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In this supplementary material, we give first a technical
result in Section 1. Then, Section 2 proposes the proofs of
main results.

For the sake of simplicity we denote T for TT . We use in the
sequel the notation C which represents a positive constant
that does not depend on n. Each time C is written in some
equation, one should understand that there exists a positive
constant such that the equation holds. Therefore, the values
of C may change from line to line and even change in the
same equation. When an index K appears, CK represents a
constant depending on K (and not on n).

1 A TECHNICAL RESULT

Let us remind the reader that E (g) = R(g) − R(g∗) for
any classifier g ∈ G.

Proposition 1.1. For any classifier g ∈ G, we have

E (g) = E

 K∑
i, k 6=i

|π∗i (T )− π∗k(T )|1{g∗(T )=i,g(T )=k}

 .

Proof. Let g ∈ G, we have:

E (g) = E
[
1{g(T )6=Y } − 1{g∗(T )6=Y }

]
= E

[
K∑
i=1

K∑
j=1

K∑
k=1

π∗i (T )
(
1{g(T )6=i}

−1{g∗(T )6=i}
)
1{g∗(T )=j}1{g(T )=k}

]

= E

 K∑
i=1

∑
k 6=i

π∗i (T )1{g(T )=k}1{g∗(T )=i}

−
K∑
k=1

∑
i6=k

π∗k(T )1{g(T )=k}1{g∗(T )=i}


= E

 K∑
i, k 6=i

(π∗i (T )− π∗k(T ))1{g(T )=k}1{g∗(T )=i}

 .
We deduce the result of Proposition 1.1 from the following
observation on the event {g∗(T ) = i}

π∗i (T )− π∗k(T ) = |π∗i (T )− π∗k(T )|.

2 PROOFS OF MAIN RESULTS

Proof of Proposition 2.1. We first denote for all k ∈ Y

Φkt :=
dPk|FNt
dP0|FNt

,

with FNT := σ (TT ) = σ (Nt, 0 ≤ t ≤ T ). We classically
obtain:

log(Φkt ) = −
∫ t

0

(λ∗k(s)− 1) ds+

∫ t

0

log(λ∗k(s)) dNs,

by writing w.r.t. a Poisson process measure of intensity 1
(see Chapter 13 of [Daley and Vere-Jones, 2003]). Thus,
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for t ≥ 0, we have the following equation for the mixture
measure

dP|FNt =

K∑
k=1

pkdPk|FNt =

K∑
k=1

pkΦkt dP0|FNt

and then

dPk|FNt
dP|FNt

=
pkΦkt dP0|FNt∑K
j=1 pjΦ

j
tdP0|FNt

=
Φkt∑K

j=1 pjΦ
j
t

.

Finally, by using the definition of F ∗k , it comes

π∗k (TT ) =
p∗keF

∗
k∑K

j=1 p
∗
je
F∗j
,

that concludes the proof.

Proof of Proposition 3.4. Let (p, µ,h) and (p
′
, µ
′
,h
′
) two

tuples. We denote π and π
′

the associated elements in Π
(see Equation (5)). We have that∥∥∥π(T )− π

′
(T )
∥∥∥
1
≤

∥∥∥π(T )− πp,µ′ ,h′ (T )
∥∥∥
1

+
∥∥∥πp,µ′ ,h′ (T )− π

′
(T )
∥∥∥
1
.(1)

Since for any k, j and (x1, . . . , xK),∣∣∣∣∂φpk (x1, . . . , xK)

∂pj

∣∣∣∣ ≤ 1

p0
,

we deduce by mean value inequality∥∥∥πp,µ′ ,h′ (T )− π
′
(T )
∥∥∥
1
≤ K

p0

∥∥∥p− p
′
∥∥∥
1
.

Besides for any k, j and p,∣∣∣∣∂φpk (x1, . . . , xK)

∂xj

∣∣∣∣ ≤ 1,

we also deduce∥∥∥π(T )− πp,µ′ ,h′ (T )
∥∥∥
1

≤ K
K∑
k=1

∣∣∣F (µ,hk)(T )− F (µ
′
,h
′
k)(T )

∣∣∣ .
Therefore, from Equation (1), we obtain

E
[∥∥∥π(T )− π

′
(T )
∥∥∥
1

]
≤ K

p0

∥∥∥p− p
′
∥∥∥
1

+K

K∑
k=1

E
[∣∣∣F (µ,hk)(T )− F (µ

′
,h
′
k)(T )

∣∣∣] .

Hence, it remains to bound the second term in the r.h.s. of
the above inequality. Using Cauchy-Schwarz inequality, for
each k, we have that

E
[∣∣∣F (µ,hk)(T )− F (µ

′
,h
′
k)(T )

∣∣∣]
= E

[∣∣∣∣∣
∫ T

0

log

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)
dNt

−
∫ T

0

(
λ(µ,hk)(t)− λ(µ

′
,h
′
k)(t)

)
dt

∣∣∣∣∣
]

≤ E

(∫ T

0

∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)∣∣∣∣∣ dNt

)2
1/2

+ E

[∫ T

0

∣∣∣λ(µ,hk)(t)− λ(µ′ ,h′k)(t)∣∣∣ dt

]
. (2)

Now, we observe that

∣∣∣λ(µ,hk)(t)− λ(µ′ ,h′k)(t)∣∣∣ ≤ |µ′ − µ|+ ‖h− h
′
‖∞,TNT ,

where NT = N[0,T ] denotes the number of jump times of
the observed process lying on [0, T ]. Therefore we deduce

E

[∫ T

0

∣∣∣λ(µ,hk)(t)− λ(µ′ ,h′k)(t)∣∣∣ dt

]
≤ T

(
|µ
′
− µ|+ ‖h− h

′
‖∞,TE [NT ]

)
. (3)

Now, we bound the first term in the r.h.s. of Equation (2).
Using that x 7→ log(1 + x) is Lipschitz we obtain:

∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)∣∣∣∣∣ ≤
∣∣∣∣log

(
µ

µ′

)∣∣∣∣
+

∣∣∣∣∣λ(µ,hk)(t)µ′
− λ(µ

′
,h
′
k)(t)

µ

∣∣∣∣∣
≤ 1

µ0

∣∣∣µ− µ′∣∣∣+
1

µ2
0

∣∣∣µλ(µ,hk)(t)− µ′λ(µ′ ,h′k)(t)∣∣∣
≤ 1

µ0

∣∣∣µ− µ′∣∣∣+
1

µ2
0

(
|µ− µ

′
|λ(µ

′
,h
′
k)(t)

+µ1

∣∣∣λ(µ,hk)(t)− λ(µ′ ,h′k)(t)∣∣∣)
≤ 1

µ0

∣∣∣µ− µ′∣∣∣+
1

µ2
0

(
|µ− µ

′
|λ(µ

′
,h
′
k)(t)

+µ1

(
|µ
′
− µ|+ ‖h− h

′
‖∞,TNT

))
. (4)



Using Doob’s decomposition, we get

E

(∫ T

0

∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)∣∣∣∣∣ dNt

)2
 =

E

[∫ T

0

log2

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)
λ∗Y (t) dt

]

+E

(∫ T

0

∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)∣∣∣∣∣λ∗Y (t) dt

)2
 .(5)

Using that E
[
(λ∗Y (t))

2
]
<∞, the first term in the r.h.s. in

Equation (5) can be bounded as follows

E

[∫ T

0

log2

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)
λ∗Y (t) dt

]

≤
∫ T

0

E

[
log4

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)]1/2
E
[
(λ∗Y (t))

2
]1/2

dt

≤ CT sup
t∈[0,T ]

E

[
log4

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)]1/2
.

Similarly, we obtain:

E

(∫ T

0

∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)∣∣∣∣∣λ∗Y (t) dt

)2


≤ TE

[∫ T

0

log2

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)
(λ∗Y (t))

2 dt

]

≤ CT 2 sup
t∈[0,T ]

E

[
log4

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)]1/2
.

Then, by Assumption 3.1, we get

E

(∫ T

0

∣∣∣∣∣log

(
λ(µ,hk)(t)

λ(µ
′ ,h
′
k)(t)

)∣∣∣∣∣ dNt

)2


≤ C
(
|µ− µ

′
|2 + ‖h− h

′
‖2∞,T

)
≤ C

(
2µ1|µ− µ

′
|+ ‖h− h

′
‖2∞,T

)
,

where C is constant which depends on µ0, µ1,h
∗, A1, and

T . Finally, combining the above equation, Equations (3)
and (2) yields the desired result.

Proof of Corollary 3.5. Let π ∈ Π. We recall that

gπ(T ) = argmax
k∈Y

πk(T )

for h ∈ H. By Proposition 1.1 we then get

0 ≤ E(gπ)

= E

 K∑
i, k 6=i

|π∗i (T )− π∗k(T )|1{gπ(T )=k}1{g∗(T )=i}


≤ 2E

[
max
k∈Y
|πk(T )− π∗k(T )|1{gπ(T )6=g∗(T )}

]
≤ 2

K∑
k=1

E
[
|πk(T )− π∗k(T )|

]
.

Finally, applying Proposition 3.4, we obtain the desired
result.

Proof of Theorem 4.2. Let us remind the reader that p̂ =
(p̂k)k=1,...,K with p̂k = 1

n

∑n
i=1 1Yi=k. We consider the

following setA =
{
p̂ : min(p̂) ≥ p0

2

}
, where p0 is defined

in Assumption 3.3.

On the one hand, note that on Ac we have

|min(p∗)−min(p̂)| ≥ p0
2
,

which implies that there exists k ∈ Y s.t. |p∗k − p̂k| ≥
p0
2 .

Thus, by using Hoeffding’s inequality we get

P(Ac) ≤
K∑
k=1

P
(
|p∗k − p̂k| ≥

p0
2

)
≤ 2Ke−np

2
0/2. (6)

On the other hand, we focus on what happens on the event
A. First, we define

f̃ = f(p̂,µ̃,h̃) = argmin
f∈F̂

R(f), (7)

and then consider the following decomposition

R(f̂)−R(f∗) = (R(f̂)−R(f̃)) + (R(f̃)−R(f∗))

=: T1 + T2.

By Equation (7), we have that

T2 = R(f̃)−R(f∗)

= R(f(p̂,µ̃,h̃))−R(f(p̂,µ∗,h∗))

+R(f(p̂,µ∗,h∗))−R(f(p∗,µ∗,h∗))

≤ R(f(p̂,µ∗,h∗))−R(f(p∗,µ∗,h∗)).

Therefore, on A, we deduce from the mean value inequality
that

T2 ≤ CK
K∑
k=1

|p̂k − p∗k|2, (8)



where CK is a constant depending on K. For establishing
an upper bound for T1, we first recall the definition (8) of
the empirical risk minimizer over F̂ :

f̂ ∈ argmin
f∈F̂

R̂(f),

with

R̂(f) =
1

n

n∑
i=1

K∑
k=1

(
Zik − fk(T i)

)2
.

Besides, let us introduce the set of parameters

S = {(p, µ,h) : p ∈ Pp0/2, µ ∈ [µ0, µ1], h ∈ HKA }.

Then, on A, we have by definition (7) of f̃ ,

T1 = R(f̂)−R(f̃)

= R(f̂)− R̂(f̂) + R̂(f̂)−R(f̃)

≤ R(f̂)− R̂(f̂) + R̂(f̃)−R(f̃)

≤ 2 sup
(p,µ,h)∈S

|R(f(p,µ,h))− R̂(f(p,µ,h))|. (9)

By combining (8) and (9), we obtain

E[R(f̂)−R(f∗)]

≤ 2E

[
sup

(p,µ,h)∈S
|R(f(p,µ,h))− R̂(f(p,µ,h))|1A

]

+ E

[
CK

K∑
k=1

|p̂k − p∗k|21A

]
+ E

[(
R(f̂)−R(f∗)

)
1Ac

]
.

Since for k ∈ Y , E[|p̂k − p∗k|2] ≤ C/n with C an absolute
constant and f̂ and f∗ are bounded, by using Equation (6),
we obtain:

E[R(f̂)−R(f∗)]

≤ 2E

[
sup

(p,µ,h)∈S
|R(f(p,µ,h))− R̂(f(p,µ,h))|

]

+ CK

(
1

n
+ exp

(
−np

2
0

2

))
. (10)

It remains to control the first term in the right hand side
of the above inequality. By Assumption 4.1 with ε = 1/n
and since p ∈ Pp0/2, and µ ∈ [µ0, µ1], there exists a finite
set Sn ⊂ S such that for each (p, µ,h) ∈ S, there exists
(pn, µn,hn) ∈ Sn satisfying

‖pn − p‖1 ≤
CK
n
, |µn − µ| ≤

1

n
, ‖hn − h‖∞,T ≤

1

n
.

Moreover, we have log(card(Sn)) ≤ CK log(nd). For
(p, µ,h) ∈ S, let us denote f = f(p,µ,h) and fn =

f(pn,µn,hn) the corresponding element of Sn. Then, we have

|R(f)− R̂(f)| ≤ |R(f)−R(fn)|

+ |R(fn)− R̂(fn)|+
∣∣∣R̂(fn)− R̂(f)

∣∣∣ .
Moreover, since f and fn are bounded, we deduce that by
denoting πn := πpn,µn,hn

E [|R(f)−R(fn)|] ≤ E [‖π(T )− πn(T )‖1] ≤ C

n
,

where the last inequality is obtained with the same argu-
ments as in the proof of Proposition 3.4. In the same way,
we also get

E
[∣∣∣R̂(f)− R̂(fn)

∣∣∣] ≤ C

n
.

Finally, from the above inequalities, we obtain that

E
[
sup
S

∣∣∣R(f)− R̂(f)
∣∣∣]

≤ 2C

n
+ E

[
max
Sn

∣∣∣R(f)− R̂(f)
∣∣∣] .

Moreover, by Hoeffding’s inequality, it comes for t ≥ 0,

P
(

max
Sn
|R̂(f)−R(f)| ≥ t

)
≤ min(1, 2 card(Sn) exp(−2nt2)).

Integrating the previous equation leads to

E
[
max
Sn
|R̂(f)−R(f)|

]
≤
∫ ∞
0

min(1, exp(log(2 card(Sn))− 2nt2)) dt

≤
∫ ∞
0

exp
(
−(2nt2 − log(2 card(Sn)))+

)
dt

≤
√

log(2 card(Sn))

2n
+

√
π

2
√

2n
.

Finally, since there are at least two elements in Sn, combin-
ing the above inequality and Equation (10) yields

E[R(f̂)−R(f∗)] ≤
√

log(2 card(Sn))

2n
+
C

n
,

which concludes the proof.

Proof of Theorem 4.3. Let us denote

∆n :=

K∑
k=1

(p̂k − p∗k)2,



where based on Dn1 := D1
n, p̂k = 1

n1

∑n1

i=1 1Yi=k. Note
that ∆n is independent from Dn2

:= D2
n. Recall that n is

assumed to be even and n1 = n2 = n/2.

Let us work again on the set A =
{
p̂ : min(p̂) ≥ p0

2

}
. As

in proof of Theorem 4.2, we can write

R(f̂)−R(f∗) ≤ R(f̂)−R(f̃) +R(f̃)−R(f∗),

and from Equation (8), the second term in the right hand
side of the above inequality is bounded by CK∆n.

Let us denote
Df := R(f)−R(f̃)

and
D̂f := R̂(f)− R̂(f̃).

Furthermore, let us introduce

S̃ = {(µ,h) : µ ∈ [µ0, µ1], h ∈ HKA }.

By Assumption 4.1, there exists a subset S̃n ⊂ S̃ with
log(card(S̃n)) ≤ C log(nd) , such that for each (µ,h) ∈ S̃ ,
there exists (µn,hn) ∈ S̃n satisfying

|µn − µ| ≤
1

n
and ‖hn − h‖∞,T ≤

1

n
.

For (µ,h) ∈ S̃, let us denote f = f(p̂,µ,h) and fn =

f(p̂,µn,hn) the associated element of S̃n. Then, the following
decomposition holds

Df̂ ≤ Df̂ − 2D̂f̂

= (Df̂ −Dfn) + (2D̂fn − 2D̂f̂ )

+(Dfn − 2D̂fn)

=: T1 + T2 + T3.

As in proof of Theorem 4.2 and using same arguments as in
proof of Proposition 3.4, we have

E [Ti] ≤
C

n
, for i = 1, 2.

Besides,
T3 ≤ max

S̃n
(Df − 2D̂f ).

Therefore, gathering the previous inequalities, we deduce
that

E[R(f̂)−R(f∗)]

≤ E
[
max
S̃n

(Df − 2D̂f )1A

]
+ CK

(
1

n
+ exp

(
−np

2
0

4

))
. (11)

Therefore to finish the proof it remains to control the first
term in the right hand side of Inequality (11). For u ≥ 0, on
A and conditionally on Dn1

, it holds that,

E
[
max
S̃n

(Df − 2D̂f )

]
≤ u+

∫ ∞
u

P
(

max
S̃n

(Df − 2D̂f ) ≥ t
)
dt. (12)

Let us introduce the least squares function

lf (Z, T ) :=

K∑
k=1

(Zk − fk(T ))2.

Since for each (µ,h) ∈ S̃, f(p̂,µ,h) are uniformly bounded
by 1, we get from Bernstein’s inequality, conditionally on
Dn1 , for t ≥ 0

P
(
Df − 2D̂f ≥ t

)
≤ P

(
2(Df − 2D̂f ) ≥ t+Df

)
≤ exp

(
−n(t+Df )

2/8

Bf + (t+Df )4K/3

)
, (13)

with
Bf := E

[(
lf (Z, T )− lf̃ (Z, T )

)2]
.

Besides, conditionally on Dn1 , we have

lf (Z, T )− lf∗(Z, T ) ≤ C
K∑
k=1

(
fk(T )− f∗k(T )

)
.

Therefore, conditionally on Dn1 , we deduce from Cauchy-
Schwartz Inequality

E
[
(lf (Z, T )− lf∗(Z, T ))

2
]

≤ CK
K∑
k=1

E
[
(fk(T )− f∗k(T ))2

]
= CK (R(f)−R(f∗)) .

Thus, writing

Bf ≤ 2E
[
(lf (Z, T )− lf∗(Z, T ))

2
]

+ 2E
[(
lf̃ (Z, T )− lf∗(Z, T )

)2]
,

we deduce

Bf ≤ CK
(
R(f)−R(f∗) +R(f̃)−R(f∗)

)
.

Then, asR(f)−R(f∗) = R(f)−R(f̃) +R(f̃)−R(f∗),
conditionally on Dn1

and on the event A, we deduce from
the above inequality and Equation (8) that

Bf ≤ CK (Df + ∆n) .



Hence, from Inequality (13), we get for t ≥ ∆n,

P
(
Df − 2D̂f ≥ t

)
≤ exp (−CKnt) ,

which leads to

P
(

max
S̃n

(Df − 2D̂f ) ≥ t
)
≤ card(S̃n) exp (−CKnt) .

In view of Equation (12), we then obtain that, conditionally
on Dn1

,

E
[
max
S̃n

(Df − 2D̂f )1A

]
≤ max

(
∆n,

CK log(S̃n)

n

)

+

∫ +∞

CK log(S̃n)/n
exp(−CKnt)dt.

Finally, integrating the above inequality ,w.r.t. Dn1
, yields

E
[
max
S̃n

(Df − 2D̂f )1A

]
≤ CK log(S̃n)

n
.

Hence, this inequality combined with Equation (11) give
the desired result.
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