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A MOVING AVERAGE REPRESENTATION OF VAR(1)

We can rewrite a VAR(1) model with a moving average representation [Tsay, 2013] using the mean-adjusted model, which
is useful for computing variances of forecast errors.

We define the mean-adjusted model z̃t = zt − µ, where µ = (Id − ϕ1)
−1ϕ0.

Then,
z̃t = at + ϕ1z̃t−1

= at + ϕ1(at−1 + ϕ1z̃t−2)

= at + ϕ1at−1 + ϕ21(at−2 + ϕ1z̃t−3)

= at + ϕ1at−1 + ϕ21at−2 + ϕ31at−3 + ...

Hence,
zt = µ+ z̃t

= µ+ at + ϕ1at−1 + ϕ21at−2 + ϕ31at−3 + ...

= µ+ at + ψ1at−1 + ψ2at−2 + ...

= µ+

∞∑
i=0

ψiat−i

where ψi = ϕi1 for i ≥ 0.

B PROOF OF THEOREM 1

Theorem 1. If ϕ1 is a DAG, then (1) no autocorrelation exists, (2) ϕ1 can be specified by a strictly triangular matrix, (3) all
eigenvalues of ϕ1 are 0 and hence zt is stationary.

Proof: By definition of DAG, no cycles can exist in the adjacency matrix, in this case, ϕ1. Hence, the diagonal entries which
indicate dependency of zit on zi,t+1 is necessarily 0, and thereby proving point (1).

Note that by definition, there exists a topological ordering on the vertices if and only if a graph has no directed cycles.
Because ϕ1 is a DAG, we can relabel the d vertices (time series components) as v1, v2, ..., vd. If vivi′ is a directed edge into
i from i′ (indicating Granger-causality), then i > i′. Hence, all entries above the main diagonal are also 0 because these are
entries for which i < i′. Combined with point (1) where main diagonal entries are also 0, this satisfies the definition of a
strictly lower-triangular matrix (2).

We’ve shown that the adjacency matrix of a DAG is strictly lower-triangular via permutation, and note that the order of
individual time series components does not matter, although in this case the d vertices are ordered from source to sink nodes.
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The eigenvalues of any lower-triangular matrix is just its diagonal components [Axler, 1997], meaning that all eigenvalues
for ϕ1 is just 0. Since these are strictly less than 1 in magnitude, we can conclude that zt is stationary (3).

C EVALUATING ACCURACY FOR SOURCE & SINK NODE IDENTIFICATION

First, define Discounted Cumulative Gain (DCG) at position d, for d nodes arranged in a particular order:

DCGd =

d∑
i=1

reli
log2(i+ 1)

where reli is the graded precision score of node at position i, e.g. {1, 0.5, 0} for {source, intermediary, sink} nodes
respectively. Greater penalty is given for source or sink nodes ranked in lower positions. NDCG [Valizadegan et al., 2009]
then equals DCG divided by Ideal Discounted Cumulative Gain (IDCG):

NDCGd =
DCGd

IDCGd
, IDCGd =

|reld|∑
i=1

reli
log2(i+ 1)

and |reld| represents the optimal order of nodes, which is given by the ground truth labels of each node.

D BSG FOR IDENTIFYING SINK AND SOURCE NODES

D.1 ABLATION EXPERIMENT - ERROR COVARIANCE Σa

Table 1: Average NDCG (Accuracy) for Identifying Sink & Source Nodes with Dependent Errors, 5 Rep.

Directed Acyclic A. Weak Dependency σjk = 0.1 B. Moderate Dependency σjk = 0.5 C. Strong Dependency, σjk = 0.9

NDCG@24 NDCG@24 NDCG@24 NDCG@24 NDCG@24 NDCG@24
Method Source Nodes Sink Nodes Source Nodes Sink Nodes Source Nodes Sink Nodes

BSG, h = 1 0.938 ± 0.04 1 ± 0 0.951 ± 0.004 1 ± 0 0.925 ± 0.016 1 ± 0
BSG, h = 5 0.995 ± 0.006 0.999 ± 0.001 0.993 ± 0.004 0.997 ± 0.002 0.961 ± 0.011 0.993 ± 0.001
BSG, h = 10 0.99 ± 0.004 0.994 ± 0.002 0.989 ± 0.006 0.991 ± 0.003 0.975 ± 0.01 0.988 ± 0.004

VAR-Between 0.778 ± 0.068 0.796 ± 0.068 — — — —
VAR-Closeness 0.648 ± 0.024 0.926 ± 0.024 — — — —
VAR-Degree 0.8 ± 0.045 0.868 ± 0.053 — — — —
VAR-Eigen 0.71 ± 0.063 0.864 ± 0.063 — — — —

DBN-Between 0.75 ± 0.036 0.825 ± 0.036 0.747 ± 0.085 0.827 ± 0.085 0.721 ± 0.075 0.853 ± 0.075
DBN-Closeness 0.842 ± 0.07 0.733 ± 0.07 0.827 ± 0.071 0.747 ± 0.071 0.801 ± 0.114 0.773 ± 0.114
DBN-Degree 0.85 ± 0.06 0.82 ± 0.05 0.834 ± 0.08 0.849 ± 0.031 0.827 ± 0.092 0.879 ± 0.05
DBN-Eigen 0.752 ± 0.031 0.822 ± 0.031 0.73 ± 0.081 0.845 ± 0.081 0.713 ± 0.071 0.862 ± 0.071

GVAR-Between 0.729 ± 0.066 0.845 ± 0.066 0.684 ± 0.078 0.891 ± 0.078 0.729 ± 0.04 0.845 ± 0.04
GVAR-Closeness 0.685 ± 0.037 0.89 ± 0.037 0.632 ± 0.04 0.943 ± 0.04 0.689 ± 0.062 0.885 ± 0.062
GVAR-Degree † † † † † †
GVAR-Eigen 0.935 ± 0.016 0.639 ± 0.016 0.953 ± 0.039 0.621 ± 0.039 0.89 ± 0.04 0.685 ± 0.04

— indicates retrieved NGC graph is degenerate, e.g., only edges are self-directed.
† indicates network measure cannot distinguish between nodes, e.g., all in/out degrees are equal.

D.2 MULTISPECIES LOTKA-VOLTERRA - NONLINEAR DYNAMIC SYSTEMS

E EVALUATING KINCADE FIRE SPILLOVERS



Table 2: Average NDCG (Accuracy) for Identifying Sink & Source Nodes with Nonlinear Systems, 5 Rep.

Multi-species LV d = 20, T = 50 d = 20, T = 200 d = 20, T = 1000

NDCG@20 NDCG@20
Method Source (Predator) Sink (Prey) Source (Predator) Sink (Prey) Source (Predator) Sink (Prey)

BSG, h = 1 0.995 ± 0.004 0.865 ± 0.045 0.973 ± 0.013 0.939 ± 0.039 0.982 ± 0.015 0.811 ± 0.069
BSG, h = 5 0.995 ± 0.002 0.905 ± 0.046 0.945 ± 0.021 0.931 ± 0.047 0.967 ± 0.024 0.755 ± 0.035
BSG, h = 10 0.989 ± 0.01 0.946 ± 0.015 0.892 ± 0.058 0.907 ± 0.056 0.932 ± 0.031 0.711 ± 0.074

VAR-Between 0.71 ± 0.058 0.84 ± 0.058 0.721 ± 0.145 0.828 ± 0.145 — —
VAR-Closeness 0.781 ± 0.093 0.768 ± 0.093 0.78 ± 0.09 0.769 ± 0.09 — —
VAR-Degree 0.768 ± 0.091 0.748 ± 0.071 0.679 ± 0.084 0.737 ± 0.077 — —
VAR-Eigen 0.812 ± 0.087 0.738 ± 0.087 0.881 ± 0.037 0.669 ± 0.037 — —

DBN-Between 0.796 ± 0.125 0.753 ± 0.125 0.808 ± 0.091 0.742 ± 0.091 0.892 ± 0.107 0.657 ± 0.107
DBN-Closeness 0.796 ± 0.075 0.754 ± 0.075 0.806 ± 0.074 0.743 ± 0.074 0.854 ± 0.086 0.696 ± 0.086
DBN-Degree 0.801 ± 0.072 0.756 ± 0.101 0.825 ± 0.093 0.724 ± 0.112 0.891 ± 0.061 0.704 ± 0.072
DBN-Eigen 0.753 ± 0.086 0.797 ± 0.086 0.8 ± 0.111 0.75 ± 0.111 0.797 ± 0.067 0.748 ± 0.073

GVAR-Between 0.736 ± 0.077 0.814 ± 0.077 0.816 ± 0.111 0.733 ± 0.111 0.741 ± 0.063 0.809 ± 0.063
GVAR-Closeness 0.744 ± 0.093 0.806 ± 0.093 0.83 ± 0.114 0.72 ± 0.114 0.996 ± 0.01 0.554 ± 0.01
GVAR-Degree † † † † † †
GVAR-Eigen 0.791 ± 0.129 0.758 ± 0.129 0.746 ± 0.098 0.803 ± 0.098 0.816 ± 0.077 0.734 ± 0.077

— indicates retrieved NGC graph is degenerate, e.g., only edges are self-directed.
† indicates network measure cannot distinguish between nodes, e.g., all in/out degrees are equal.

Figure 1: Example Multi-species Lotka-Volterra Population with d = 20 and T = 1000. Warm colors refer to the 10 predator
species and cool colors refer to the 10 prey species. Each predator hunts 2 prey and each prey is hunted by 2 predators.



Figure 2: Hourly PM 2.5 Concentration (FOD) by County During Kincade Fire - Oct. 22 to Nov. 7, 2019.

Figure 3: County Ranking by BSG Importance and Vulnerability Scores, h = 12.

Figure 4: From left to right: Lower 95% HPDI Bound, Posterior Mean, and Upper 95% HPDI Bound. BSG for Kincade Fire,
h=12 hours ahead. Note the strong variability in spillovers (edge weights) originating from Sonoma County and tighter
intervals for indirect spillovers between San Francisco, Contra Costa, and Alameda counties.
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