Bayesian Spillover Graphs for Dynamic Networks: Supplementary Material

Grace Deng¹

David S. Matteson¹

¹Department of Statistics & Data Science, Cornell University, Ithaca, NY, USA

A MOVING AVERAGE REPRESENTATION OF VAR(1)

We can rewrite a VAR(1) model with a moving average representation [Tsay, 2013] using the mean-adjusted model, which is useful for computing variances of forecast errors.

We define the **mean-adjusted model** $\tilde{\mathbf{z}}_t = \mathbf{z}_t - \mu$, where $\mu = (I_d - \phi_1)^{-1} \phi_0$.

Then,

$$\begin{aligned} \tilde{\mathbf{z}}_{t} &= \mathbf{a}_{t} + \phi_{1} \tilde{\mathbf{z}}_{t-1} \\ &= \mathbf{a}_{t} + \phi_{1} (\mathbf{a}_{t-1} + \phi_{1} \tilde{\mathbf{z}}_{t-2}) \\ &= \mathbf{a}_{t} + \phi_{1} \mathbf{a}_{t-1} + \phi_{1}^{2} (\mathbf{a}_{t-2} + \phi_{1} \tilde{\mathbf{z}}_{t-3}) \\ &= \mathbf{a}_{t} + \phi_{1} \mathbf{a}_{t-1} + \phi_{1}^{2} \mathbf{a}_{t-2} + \phi_{1}^{3} \mathbf{a}_{t-3} + \dots \end{aligned}$$

Hence,

$$\begin{aligned} \mathbf{z}_t &= \mu + \tilde{\mathbf{z}}_t \\ &= \mu + \mathbf{a}_t + \phi_1 \mathbf{a}_{t-1} + \phi_1^2 \mathbf{a}_{t-2} + \phi_1^3 \mathbf{a}_{t-3} + \dots \\ &= \mu + \mathbf{a}_t + \psi_1 \mathbf{a}_{t-1} + \psi_2 \mathbf{a}_{t-2} + \dots \\ &= \mu + \sum_{i=0}^{\infty} \psi_i \mathbf{a}_{t-i} \end{aligned}$$

where $\psi_i = \phi_1^i$ for $i \ge 0$.

B PROOF OF THEOREM 1

Theorem 1. If ϕ_1 is a DAG, then (1) no autocorrelation exists, (2) ϕ_1 can be specified by a strictly triangular matrix, (3) all eigenvalues of ϕ_1 are 0 and hence z_t is stationary.

Proof: By definition of DAG, no cycles can exist in the adjacency matrix, in this case, ϕ_1 . Hence, the diagonal entries which indicate dependency of z_{it} on $z_{i,t+1}$ is necessarily 0, and thereby proving point (1).

Note that by definition, there exists a topological ordering on the vertices if and only if a graph has no directed cycles. Because ϕ_1 is a DAG, we can relabel the *d* vertices (time series components) as $v_1, v_2, ..., v_d$. If $v_i v_{i'}$ is a directed edge into *i* from *i'* (indicating Granger-causality), then i > i'. Hence, all entries above the main diagonal are also 0 because these are entries for which i < i'. Combined with point (1) where main diagonal entries are also 0, this satisfies the definition of a strictly lower-triangular matrix (2).

We've shown that the adjacency matrix of a DAG is strictly lower-triangular via permutation, and note that the order of individual time series components does not matter, although in this case the *d* vertices are ordered from source to sink nodes.

The eigenvalues of any lower-triangular matrix is just its diagonal components [Axler, 1997], meaning that all eigenvalues for ϕ_1 is just 0. Since these are strictly less than 1 in magnitude, we can conclude that z_t is stationary (3).

C EVALUATING ACCURACY FOR SOURCE & SINK NODE IDENTIFICATION

First, define Discounted Cumulative Gain (DCG) at position d, for d nodes arranged in a particular order:

$$DCG_{d} = \sum_{i=1}^{d} \frac{rel_i}{\log_2(i+1)}$$

where rel_i is the graded precision score of node at position *i*, e.g. {1, 0.5, 0} for {source, intermediary, sink} nodes respectively. Greater penalty is given for source or sink nodes ranked in lower positions. NDCG [Valizadegan et al., 2009] then equals DCG divided by Ideal Discounted Cumulative Gain (IDCG):

NDCG_d =
$$\frac{DCG_d}{IDCG_d}$$
, IDCG_d = $\sum_{i=1}^{|rel_d|} \frac{rel_i}{\log_2(i+1)}$

and $|rel_d|$ represents the optimal order of nodes, which is given by the ground truth labels of each node.

D BSG FOR IDENTIFYING SINK AND SOURCE NODES

D.1 ABLATION EXPERIMENT - ERROR COVARIANCE Σ_a

Table	1: Average	NDCG (Accuracy	y) for Identif	ying Sink &	& Source Node	s with Depend	lent Errors, 5 Rep	ρ.
	0						/ /	

Directed Acyclic	A. Weak Dependency $\sigma_{jk} = 0.1$		B. Moderate I	Dependency $\sigma_{jk} = 0.5$	C. Strong Dependency, $\sigma_{jk} = 0.9$	
	NDCG@24	NDCG@24	NDCG@24	NDCG@24	NDCG@24	NDCG@24
Method	Source Nodes	Sink Nodes	Source Nodes	Sink Nodes	Source Nodes	Sink Nodes
BSG, $h = 1$	0.938 ± 0.04	1 ± 0	0.951 ± 0.004	1 ± 0	0.925 ± 0.016	1 ± 0
BSG, $h = 5$	0.995 ± 0.006	0.999 ± 0.001	$\textbf{0.993} \pm 0.004$	0.997 ± 0.002	0.961 ± 0.011	$\textbf{0.993} \pm 0.001$
BSG , $h = 10$	$\textbf{0.99} \pm 0.004$	0.994 ± 0.002	0.989 ± 0.006	0.991 ± 0.003	$\textbf{0.975} \pm 0.01$	0.988 ± 0.004
VAR-Between	0.778 ± 0.068	0.796 ± 0.068	_	_	—	_
VAR-Closeness	0.648 ± 0.024	0.926 ± 0.024	_	_	_	_
VAR-Degree	0.8 ± 0.045	0.868 ± 0.053	_	_	_	_
VAR-Eigen	0.71 ± 0.063	0.864 ± 0.063		—	—	—
DBN-Between	0.75 ± 0.036	0.825 ± 0.036	0.747 ± 0.085	0.827 ± 0.085	0.721 ± 0.075	0.853 ± 0.075
DBN-Closeness	0.842 ± 0.07	0.733 ± 0.07	0.827 ± 0.071	0.747 ± 0.071	0.801 ± 0.114	0.773 ± 0.114
DBN-Degree	0.85 ± 0.06	0.82 ± 0.05	0.834 ± 0.08	0.849 ± 0.031	0.827 ± 0.092	0.879 ± 0.05
DBN-Eigen	0.752 ± 0.031	0.822 ± 0.031	0.73 ± 0.081	0.845 ± 0.081	0.713 ± 0.071	0.862 ± 0.071
GVAR-Between	0.729 ± 0.066	0.845 ± 0.066	0.684 ± 0.078	0.891 ± 0.078	0.729 ± 0.04	0.845 ± 0.04
GVAR-Closeness	0.685 ± 0.037	0.89 ± 0.037	0.632 ± 0.04	0.943 ± 0.04	0.689 ± 0.062	0.885 ± 0.062
GVAR-Degree	t	t	†	t	†	t
GVAR-Eigen	0.935 ± 0.016	0.639 ± 0.016	0.953 ± 0.039	0.621 ± 0.039	0.89 ± 0.04	0.685 ± 0.04

- indicates retrieved NGC graph is degenerate, e.g., only edges are self-directed.

† indicates network measure cannot distinguish between nodes, e.g., all in/out degrees are equal.

D.2 MULTISPECIES LOTKA-VOLTERRA - NONLINEAR DYNAMIC SYSTEMS

E EVALUATING KINCADE FIRE SPILLOVERS

Multi-species LV	d = 20, T = 50		d = 20, T = 200		d = 20, T = 1000	
Method	NDCG@20 Source (Predator)	NDCG@20 Sink (Prey)	Source (Predator)	Sink (Prey)	Source (Predator)	Sink (Prey)
BSG, h = 1 BSG, h = 5 BSG, h = 10	$\begin{array}{c} 0.995 \pm 0.004 \\ \textbf{0.995} \pm 0.002 \\ 0.989 \pm 0.01 \end{array}$	$\begin{array}{c} 0.865 \pm 0.045 \\ 0.905 \pm 0.046 \\ \textbf{0.946} \pm 0.015 \end{array}$		$\begin{array}{c} \textbf{0.939} \pm 0.039 \\ 0.931 \pm 0.047 \\ 0.907 \pm 0.056 \end{array}$		$\begin{array}{c} \textbf{0.811} \pm 0.069 \\ 0.755 \pm 0.035 \\ 0.711 \pm 0.074 \end{array}$
VAR-Between VAR-Closeness VAR-Degree VAR-Eigen	$\begin{array}{c} 0.71 \pm 0.058 \\ 0.781 \pm 0.093 \\ 0.768 \pm 0.091 \\ 0.812 \pm 0.087 \end{array}$	$\begin{array}{c} 0.84 \pm 0.058 \\ 0.768 \pm 0.093 \\ 0.748 \pm 0.071 \\ 0.738 \pm 0.087 \end{array}$	$\begin{array}{c} 0.721 \pm 0.145 \\ 0.78 \pm 0.09 \\ 0.679 \pm 0.084 \\ 0.881 \pm 0.037 \end{array}$	$\begin{array}{c} 0.828 \pm 0.145 \\ 0.769 \pm 0.09 \\ 0.737 \pm 0.077 \\ 0.669 \pm 0.037 \end{array}$		
DBN-Between DBN-Closeness DBN-Degree DBN-Eigen	$\begin{array}{c} 0.796 \pm 0.125 \\ 0.796 \pm 0.075 \\ 0.801 \pm 0.072 \\ 0.753 \pm 0.086 \end{array}$	$\begin{array}{c} 0.753 \pm 0.125 \\ 0.754 \pm 0.075 \\ 0.756 \pm 0.101 \\ 0.797 \pm 0.086 \end{array}$		$\begin{array}{c} 0.742 \pm 0.091 \\ 0.743 \pm 0.074 \\ 0.724 \pm 0.112 \\ 0.75 \pm 0.111 \end{array}$	$ \begin{vmatrix} 0.892 \pm 0.107 \\ 0.854 \pm 0.086 \\ 0.891 \pm 0.061 \\ 0.797 \pm 0.067 \end{vmatrix} $	$\begin{array}{c} 0.657 \pm 0.107 \\ 0.696 \pm 0.086 \\ 0.704 \pm 0.072 \\ 0.748 \pm 0.073 \end{array}$
GVAR-Between GVAR-Closeness GVAR-Degree GVAR-Eigen	$\begin{array}{c} 0.736 \pm 0.077 \\ 0.744 \pm 0.093 \\ \dagger \\ 0.791 \pm 0.129 \end{array}$	$\begin{array}{c} 0.814 \pm 0.077 \\ 0.806 \pm 0.093 \\ \dagger \\ 0.758 \pm 0.129 \end{array}$		$\begin{array}{c} 0.733 \pm 0.111 \\ 0.72 \pm 0.114 \\ & \dagger \\ 0.803 \pm 0.098 \end{array}$		$\begin{array}{c} 0.809 \pm 0.063 \\ 0.554 \pm 0.01 \\ \dagger \\ 0.734 \pm 0.077 \end{array}$

Table 2: Average NDCG (Accuracy) for Identifying Sink & Source Nodes with Nonlinear Systems, 5 Rep.

- indicates retrieved NGC graph is degenerate, e.g., only edges are self-directed.

† indicates network measure cannot distinguish between nodes, e.g., all in/out degrees are equal.

Multispecies Lotka-Volterra Population

Figure 1: Example Multi-species Lotka-Volterra Population with d = 20 and T = 1000. Warm colors refer to the 10 predator species and cool colors refer to the 10 prey species. Each predator hunts 2 prey and each prey is hunted by 2 predators.

Figure 2: Hourly PM 2.5 Concentration (FOD) by County During Kincade Fire - Oct. 22 to Nov. 7, 2019.

Kincade Wildfire - 12 Hour Spillover Effects

Figure 3: County Ranking by BSG Importance and Vulnerability Scores, h = 12.

Figure 4: From left to right: Lower 95% HPDI Bound, Posterior Mean, and Upper 95% HPDI Bound. BSG for Kincade Fire, h=12 hours ahead. Note the strong variability in spillovers (edge weights) originating from Sonoma County and tighter intervals for indirect spillovers between San Francisco, Contra Costa, and Alameda counties.

References

Sheldon Jay Axler. Linear algebra done right, volume 2. Springer, 1997.

Ruey S Tsay. Multivariate Time Series Analysis: With R and Financial Applications. John Wiley & Sons, 2013.

Hamed Valizadegan, Rong Jin, Ruofei Zhang, and Jianchang Mao. Learning to rank by optimizing ndcg measure. In *Advances in neural information processing systems*, pages 1883–1891, 2009.