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In this supplementary material, we give first a technical
result in Section [T} Then, Section [2] proposes the proofs of
main results.

For the sake of simplicity we denote 7 for 77. We use in the
sequel the notation C' which represents a positive constant
that does not depend on n. Each time C' is written in some
equation, one should understand that there exists a positive
constant such that the equation holds. Therefore, the values
of C' may change from line to line and even change in the
same equation. When an index K appears, C'x represents a
constant depending on K (and not on n).

1 A TECHNICAL RESULT

Let us remind the reader that £ (g) = R(g) — R(g*) for
any classifier g € G.

Proposition 1.1. For any classifier g € G, we have
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Proof. Let g € G, we have:
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We deduce the result of Proposition [I.T|from the following
observation on the event {g*(7) = i}

7 (T) = mp(T) = |7 (T) = mie(T).

2 PROOFS OF MAIN RESULTS

Proof of Proposition[2.1] We first denote for all k € Y

k. Py |
" dPo| gy

with FY := o (Tr) = o (N;,0 <t < T). We classically
obtain:

log () = — / (Ai(s) — 1) ds + / log(\j(s)) dN,,

by writing w.r.¢. a Poisson process measure of intensity 1
(see Chapter 13 of [Daley and Vere-Jones, |2003]). Thus,
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for ¢t > 0, we have the following equation for the mixture
measure
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Finally, by using the definition of F}’, it comes
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that concludes the proof. O

Proof of Proposition Let (p, s, h)and (p, 1 ,h') two
tuples. We denote 7 and 7 the associated elements in II
(see Equation (3))). We have that
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Since for any k, j and (x1,...,2K),
’8(;51,;(:51,...,;6;()‘ < 1
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we deduce by mean value inequality
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Besides for any k, j and p,
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we also deduce
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Therefore, from Equation (TJ), we obtain
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Hence, it remains to bound the second term in the rA.s. of
the above inequality. Using Cauchy-Schwarz inequality, for
each k, we have that
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Now, we observe that
A (1) = X B @) < |~ pl + b~ B ooz N,

where Ny = Njg ) denotes the number of jump times of
the observed process lying on [0, T'|. Therefore we deduce
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Now, we bound the first term in the r.A.s. of Equation (]ZI)
Using that « — log(1 + ) is Lipschitz we obtain:
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Using Doob’s decomposition, we get
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Using that E [()\*{/(t))ﬂ < 00, the first term in the zA.s. in
Equation (5) can be bounded as follows
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Then, by Assumption 3.1} we get
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where C'is constant which depends on g, 11, h*, A1, and
T'. Finally, combining the above equation, Equations (3)
and (2) yields the desired result. O

Proof of Corollary [3.5] Let w € II. We recall that

9(T) = argmax 7*(T)
key

for h € H. By Proposition[T.1| we then get
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Finally, applying Proposition 3.4} we obtain the desired
result. [

Proof of Theorem[#.2] Let us remind the reader that p =
(Pi)k=1,....,c With p, = L3 1y, _;. We consider the
following set A = {ﬁ :min(p) > & } where py is defined
in Assumption[3.3]

On the one hand, note that on A°¢ we have

. . oy Do
[min(p*) — min(p)| > 22,
which implies that there exists k € Y s.t. [pj — pr| > &
Thus, by using Hoeffding’s inequality we get
c Po
P(A) < zw(m— =)
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On the other hand, we focus on what happens on the event
A. First, we define

f= f(ﬁ,g,l]) = argmin R(f), @)

feF
and then consider the following decomposition

—R(ET) = (R(E) = R(E) + (R(F) — R(£))
=: T1+T2.

R(F)

By Equation (7)), we have that

Ty = R(f) — R(f*)
= R(f(5 5.) = R(Ep . o))
+ R(Epun7)) — R(fpe - n))
S R, ) = R(Epe e ns))-

Therefore, on A, we deduce from the mean value inequality
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where C'i is a constant depending on K. For establishing
an upper bound for 77, we first recall the definition @) of
the empirical risk minimizer over F:

f € argmin R(f),
feF
with
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Besides, let us introduce the set of parameters

S={(p,u,h):

Then, on A, we have by definition (7)) of f ,
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By combining (8) and (), we obtain

E[R(F) - R(£")]
<2E [ sup  [R(f(p ) — ﬁ(f(p,u,h))ﬂl,at}
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Since for k € Y, E[|px — p;|*] < C/n with C an absolute

constant and f and f* are bounded, by using Equation (6)),
we obtain:
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It remains to control the first term in the right hand side
of the above inequality. By Assumptionwith e=1/n
and since p € P, /2, and u1 € [po, 1], there exists a finite
set S, C & such that for each (p, i, h) € S, there exists
(Pns i, ) € S, satisfying

1 1

Cxk
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n n n

Moreover, we have log(card(S,)) < Cf log(n?). For
(p,u,h) € S, let us denote f = f, ,n) and f,, =

(b, 11n,h,) the corresponding element of S,,. Then, we have

[R() = R(£)] < [R(F) — R(E,)|

—R(£.)| + |R(£,) — R(£)|.

+ [R(£n)
Moreover, since f and f,, are bounded, we deduce that by
denoting 7, := Ty, .. h,

C
E[[R(E) = R(E.)[] < E[lIm(T) = ma(T)IL] < —
where the last inequality is obtained with the same argu-
ments as in the proof of Proposition [3.4] In the same way,

we also get
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Finally, from the above inequalities, we obtain that
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Moreover, by Hoeffding’s inequality, it comes for ¢ > 0,

P <rr‘1gix IR(f) — R(£)| > t)
< min(1, 2 card(S,,) exp(—2nt?)).
Integrating the previous equation leads to
E {r%fix IR(F) — R(f)@
< /Ooo min(1, exp(log(2 card(S,,)) — 2nt?)) dt
< /OOO exp (—(2nt* — log(2card(S,,)))) dt
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Finally, since there are at least two elements in S,,, combin-
ing the above inequality and Equation (T0) yields
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which concludes the proof. O

Proof of Theorem Let us denote
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where based on D,,, := D}, D, = % >t y,—k. Note
that A, is independent from D,,, := D2. Recall that n is
assumed to be even and n; = ny = n/2.

Let us work again on the set A = {p : min(p) > 22 }. As
in proof of Theorem[.2] we can write

R(F) - R(£*) < R(F) — R(F) + R(F) — R(f*),
and from Equation (8), the second term in the right hand
side of the above inequality is bounded by Cx A,,.

Let us denote

Dy :=R(f) — R(F)

and

~ o~ ~

Dy :=R(f) — R(F).

Furthermore, let us introduce

S ={(wh):

By Assumption . there exists a subset S, C S with
log(card(S,,)) < C'log(n) , such that for each (;1,h) € S,
there exists (u,, h,) € S, satisfying

1 € [po, ], € HE}.
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lptn —p| < = and [h, —h[jer < —.
n n

For (1,h) € S, let us denote f = f®,un) and £, =
£®,,h,,) the associated element of S,.. Then, the following

decomposition holds
D? < D§ — QDg
= (Df— Dsg,) + (2D,
+(Ds¢, — Zﬁfn)
= T1 + T2 + T3.

— QD?)

As in proof of Theorem [f.2]and using same arguments as in
proof of Proposition [3.4] we have

Besides,

Therefore, gathering the previous inequalities, we deduce
that
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Therefore to finish the proof it remains to control the first
term in the right hand side of Inequality (IT)). For v > 0, on
A and conditionally on D,,,, it holds that,

E {m@x(Df - 2ﬁf):|
Sn
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Let us introduce the least squares function

K
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e(Z,T) :=

Since for each (u,h) € S, £ 1) are uniformly bounded
by 1, we get from Bernstein’s inequality, conditionally on
D,,,fort >0

P(Dr —2D¢ > 1) <P (2(D¢ —2Dr) >+ D)

—n(t + Dp)?/8
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with
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Besides, conditionally on D,,,, we have
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Therefore, conditionally on D,,,, we deduce from Cauchy-
Schwartz Inequality

E[(e(2,7) ~ 1e-(2,7))°]
K
< O Y E[(£(T) — £5(T))?)
k=1
= Ok (R(f) = R(f7)) .

Thus, writing

By < 2B [(6(Z,T) — 1-(2,7))’]
+9R [(zg(z, T) =l (Z, T))Q} :
we deduce
Be < Cx (R(f) —R(F*) + R(F) - R(f*)) .

Then, as R(f) — R(f*) = R(f) — R(f) + R(f) — R(£*),
conditionally on D,,, and on the event A, we deduce from
the above inequality and Equation (8] that

Be < Ck (Ds + Ay).



Hence, from Inequality (T3), we get for ¢t > A,
P (Df — 2ﬁf > t) < exp (—Cknt),
which leads to
P <I%3X(Df —2Dy) > t) < card(S,,) exp (—Cgnt) .

In view of Equation (T2)), we then obtain that, conditionally
onD,,,

E {m@x(Df — QBf)IlA:l < max (An, CM)
n

n
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Finally, integrating the above inequality ,w.r.t. D,,,, yields

_ Cilog(Sn)

n
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Hence, this inequality combined with Equation (TT) give
the desired result.
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