashed line corresponds to the log-likelihood of the ground
truth graph. Labels: B-PC = Bootstrap-PC, B-GES = Bootstrap-GES, BCD = BCD Nets, GFN = DAG-GFlowNet.

to G? can be estimated as

E−SHD ≈ 1

n

n∑
k=1

SHD(Gk, G
?), (D.3)

where SHD(G,G?) counts the number of edges changes (adding, removing, reversing an edge) necessary to move from G
to G?.

D.2 SIMULATED DATA

In addition to the experiments on simulated data with graphs over d = 20 nodes, we also compared DAG-GFlowNet with
other methods on graphs with d = 50 nodes. The experimental setup described in Section 6.2 remains unchanged, and
the data generation process is detailed below. We show this comparison in Figure 7, in terms of E-SHD, AUROC, and
the joint log-likelihood P (D′, G | D) on some held-out dataset D′. We observe that DAG-GFlowNet is still competitive
compared to the other algorithms, even though it suffers from a higher variance. This can be partly explained by the neural
network parametrizing the forward transition probability Pθ(Gt+1 | Gt) (see Sections 4.2 and 4.3) underfitting the data,
and therefore not accurately matching the detailed-balance conditions, necessary for a close approximation of the posterior
distribution P (G | D). Similar to our observations in Section 6.3, we also noticed that algorithms that tend to perform better
in terms of E-SHD (e.g. BCD Nets, Bootstrap-PC) tend to have an order of magnitude fewer edges in the sampled DAGs.

Data generation For our experiments on simulated data, we followed the generation process described in (Lorch et al.,
2021). The data was generated in the following way:

1. We sampled a DAG using an Erdős-Rényi model (Erdős and Rényi, 1960), with 2d edges on average; the value of the
probability of creating an edge between two nodes was scaled accordingly.

2. Once the structure of the graph is known, we sampled the parameters of the linear-Gaussian model randomly from a
standard Normal distribution N (0, 1). The linear-Gaussian model is therefore defined as, ∀j ∈ [1, d]

Xj =
∑

Xi∈PaG(Xj)

βijXi + ε,

where βij ∼ N (0, 1), and ε ∼ N (0, 0.01). The defines all the conditional probability distribution of the generative
model.

3. Once the full Bayesian Network is known, we used ancestral sampling to generate N = 100 datapoints to fill our
dataset D.

D.3 FLOW CYTOMETRY DATA

In Section 6.3, we described an application of DAG-GFlowNet to real-world flow cytometry data. In particular, we showed
in Figure 5 that DAG-GFlowNet was capable of modeling a distribution that was not only capable of capturing the mode of

−12,600 −12,400 −12,200 −12,000 −11,800 −11,600 −11,400 −11,200 −11,000 −10,800 −10,600

10−3

10−2

10−1

100

BGe score

lo
g-

m
ar

gi
na

lp
ro

ba
bi

lit
y

of
M

E
C

MC3

Gadget
DiBS
BCD Nets
DAG-GFlowNet

Figure 8: Coverage of the posterior approximations learned on flow cytometry data (Sachs et al., 2005). Each point
corresponds to a sampled Markov equivalence class, and its size represents the number of different DAGs (in the equivalence
class) sampled from the posterior approximation.

the posterior distribution (i.e., graphs with a high score), but also had diversity in the graphs sampled, both in terms of the
different Markov Equivalence Classes (MECs) those graphs belong to, but also multiple unique DAG instances of the same
MEC (depicted by the size of each point in Figure 5).

However for clarity, we only compared DAG-GFlowNet to methods based on MCMC in Figure 5. In Figure 8, we also added
a comparison to BCD Nets (Cundy et al., 2021) and DiBS (Lorch et al., 2021), two methods based on Variational Inference.
Although we saw in Table 1 that those two methods were comparing favorably against other algorithms in terms of E−SHD
and AUROC, including against DAG-GFlowNet, we can assess more precisely the quality of the posterior approximation
returned by BCD Nets and DiBS:

• Out of 1,000 graphs sampled with BCD Nets, those graphs belonged to one of only two MECs (with a BGe score
around −10,950). Furthermore, as shown by the size of each point, those MECs happen to only contain a single unique
DAG. Overall, this means that BCD Nets only returned 2 unique DAGs (out of the 1,000 samples), showing the lack of
diversity of the posterior approximation learned with BCD Nets.

• DiBS sampled a significant number of very low scoring DAGs, with BGe scores as low as −12,600 (whereas the best
MEC obtained with GES (Chickering, 2002) had a score of −10,716.12).

• With our choice of the BGe score, the true posterior distribution would assign the same probability to graphs in the
same MEC. However, we can see that DiBS only returned graphs belonging to unique MECs, as opposed to having
multiple unique DAGs from the same MEC. This shows that while DiBS has a high diversity in terms of MECs (mainly
due to covering low-scoring DAGs), DiBS suffers from a lack of diversity with a single MEC, which would be expected
from a faithful approximation of the posterior distribution.

	Limitations of DAG-GFlowNet
	Detailed-balance condition with all complete states
	Definition and update of the mask over actions
	Additional experimental results
	Details about the metrics
	Simulated data
	Flow Cytometry Data

