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Abstract

We study the problem of adaptability in repeated
games: simultaneously guaranteeing low regret for
several classes of opponents. We add the constraint
that our algorithm is non-exploitable, in that the
opponent lacks an incentive to use an algorithm
against which we cannot achieve rewards exceed-
ing some “fair” value. Our solution is an expert
algorithm (LAFF), which searches within a set
of sub-algorithms that are optimal for each oppo-
nent class, and punishes evidence of exploitation
by switching to a policy that enforces a fair solu-
tion. With benchmarks that depend on the oppo-
nent class, we first show that LAFF has sublinear
regret uniformly over these classes. Second, we
show that LAFF discourages exploitation, because
exploitative opponents have linear regret. To our
knowledge, this work is the first to provide guar-
antees for both regret and non-exploitability in
multi-agent learning.

1 INTRODUCTION

General-sum repeated games represent interactions between
agents aiming to maximize their respective reward func-
tions, with the possibility of compromise over conflicting
goals. Despite their simplicity, achieving high rewards in
such games is a challenging learning problem due to the
complex space of possible opponents. Both the behavior of
a given opponent throughout a game, and that opponent’s
choice of learning algorithm, may depend on one’s own
algorithm. Crandall [2020] argues, based on empirical stud-
ies of repeated game tournaments, that a successful agent
must achieve two goals. First, it must optimize its actions
with respect to its beliefs about the opponent. Second, it
should act such that the opponent forms beliefs motivating
a response that is beneficial to the agent.

In particular, multi-agent reinforcement learning (MARL)
features the following tradeoff: how to adapt to a variety
of potential opponents, while also actively shaping other
agents’ models of oneself such that they respond with co-
operation, rather than exploitation. If an agent commits to
a fixed policy to “lead” the other player’s best response
[Littman and Stone, 2001], it may perform arbitrarily poorly
against players that do not converge to such a response. This
motivates the design of adaptive algorithms that try to lead,
but can retreat to a “Follower” (best response) approach if
doing so gives greater rewards [Powers and Shoham, 2005,
Chakraborty and Stone, 2010]. An effective algorithm in
this class is S++ [Crandall, 2014], which, due to its Follower
sub-algorithm, has the drawback that it is exploitable—that
is, it rewards agents insisting on unfair bargains (“bully”
strategies) [Crandall et al., 2018, Stastny et al., 2021].

A simple motivating example of Follower exploitability is
the game of Chicken (Figure 1), between players Row and
Column. Suppose Column knows Row will take the appar-
ently optimal action 1 if Column repeats action 2. Column
will then want to use the Leader strategy of committing to ac-
tion 2 to gain the highest reward. Row thus only gets reward
0.25, and if Column has truly committed, an attempt by Row
to dissuade this strategy by taking action 2 would give both
players reward 0. A cooperative outcome, e.g., alternating
between the off-diagonal cells, could be achieved if Row’s
learning algorithm were designed to publicly disincentivize
commitments to the exploitative Leader strategy.

0.5, 0.5 0.25, 1
1, 0.25 0, 0

Figure 1: Reward bimatrix for Chicken.

MARL research has largely neglected the latter half of the
adaptability vs. non-exploitability tradeoff. Existing algo-
rithms are either evaluated solely by their rewards con-
ditional on given opponents [Powers and Shoham, 2005,
Crandall, 2014], or, when the evaluation criterion does ac-
count for the incentives of algorithm selection, the pool of
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competitor algorithms typically excludes bully strategies
[Crandall and Goodrich, 2010]. Previous MARL algorithms
addressing the adaptability half of the tradeoff lack finite-
time guarantees on rewards. We aim to provide a theoret-
ically grounded algorithm for repeated games that is both
adaptable, by using Leader and Follower sub-algorithms,
and non-exploitable. More broadly, this paper addresses a
challenge of interest in several areas of machine learning:
designing algorithms that account for how the distribution
of data the algorithms are applied to may change based on
the choice of the algorithms themselves.

Related work Previous algorithms for repeated games
have combined Leader and Follower modules, aiming for
the following guarantees: worst-case safety, best response to
players with bounded memory, and convergence in self-play
to Pareto efficiency, i.e., an outcome in which no player
can do better without the other doing worse [Powers and
Shoham, 2004]. Like ours, these algorithms aim for adapt-
ability, but they do not have regret guarantees — the desired
properties are only shown to hold asymptotically. Manipu-
lator [Powers and Shoham, 2005] achieves these properties
by starting with a fixed strategy that maximizes the user’s
rewards conditional on the opponent using a best response,
and switching to reinforcement learning (RL) with a safety
override if that strategy does not yield its target rewards.
Related to the self-play guarantee, we prove a more general
property of Pareto efficiency against effective RL algorithms
(see Section 2.1). Like Manipulator, our approach tests sub-
algorithms sequentially. S++ [Crandall, 2014] has empiri-
cally strong performance on the guarantees above. However,
neither of these algorithms guarantee non-exploitability.

Although to our knowledge no previous works have proven
non-exploitability in our sense, several algorithms are de-
signed to achieve “fair” Pareto efficiency in self-play with-
out using Follower approaches that would be exploitable.
Littman and Stone [2005]’s algorithm for computation of
Nash equilibria, like our Leader sub-algorithms, enforces
a Pareto efficient outcome by punishing deviations. If an
agent played this equilibrium, which satisfies properties of
symmetry similar to the outcome our Egalitarian Leader sub-
algorithm aims for, it would be non-exploitable. However,
committing to this equilibrium precludes learning a best re-
sponse to fixed strategies that offer higher rewards than the
cooperative solution, or exploiting adaptive players, which
our Conditional Follower and Bully Leader sub-algorithms
achieve, respectively. In two-player bandit problems where
the reward bimatrix must be learned, UCRG [Tossou et al.,
2020] has near-optimal regret in self-play with respect to
the egalitarian bargaining solution (Section 2.2). However,
it cannot provably cooperate with agents other than itself,
learn best responses, or exploit adaptive players.

Our objectives of adaptability and non-exploitability are
inspired by work on learning equilibrium [Brafman and Ten-

nenholtz, 2004, Jacq et al., 2020, Clifton and Riché, 2021],
a solution concept in which players’ learning algorithms
are in a Nash equilibrium, beyond merely the equilibrium
of an individual game itself. This objective accounts for the
dependence of the problems faced by multi-agent learning
algorithms on the design of such algorithms.

Contributions We propose an algorithm (LAFF) that, to
our knowledge, is the first proven to have both strong per-
formance against different classes of players in repeated
games and a guarantee of non-exploitability, formalized in
Section 2.3. Specifically, these classes consist of station-
ary algorithms (“Bounded Memory”), unpredictable adver-
saries (“Adversarial”), and adaptive RL agents (“Follower”).
LAFF’s modular design allows for extensions to a broader
variety of opponent classes in future work. We propose re-
gret metrics appropriate for games against Followers, based
on the goal of Pareto efficiency. Our method of proof of
adaptability and non-exploitability is novel, applying “op-
timistic” principles at two levels. First, LAFF starts with
the sub-algorithm (or expert) that would give the highest
expected rewards if the opponent were in that expert’s target
class (“potential”), then proceeds through experts in de-
scending order of potential. Second, LAFF chooses whether
to switch experts by comparing the potential of the active
expert with its empirical average reward plus a slack term,
which decreases with the time for which the expert is used.
For non-exploitability and regret against Followers, we use
the properties of an enforceable bargaining solution (see
Section 2.2) to upper-bound the other player’s rewards.

2 PRELIMINARIES

We study a special class of Markov games: repeated games
with a bounded memory state representation [Powers and
Shoham, 2005] and public randomization.

2.1 SETUP AND OPPONENT CLASSIFICATION

Consider a repeated game over T time steps, defined for
players i = 1, 2 by action spaces A(i), reward matrices
R(i), and a fixed player memory length K ∈ N. Here,
all R(i)(a(1), a(2)) ∈ [0, 1] are known by both players. At
time t the following random variables are drawn: St for state,
A

(i)
t for actions, and R

(i)
t = R(i)(A

(1)
t , A

(2)
t ) for rewards.

A state space S := (A(1))K × (A(2))K × {0, 1}2K+2, and
transition probabilities P(s′|s, a(1), a(2)) between states,
are induced by two features: (1) the tuple of both players’
last K actions, and (2) the tuple of the last K and current
outcome of a randomization signal, for each player. (See Sec-
tion 2.1.2 of Mailath and Samuelson [2006].) Thus, players
condition their actions on their memory of the last K time
steps, and a signal that permits correlated action choices.

Formally, let (w(1)
t , w

(2)
t ) ∈ [0, 1]2 be weights chosen by the
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respective players at time t,1 and draw Xt ∼ Unif[0, 1] inde-
pendent of all other random variables in the game. Then, let-
ting y

(i)
t be the realized value of Y (i)

t := I[Xt < w
(i)
t ], the

second feature at time t is (y
(1)
t−K , ..., y

(1)
t , y

(2)
t−K , ..., y

(2)
t ).

This allows the players to correlate actions through the pub-
lic signal Xt, even if one player unilaterally generates the
signal. For instance, in Chicken (Figure 1), players could
flip a fair coin (w(1)

t = w
(2)
t = 0.5) at each time step and

play the pair of actions leading to the top-right cell when
it comes up heads, otherwise play the bottom-left cell. In
this framework, at each time step each player has a choice
of both a weight w(i)

t and policy π
(i)
t : S → ∆|A(i)|, a

mapping from states to distributions over actions.

Given a fixed policy of player 2, a repeated game is a
Markov decision process (MDP) given by (S,A(1), r, p)
as follows. Let a(i)(s) be the last action of player i that
defines state s. Here, r : S × A(1) → [0, 1] is r(s, a) =
R(1)(a(1)(s), a(2)(s)), and p : S × A(1) × S → [0, 1] is
p(s′|s, a) =

∑
a(2) P(s′|s, a, a(2))π(2)(a(2)|s). A policy is

called Markov if it is conditioned only on the current state.

The problem faced by our learner, player 1, depends on
which of the following classes player 2’s algorithm is in:

1. Bounded Memory: (i) Player 2 uses a constant w(2),
reported at the start of the game; (ii) π(2) is Markov and
does not depend on time or player 1’s signals w(1)

t or
y
(1)
t ; and (iii) for all s, a(2) we have π(2)(a(2)|s) > 0.2

2. Adversarial: Player 2 selects actions according to any
arbitrary distribution, which may depend on the history
of play and on player 1’s policy at each time step.

3. Follower: A Follower learns a best response when
player 1 is “eventually stationary” (formalizing the fol-
lower concept in Littman and Stone [2001]), and when
the value of that best response meets player 2’s stan-
dard of fairness. For some fairness threshold V (2) ≥ 0
(depending on the game), player 2’s algorithm has the
following properties. Suppose that after time T0, player
1 always plays a Bounded Memory algorithm (without
condition 3), which induces an MDP of finite diame-
ter D where player 2’s optimal average reward is at
least V (2). Then with probability at least 1− δ, player
2’s regret up to time T (see Section 2.3) is bounded by
C1T0+C2D(SAT log(T/δ))1/2 for constants C1, C2.

A repeated game against a Bounded Memory player is
equivalent to a communicating MDP [Puterman, 1994]. A

1We restrict to cases where players commit to a fixed weight,
so the effective action space is finite. See the Appendix for details.

2This relatively strong condition is needed for a concentration
result in our analysis, ruling out cases where players remain in a
transient state for an unknown time. We need to know the exit time
from the transient states to compute the quantity r

(2)
i,τ used by one

of our experts. Section 5 shows strong results against a Bounded
Memory player (FTFT) for which this condition does not hold.

Follower formalizes an agent that models our agent as an
MDP (Leader), and the regret bound in our definition is of a
standard form for RL algorithms [Wei et al., 2020]. Many
MARL algorithms take this approach at least partly [Powers
and Shoham, 2005, Chakraborty and Stone, 2010, Crandall
and Goodrich, 2010], hence this is a reasonable class to con-
sider. For example, Littman and Stone [2005]’s algorithm,
which plays a certain sequence of actions and punishes de-
viations from that sequence, is Bounded Memory — this
algorithm does not change its policy in response to the other
player, but its policy conditions on past actions. A standard
RL algorithm, which would learn the sequence played by
Littman and Stone [2005]’s algorithm and converge to an
optimal policy against it, and which is a component of more
complex repeated games algorithms like Manipulator and
S++, is a case of a Follower.

As discussed in Crandall [2020], a large proportion of top-
performing algorithms are Bounded Memory (Leaders) or
Followers, or switch between the two. These classes illus-
trate fundamental approaches to multi-agent learning (thus,
likely opponents that our algorithm would face): Either an
agent behaves consistently, trying to shape the learning op-
ponent’s behavior (Bounded Memory), or the agent changes
policies in a process of learning how the opponent behaves
and computing an optimal response to that opponent, pos-
sibly subject to fairness standards as they try to avoid ex-
ploitation (Follower). The Adversarial class accounts for
opponent behavior between these two extremes, which is
difficult to learn in generality, but a worst-case guarantee
can still be achieved. We thus restrict to guarantees against
formalizations of these classes. Bounds against a wider vari-
ety of opponents would be less theoretically tractable, as far
as finding the optimal strategy against one class interferes
with performance against another. (For example, Powers and
Shoham [2005] note that in the repeated Prisoner’s Dilemma,
it is impossible for an algorithm to guarantee the best re-
sponse to an opponent that may play either grim trigger —
“defect if and only if either player defected last round” — or
“always cooperate.”) Extending to other opponent classes is
an important direction for future work.

2.2 BACKGROUND ON BARGAINING THEORY

To define appropriate optimality criteria for these oppo-
nent classes and construct corresponding experts, we use
several concepts from bargaining theory. We also illus-
trate these concepts in the game of Chicken from the
introduction (Example 2.1). Define the security values
µ
(i)
S := maxvi

minv−i
v⊺
1R

(i)v2, i.e., the rewards that
each player can guarantee regardless of their opponent’s
actions, with player 1’s maximin strategy as v

(1)
M =

argmaxv1
minv2

v⊺
1R

(1)v2. Let G := {(R(1)(i, j),

R(2)(i, j)) | i ∈ A(1), j ∈ A(2)}, the set of reward
pairs achievable by pure actions in the game. An impor-
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tant set of rewards in the computation of enforceable bar-
gaining solutions is the convex polytope U := Conv(G) ∩
{(u1, u2) | u1 ≥ µ

(1)
S , u2 ≥ µ

(2)
S }, reward pairs that are

achievable by randomizing over joint actions and give each
player at least their security value. One reward pair sat-
isfying several desirable properties is the egalitarian bar-
gaining solution (EBS) [Tossou et al., 2020], given by
(µ

(1)
E , µ

(2)
E ) := argmax(u1,u2)∈U mini=1,2{ui − µ

(i)
S }.

The reward pairs over which we search for optimal bench-
mark values, described in Section 2.3, are subject to the
following constraint of enforceability. To our knowledge,
this definition, including the formalization of enforceabil-
ity for finite punishment lengths, has not been provided
in previous work on non-discounted games. However, see
Definition 2.5.1 in Mailath and Samuelson [2006] for the
discounted case.

Definition 1. Let (u1, u2) ∈ U be a convex combination
of points in some set of joint actions X . Let r(X ) :=
max(x1,x2)∈X {maxj ̸=x2 R

(2)(x1, j) − R(2)(x1, x2)} be
player 2’s deviation profit. Then (u1, u2) is ϵ-enforceable,
relative to a memory length K and ϵ > 0, if:

Ku2 ≥ Kµ
(2)
S + r(X ) + ϵ.

Intuitively, if player 2 does not deviate from player 1’s
desired action sequence, player 2 receives u2 on average for
each of K steps. If player 2 deviates, gaining at most r(X )
profit, player 1 may punish with player 2’s security value
for K steps. We call the total sequence reward “enforceable”
if it exceeds the total deviation reward by at least ϵ. Let U(ϵ)
be the set of ϵ-enforceable rewards in U . Then, the feasible
region U(ϵ), used to compute an enforceable version of the
EBS, shrinks with increasing ϵ and decreasing K.

The ϵ-enforceable EBS, which we will use to design one
of the Leader experts, is found by solving the optimization
problem from Section 3.2.4 of Tossou et al. [2020] under
the constraint in Definition 1. A similar procedure, applied
to the objective of maximizing only player 1’s reward, gives
the Bully solution for the second Leader expert. We provide
details on these solutions in the Appendix.

Example 2.1. In Chicken (Figure 1), both players’ security
value is 0.25, guaranteed by playing action 1. The EBS is
given by 50% weight on the top-right action pair, and 50%
on the bottom-left, giving both players 0.625. If player 1
plays its half of either action pair in the EBS, player 2 does
worse by deviating (by a margin of at least 0.25), so no
punishment is necessary to enforce the EBS. Thus the EBS
is enforceable for any K and ϵ < 0.375K + 0.25.

2.3 OBJECTIVES

The metric of regret, which we aim to minimize, varies
based on the class of player 2 our algorithm faces. For a

player 2 algorithm B, regret with respect to a benchmark
µ(B) isR(T ) := Tµ(B)−

∑T
t=1 R

(1)
t .

Bounded Memory By condition 3 for Bounded Mem-
ory, player 2 induces a communicating MDP. Let Π be
the set of time-independent deterministic Markov poli-
cies. Then the state-independent optimal average reward is
µ
(1)
∗ := maxπ(1)∈Π limt→∞

1
tEπ(1)(

∑t
i=0 R

(1)
i |S0). Here,

µ(B) = µ
(1)
∗ .

Adversarial Against an Adversarial player, an appropriate
benchmark is the greatest expected value that player 1 can
guarantee, no matter player 2’s actions. This is player 1’s
security value: µ(B) = µ

(1)
S . Note the distinction from ex-

ternal regret used in adversarial bandits and MDPs. While
the problem is trivial if player 2 is known to be Adversarial,
since one can always play the maximin strategy, our chal-
lenge is to maintain low Adversarial regret without losing
guarantees on other regret measures. This corresponds to
safety in multi-agent learning [Powers and Shoham, 2004].

Follower The concept of regret against a Follower is more
complex. Player 2’s sequence of policies can vary signif-
icantly based on player 1’s actions. Evaluating our algo-
rithm by the maximum average reward in hindsight would
have to account for this counterfactual dependence [Cran-
dall, 2014]. However, by considering enforceability, we can
define benchmarks by lower bounds on this maximum, con-
strained by the Follower’s fairness value V (2). We consider
two cases depending on V (2), focusing for simplicity on the
extremes where the Follower either accepts nothing less than
the EBS or accepts any enforceable bargain. In principle,
our framework could be extended for other V (2) values.

First, the EBS is Pareto efficient, meaning we cannot achieve
greater than µ

(1)
E without player 2 receiving less than µ

(2)
E .

When the EBS can be enforced with a fixed policy, µ(1)
E

is thus an appropriate benchmark if the fairness threshold
V (2) is player 2’s part of the EBS pair. The EBS is not
always enforceable for finite K, however. In this case, the
enforceable version of the EBS is the maximizer (µ(1)

E,ϵ, µ
(2)
E,ϵ)

of the objective f(u1, u2) = mini=1,2{ui − µ
(i)
S } in U(ϵ)

for some ϵ > 0. For this first case, we therefore consider
V (2) = µ

(2)
E,ϵ, where player 2 follows conditionally. If U(ϵ)

is empty, (µ(1)
E,ϵ, µ

(2)
E,ϵ) := (µ

(1)
S , µ

(2)
S ). We set µ(B) = µ

(1)
E,ϵ.

The second case is V (2) = 0, i.e., player 2 follows uncon-
ditionally. Here, we compute the maximizer over U(ϵ) of
f(u1, u2) = u1. Let (µ(1)

B,ϵ, µ
(2)
B,ϵ) be the solution to this op-

timization problem (the Bully values), or (µ(1)
B,ϵ, µ

(2)
B,ϵ) :=

(µ
(1)
S , µ

(2)
S ) if no solution exists. We define µ(B) = µ

(1)
B,ϵ.

While these regret metrics provide standards for adaptabil-
ity, we must also formalize non-exploitability. We seek a

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).



guarantee on an algorithm’s performance against its best
response. It is unclear how to characterize the best response
to an algorithm capable of adapting to several opponent
classes. Given this, we focus on a tractable and practically
relevant subproblem: guaranteeing that the best response to
our algorithm is not a “bully” in the sense discussed in the in-
troduction, which is the most common exploitative strategy
in MARL literature [Powers and Shoham, 2005, Littman
and Stone, 2001, Press and Dyson, 2012, Littman and Stone,
2005]. Even this weaker guarantee is absent from previous
work, and we show numerically in Section 5 that this suf-
fices for our algorithm to be in learning equilibrium with
itself (see Section 1) in a pool of top-performing algorithms.

Definition 2. Let player 2 be Bounded Memory, and µ
(1)
M

and µ
(2)
M be the expected rewards for players 1 and 2 when

player 1 uses v(1)
M and player 2 uses π(2). An algorithm A is

(V (1), ηe)-non-exploitable if, whenever µ(1)
∗ < V (1) − ηe

and µ
(2)
M > µ

(2)
E,ϵ, for all c > 0 player 2’s regret with respect

to µ
(2)
E,ϵ + c against A is Ω(T ).

Our algorithm is exploitable if player 2 can profit (do better
than µ

(2)
E,ϵ) from a policy against which we cannot achieve

close to some value corresponding to a standard of fairness.
The hyperparameter V (1) tunes the tradeoff between ex-
ploitability and flexibility to various opponents. Player 2
does not profit from exploitation if they incur linear regret.

Example 2.2. In Chicken (Figure 1), let V (1) = 0.625 (i.e.,
the EBS), and consider the following strategies: a) always
play action 2, b) always play the opponent’s last action,
and c) play the best response to the empirical distribution
of the opponent’s past actions. Strategy (a) is exploitative
Bounded Memory. Thus, we argue that an effective algo-
rithm should avoid playing the “best response” of action 1,
instead discouraging the use of this strategy by, e.g., con-
sistently playing the EBS (see Egalitarian Leader in the
next section). Strategy (b) is also Bounded Memory, but not
exploitative since one can achieve at least V (1) against this
player on average. Our algorithm should therefore learn the
best response to (b). Strategy (c) is a Follower with V (2) = 0,
thus our algorithm should converge to consistently playing
action 2 against (c), achieving the Bully value.

3 LEAD AND FOLLOW FAIRLY (LAFF)

We apply an expert algorithm to a set of experts designed for
our target classes. Expert algorithms use an active expert to
choose an action at a given time, and switch active experts
based on their relative performance [Crandall, 2014]. LAFF
switches experts sequentially, going to the next expert in
a predefined sequence only if the rewards obtained by its
active expert fall short of the current target value. Some of
the experts are also designed to guarantee non-exploitability.

ϕF ϕE ϕM ϕB

Q-learning v
(1)
M v

(1)
P

Figure 2: Algorithmic components (white) of LAFF’s
experts (gray). An arrow from one node to another means
the former is used in computation of the output by the latter.

3.1 DESCRIPTION OF EXPERTS

LAFF uses an active expert for an epoch of length H before
checking whether to switch. Let τ be the time elapsed since
LAFF started using the current instance of the active expert
(at time ti + 1), and define r

(1)
i,τ := 1

τ

∑ti+τ
t=ti+1 R

(1)
t and

r
(2)
i,τ := 1

τ−K

∑ti+τ
t=ti+K+1 R

(2)
t . See Figure 2 for a summary

of algorithmic elements that these experts depend on.

Conditional Follower (ϕF ) Recall the benchmarks µ(1)
B,ϵ,

µ
(1)
E,ϵ, and µ

(1)
S from Section 2.3. To handle cases where µ

(1)
∗

against a Bounded Memory player 2 lies between these
values, LAFF uses ϕF multiple times in the sequence (called
“instances”). This expert starts off equivalent to Optimistic
Q-learning [Wei et al., 2020], whose regret bound (in an
MDP with S states and A actions) with probability at least
1 − δ is RQ(τ, δ) = O((SA log( τδ ))

1/3τ2/3). After each
subepoch of length H1/2, if r(1)i,τ < V (1) − RQ(τ,δ/T )

τ , this
expert switches to the Egalitarian Leader ϕE (below) for
as long as any instance of ϕF is used. Otherwise, it uses
Optimistic Q-learning for the next subepoch.

Conditional Maximin (ϕM ) Initially, ϕM uses the policy
π(1)(·|s) = v

(1)
M for all s. Let ηm > 0 be a slack variable,

chosen based on the class of Adversarial players considered
in Theorem 1. After each subepoch, if r(2)i,τ > µ

(2)
E,ϵ − ηm +√

log(T/δ)
2(τ−K) , this expert switches to ϕE for the rest of the

game. Otherwise, it uses v(1)
M for the next subepoch.

Egalitarian Leader (ϕE) If there is no enforceable
EBS, let ϕE ≡ v

(1)
M . Otherwise, let the EBS action

pairs be denoted (a
(1)
E (y), a

(2)
E (y)) for y = 0, 1, and

the weight on the first action pair be αE. While ϵ-
enforceability requires that a punishment of length K
is sufficient to make a reward pair player 2’s best re-
sponse, this length may not be necessary. We therefore
consider the least harsh punishment (if any) needed to
enforce the EBS, that is, the value K ′ ≤ K satisfying

K ′ = max
{
0,
⌈
r({(a(1)

E (0),a
(2)
E (0)),(a

(1)
E (1),a

(2)
E (1))})+ϵ

µ
(2)
E,ϵ−µ

(2)
S

⌉}
.

Let v(1)
P := argminv1

maxv2
v⊺
1R

(2)v2, player 1’s pun-
ishment strategy. Recall that policies in our framework are
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conditioned on binary signals Y (i)
t , whose distributions are

determined by players’ reported weights w(i)
t . Then, for the

first K ′ time steps, with the realized value y(1)t of the signal
given by w

(1)
t = αE for all t, ϕE plays a(1)E (y

(1)
t ). (This en-

sures that, if LAFF switches to ϕE mid-game, player 2 is not
punished for having played actions other than the EBS be-
fore LAFF started signaling enforcement of the EBS.) After-
wards, ϕE uses the following stationary policy. If, for any of
the past K ′ timesteps, player 2 has played A

(2)
t ̸= a

(2)
E (y

(2)
t )

— i.e., deviated from the EBS — the distribution over actions
for that state is v(1)

P . Otherwise, a(1)E (y
(1)
t ) is played.

Bully Leader (ϕB) This expert is defined like ϕE , but
using the Bully solution from Section 2.2 (maximizing the
selfish objective). If there is no enforceable solution, given
by (a

(1)
B (y), a

(2)
B (y)) for y = 0, 1 and αB, let ϕB ≡ v

(1)
M .

Otherwise, define ϕB just as ϕE for this solution.

3.2 ALGORITHM

We design the selection of experts by LAFF (Algorithm 1)
such that, for any of our target classes, LAFF eventually
commits to the optimal expert against player 2 in a sequence
{ϕj}j . Over an epoch, the active expert is executed, and
we update this expert’s average rewards since it was made
active (line 5). Afterwards, LAFF switches to the next expert
in the schedule if and only if it rejects the hypothesis that the
current expert’s expected value exceeds its corresponding
target µj (line 7). The false positive rate of this hypothesis
test is controlled by a function B, which decreases with√
τ . We define B in the proof of Lemma 1 (see Appendix).

Because µ
(1)
B,ϵ ≥ µ

(1)
E,ϵ ≥ µ

(1)
S , and the optimal reward µ

(1)
∗

against a Bounded Memory player may be greater than µ
(1)
B,ϵ

or in between these values, {ϕj}j prioritizes the order of
experts based on the optimal average reward they could
achieve against the corresponding player 2 class (line 1).

4 ANALYSIS

We will now show that LAFF meets our key criteria of
adaptability and non-exploitability. See Appendix for proofs
of lemmas and the detailed proof of Theorem 1. Lemma
1 shows that with high probability player 2’s rewards
against ϕE are not much greater than the EBS (thus non-
exploitability is feasible), and player 1’s rewards against a
Follower are near the target when the correct Leader is used.

Lemma 1. (Reward Bounds When LAFF Leads) If player
1 uses ϕE over a sequence of length τ +K ′ starting at time
t∗ + 1, then with probability at least 1− 3δ

T :

t∗+K′+τ∑
t=t∗+K′+1

R
(2)
t ≤ K ′ + 1 + τµ

(2)
E,ϵ + 3

√
1
2τ log(

T
δ ).

Algorithm 1 Lead and Follow Fairly (LAFF)

1: Init target schedule {µj}j = {µ(1)
B,ϵ, µ

(1)
B,ϵ, µ

(1)
E,ϵ, µ

(1)
E,ϵ,

µ
(1)
S }, expert schedule {ϕj}j = {ϕF , ϕB , ϕF , ϕE ,

ϕF , ϕM}, expert index j = 1, τ = 0, Rτ = 0
2: for i = 1, 2, . . . , ⌈T/H⌉ do
3: for t = (i− 1)H + 1, . . . ,min{iH, T} do
4: Run expert ϕj

5: Rτ ← Rτ +R(1)(A
(1)
t , A

(2)
t )

6: τ ← τ +H
7: if j < |{ϕj}j | and Rτ

τ < µj − B(τ) then
8: j ← j + 1, τ ← 0, Rτ ← 0

If player 2 is a Follower with V (2) = 0, and player 1 uses
ϕB , then with probability at least 1 − 5δ

T , we have r
(1)
i,τ ≥

µ
(1)
B,ϵ − B(τ). If V (2) = µ

(2)
E,ϵ, and player 1 uses ϕE , then

with probability at least 1− 5δ
T , we have r(1)i,τ ≥ µ

(1)
E,ϵ−B(τ).

Lemma 2 guarantees that with high probability, LAFF fol-
lows or uses the maximin strategy against non-exploitative
players, and punishes exploitative players.

Lemma 2. (False Positive and Negative Control of Ex-
ploitation Test) Consider a sequence of k epochs each of
length H . Let m∗

F or m∗
M be, respectively, the index of

the subepoch within this sequence at the start of which
ϕF or ϕM switches to punishing with ϕE , if at all (if
not, let m∗

F or m∗
M = ∞). Let ηe ≥ 2RQ(H/2,δ/T )

H +√
2S2A log(c0/δ)

c1H
, where c0, c1 are defined as in Theorem 5.1

of Mannor and Tsitsiklis [2005], and ηm ≥
√

log(T/δ)
2(H/2−K) +√

64e log(Nq/δ2)
(1−λ)(H/2−K) , where λ and Nq are constants with re-

spect to time defined in Lemma 4 (see Appendix).

Then, suppose player 2 is Bounded Memory, and ϕF is used.
If µ(1)

∗ < V (1) − ηe, then with probability at least 1 − δ,
m∗

F ≤ ⌈H
1/2

2 ⌉. If µ(1)
∗ ≥ V (1), then with probability at

most kH1/2δ
T , m∗

F < ∞. If ϕM is used, and µ
(2)
M > µ

(2)
E,ϵ,

then with probability at least 1− δ, m∗
M ≤ ⌈H

1/2

2 ⌉.

Suppose player 2 is Adversarial, with a sequence of action
distributions {π(2)

t } such that, for any M ≥ H1/2−K and
i, 1

M

∑i+M
t=i+1 v

(1)
M

⊺
R(2)π

(2)
t ≤ µ

(2)
E,ϵ − ηm. Then, if ϕM is

used, with probability at most kH1/2δ
T , m∗

M <∞.

Our main result, Theorem 1, claims that 1) against each
of our target classes, LAFF achieves a regret bound of the
same order as Optimistic Q-learning in single-agent MDPs
[Wei et al., 2020], and 2) LAFF satisfies non-exploitability.

Theorem 1. Let C be the set of player 2 algorithms that are
any of the following:
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• Adversarial, with a sequence of action distributions
{π(2)

t } such that 1
M

∑i+M
t=i+1 v

(1)
M

⊺
R(2)π

(2)
t ≤ µ

(2)
E,ϵ −

ηm for any M ≥ T 1/4 and i,

• Follower, with V (2) ∈ {0, µ(2)
E,ϵ}, or

• Bounded Memory, with µ
(1)
∗ ≥ V (1).

Let ηm and ηe satisfy the conditions of Lemma 2. Then, with
probability at least 1− 5δ, LAFF satisfies:

max
C
R(T ) = O(RQ(T, δ/T )).

Further, with probability at least 1−6δ, LAFF is (V (1), ηe)-
non-exploitable when there exists an enforceable EBS.

If there is no enforceable EBS, µ(2)
E,ϵ = µ

(2)
S and so we can-

not guarantee player 2 does worse than µ
(2)
E,ϵ in expectation.

The class of Adversarial players for which Theorem 1 holds
is technically restrictive. However, non-exploitability re-
quires that for each strategy (expert) used by our algorithm
that could be exploited, including Conditional Maximin,
we exclude from our target class some subset of opponents.
That is, we cannot guarantee low Adversarial regret against
players who receive more than the EBS value against max-
imin, because such players may exploit us.

Proof Sketch. For each opponent class, we need to show
that with high probability LAFF does not lock in to a sub-
optimal expert for that class. If LAFF locks in to an expert
for which the corresponding target value µj is greater than
the opponent’s benchmark µ(B), this implies LAFF consis-
tently receives rewards such that “regret” with respect to µj

grows likeRQ, by design of B(τ). But since the benchmark
is less than µj , the true regret is also bounded as desired.

We therefore only need to consider the cases of µj ≤ µ(B).
First, we know that each expert achieves at mostRQ regret
against its target opponent class, by, respectively: the defi-
nitions ofRQ (for non-exploitative Bounded Memory) and
maximin (for Adversarial), and Lemma 1 (for Followers).
Lemma 2 ensures with high probability that ϕF and ϕM

do not switch to ϕE when not exploited, so they inherit the
desired regret bounds.

Then, we need only show that once LAFF reaches the expert
whose target class matches the opponent (thus guaranteeing
low regret using that expert), with high probability LAFF
does not switch. But if using the corresponding expert gives
LAFF low regret with respect to µ(B) ≥ µj , then its re-
wards are sufficiently high that the condition for switching
experts (line 7 of Algorithm 1) never holds. The first claim
of the theorem follows.

To show non-exploitability, suppose LAFF locks in to the
first instance of ϕF . By Lemma 2, ϕF detects evidence of
exploitation sufficiently early that the remaining time left

in the game is linear in T . After detecting exploitation, ϕF

plays the same policy as ϕE . But by Lemma 1, against
this policy player 2 cannot guarantee an average reward
greater than µ(2)

E,ϵ plus a term that vanishes at a rate T 1/2. The
second claim of the theorem follows for the other possible
locked-in experts as well by considering two facts. First,
whenever ϕE or ϕB is used, Lemma 1 again bounds player
2’s rewards, since by Pareto efficiency of the EBS player 2’s
rewards from the Bully solution cannot exceed µ

(2)
E,ϵ. Second,

if LAFF reaches ϕM , again Lemma 2 ensures sufficiently
fast detection of exploitation with high probability. □

5 NUMERICAL EXPERIMENTS

Code for the experiments in this section is available on
Github.3 We evaluate LAFF by three empirical metrics. First,
we find LAFF’s empirical regret against one algorithm from
each target class. Second, LAFF and a set of top-performing
repeated games algorithms compete in a round-robin tourna-
ment. For each algorithm, we find its rewards against its best
response algorithm in this set, and check if it is in a learning
equilibrium by applying a Nash equilibrium solver [Knight
and Campbell, 2018] to the matrices of empirical rewards
for algorithm pairs. These criteria evaluate exploitability:
more exploitable algorithms have lower rewards against
algorithms that optimize against them, and an exploitable
algorithm cannot be in equilibrium with itself unless the fair-
ness threshold V (1) is low. Finally, we perform a replicator
dynamic simulation [Crandall et al., 2018]. Each generation,
the algorithms’ fitness values are computed as averages of
the round-robin scores weighted by the distribution of the
population of algorithms. Then, the population distribution
is updated in proportion to fitness. This evaluates how well a
given algorithm performs when the distribution of its oppo-
nents is determined by those algorithms’ own performance.
Exploitability is thus implicitly penalized by accounting
for opponents’ incentives. Details on the implementation of
these experiments are in the Appendix. We set V (1) = µ

(1)
E,ϵ.

Our set of competitors to LAFF consists of Bounded Mem-
ory (Bully, Forgiving Generalized Tit-for-Tat or FTFT), Fol-
lower (M-Qubed, Q-Learning, Fictitious Play), and expert
(Manipulator, S++) algorithms. See Appendix for details
and sources. We chose these algorithms because, first, they
performed well in a repeated games tournament [Crandall
et al., 2018], and second, they cover our opponent classes.
S++ and Manipulator do not fall cleanly into any of those
classes, but they are the closest comparisons in previous lit-
erature to LAFF, since they adapt to a variety of opponents
by switching between Leader and Follower experts.

To ensure sufficient diversity of test games, we choose
games based on the taxonomy of Figure 1 in Bruns [2010].
Six game families are categorized by the structures of their

3https://github.com/digiovannia/ad_expl
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Unconditional Follower (Q-Learning) Conditional Follower (LAFF) Bounded Memory (FTFT)

Adversarial (Manipulator) Exploitative (Bully)

Figure 3: The first four plots show LAFF’s average regret, in each of 11 games detailed in the Appendix, for the following
opponents: Unconditional Follower (Q-Learning), Conditional Follower (LAFF), Bounded Memory (FTFT), Adversarial

(Manipulator). The last plot shows the regret of an Exploitative (Bully) algorithm against LAFF.

Nash equilibria. We use two games from each family, one
with symmetric rewards and one with asymmetric, except
Cyclic, which has no symmetric games (see Appendix).

Regret Bounds Figure 3 shows LAFF’s regret, averaged
over 50 trials, in games against an algorithm from each tar-
get class, and the regret of an exploitative Bounded Memory
algorithm against LAFF. We chose Manipulator as “Adver-
sarial” because it does not play the EBS and is not a pure
Leader or Follower. However, in the symmetric Unfair game,
the empirical rewards indicate that Manipulator attempts to
exploit LAFF, so LAFF punishes Manipulator at the expense
of the Adversarial regret guarantee. From the plot evaluat-
ing player 2’s regret, we also exclude four games where
player 2’s Bully solution equals the EBS, since in these
cases µ

(1)
∗ ≥ V (1) (player 1 is not exploited by playing

the optimal policy). In most games, LAFF’s regret even-
tually plateaus, while the exploitative player has linear re-
gret, showing that LAFF is non-exploitable. In three games,
LAFF has linear regret against an Unconditional Follower
and non-exploitative Bounded Memory player. This may be
due to the practical difficulty of choosing hyperparameters
for tests used to decide when to switch to the next expert;
these tests depend on some unknown quantities, so for our
experiments, we tuned B(τ) on a training set of four games
that are not included in the set of 11 games for these results
(see Appendix). Longer time horizons may be required for
the conditions on ηe in Lemma 2 to hold. We used a horizon
of T = 2 · 105 to be on the same approximate scale as ex-
periments in other works on repeated games [Crandall and
Goodrich, 2010, Littman and Stone, 2005, Crandall, 2014].

Figure 4: Replicator dynamic results, where the bold curves
are average population shares and shaded regions are plus

and minus one standard deviation.

Round Robin Table 1 shows the average rewards of each
algorithm pair across the 11 games and 50 trials, which pro-
vide an empirical bimatrix for the learning game, i.e., a meta-
game in which users choose algorithms to deploy across
different repeated games. An algorithm’s reward against its
best response (highlighted in blue) measures how much it
bullies when possible and avoids exploitation. Both as player
1 and player 2, LAFF is second by this metric, behind Bully.
We also highlight the pure strategy Nash equilibria of this
learning game (in bold), noting that LAFF is in a learning
equilibrium with itself. Unfortunately, the pairing in which
Q-Learning follows Bully is also an equilibrium. Thus there
is an equilibrium selection problem, e.g., both users might
choose Bully and receive very low rewards. However, in
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Table 1: Rewards of algorithm pairs, averaged over games and trials (pure learning equilibria in are highlighted in bold text,
and each algorithm’s reward against its best response is in blue)

S++ Manipulator M-Qubed Bully Q-Learning LAFF FTFT FP

S++ 0.75, 0.76 0.73, 0.80 0.73, 0.81 0.65, 0.77 0.82, 0.76 0.71, 0.8 0.70, 0.68 0.72, 0.55
Manipulator 0.87, 0.68 0.76, 0.71 0.77, 0.65 0.65, 0.77 0.89, 0.67 0.70, 0.65 0.71, 0.60 0.76, 0.55

M-Qubed 0.88, 0.68 0.68, 0.68 0.80, 0.74 0.65, 0.80 0.79, 0.75 0.76, 0.73 0.78, 0.65 0.62, 0.56
Bully 0.86, 0.61 0.83, 0.60 0.85, 0.61 0.48, 0.44 0.91, 0.63 0.61, 0.49 0.72, 0.55 0.76, 0.56

Q-Learning 0.82, 0.77 0.73, 0.83 0.79, 0.67 0.68, 0.85 0.83, 0.74 0.71, 0.84 0.81, 0.67 0.64, 0.56
LAFF 0.87, 0.65 0.71, 0.66 0.74, 0.72 0.55, 0.61 0.90, 0.66 0.77, 0.74 0.80, 0.70 0.75, 0.57
FTFT 0.64, 0.70 0.49, 0.71 0.59, 0.76 0.60, 0.71 0.59, 0.78 0.61, 0.78 0.80, 0.75 0.46, 0.72

FP 0.70, 0.73 0.66, 0.74 0.66, 0.55 0.63, 0.73 0.69, 0.57 0.61, 0.71 0.71, 0.60 0.68, 0.55

practice it may be easier for users to coordinate on both us-
ing LAFF, because there is no conflict over choosing which
side is the Leader (Bully) versus the Follower (Q-Learning).

Replicator Dynamic On average over 1000 runs, LAFF
converges to 100% of the population in the pool of algo-
rithms (Figure 4), based on fitness computed as the minimum
of an algorithm’s average reward over the set of games when
playing as player 1 versus player 2. This metric matches
the motivation for the EBS; algorithm users will not know
a priori which of the two “sides” of the game they will
be in. Thus, they may prefer their algorithm to cooperate
with itself (maximize an egalitarian objective), instead of
bullying its copy in hopes of being on the side of the bully.

6 DISCUSSION

When choosing algorithms for multi-agent interactions,
users will have to trade off robustness to the variety of
possible algorithms they might face, with avoiding provid-
ing other users incentives to exploit them [Stastny et al.,
2021]. We have presented an algorithm for repeated games
that balances these desiderata. Both properties can facilitate
cooperation between learning agents, while still allowing
them to accept generous offers. If LAFF faces an agent
who “follows” fair, Pareto efficient bargaining proposals,
the Egalitarian Leader leads them to a mutual benefit over
their security values. If the other agent’s fairness standard is
different, the Conditional Follower can follow this alterna-
tive proposal using RL if it is not exploitative; otherwise, the
exploitation penalty encourages the other player to be more
cooperative. Against exploitable agents, the Bully Leader
can benefit from a more self-interested bargain. Finally, if
the other player is unwilling to cooperate at all but is not
exploitative, Conditional Maximin ensures safety. In future
work, more experts can be added based on agent classes
that we have neglected. For example, while LAFF includes
Leader experts only for the extreme cases in which player
2 has a high or minimal fairness standard, one could add
Leaders for other bargaining solutions.

The biggest limitations of our approach are restrictive as-
sumptions required for our non-exploitability criterion, and
the strictness of this criterion. The margin ηe is small only
for sufficiently large time horizons, hence the linear regret
in some of our experiments. Though LAFF successfully
punishes players against whom it receives less than fair re-
wards, this is only strategically necessary when such players
benefit from playing this way (genuine “exploitation”). It
may not be practically necessary to modify the experts to
not punish when the opponent also does worse, because an
opponent would not have an incentive to lead with a Pareto
inefficient policy. Finally, we note that our approach is not
intended to provide the optimal balance of the adaptability-
exploitability tradeoff; in particular, keeping a fixed fairness
threshold may not be ideal if it prevents an algorithm from
cooperating with algorithms that follow other intuitively
“fair” standards [Stastny et al., 2021].
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A DETAILS ON THE FORMAL SETTING

The randomization weights w
(i)
t introduced in Section 2.1 technically induce an infinite action space for both players.

However, as discussed in Section 2.3, the benchmarks in our problem statement are not defined with respect to the globally
optimal policy in a repeated game, if such an object is even well-defined. Against a Bounded Memory player, who commits
to a fixed w

(2)
t , the optimal policy is equivalent to that for an MDP, and is independent of w(1)

t . Against an Adversarial
player, the maximin strategy also does not depend on w

(i)
t . Finally, against Followers, benchmarks are defined with respect

to bargaining solutions that only require a constant w(1)
t . Therefore, it is not necessary for our purposes to consider the

infinite action space of possible w
(1)
t values that player 1 can choose at each time step.

B DERIVATION OF ENFORCEABLE EBS AND BULLY SOLUTION

While it has been shown that the EBS can be tractably computed absent enforceability constraints [Tossou et al., 2020], it is
nontrivial that this extends to the constrained case. Lemma 3 helps us construct the enforceability-constrained EBS.

Lemma 3. Consider any function f that is monotone in U , that is, if u1 ≥ v1 and u2 ≥ v2 then f(u1, u2) ≥ f(v1, v2).
Then there always exists a maximizer of f over U(ϵ) that is a convex combination of no more than two points in G.

Proof. The argument is similar to that in Littman and Stone [2005]. Let (u1, u2) be any point in U(ϵ), and suppose that any
point (u′

1, u
′
2) with u′

1 ≥ u1 and u′
2 ≥ u2 (except (u1, u2) itself) is not in U(ϵ). Then either (u1, u2) is on the boundary of U ,

or it is in the interior and all points to its upper-right quadrant (denoted Qu1,u2
) are excluded by enforceability. By convexity,

the former implies (u1, u2) is a convex combination of no more than two points in G. If the latter, Qu1,u2∩U must be a subset
of the whole region excluded by enforceability for some set of pointsX , that is, Conv(X )∩{(−∞,∞)×(−∞, v(ϵ,K,X ))}
for some v(ϵ,K,X ). But this again implies the desired conclusion, because (u1, u2) must be on a boundary of that excluded
region other than the one induced by {(−∞,∞)× (−∞, v(ϵ,K,X ))}.

The ϵ-enforceable EBS, which we will use to design one of the Leader experts, is found as follows. Assign to each joint action
pair xA := (i1, j1) and xB := (i2, j2) the score ρ(xA, xB) := maxαAB

mini=1,2{αABR
(i)(xA)+ (1−αAB)R

(i)(xB)−
µ
(i)
S }, where R(i)(xA) := R(i)(i1, j1) and R(i)(xB) := R(i)(i2, j2), and choose the pair with the highest score [Tossou

et al., 2020]. Searching over pairs is sufficient by Lemma 3. We maximize ρ over αAB subject to enforceability. For two
points such that R(2)(xA) > R(2)(xB) (order does not matter), ϵ-enforceability requires:

αAB ≥
r({xA, xB}) + ϵ+K[µ

(2)
S −R(2)(xB)]

K[R(2)(xA)−R(2)(xB)]
.

If R(2)(xA) = R(2)(xB), then αAB can be arbitrary as long as the first line above still holds; otherwise, this pair is not
enforceable regardless of αAB . Taking R(2)(xA) > R(2)(xB) without loss of generality, there are two cases to consider. (1)
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If R(i)(xA) ≥ R(i)(xB) for both i = 1, 2, both functions in the minimum have nonnegative slope, so ρ is nondecreasing in

αAB . Otherwise, (2) ρ has its maximum at a = R(2)(xB)−R(1)(xB)
R(1)(xA)−R(1)(xB)+R(2)(xB)−R(2)(xA)

.

In case 1, since ϵ-enforceability is a lower bound v(ϵ,K) on αAB , the optimal αAB = 1 if that upper bound is at most
1, otherwise this pair is not enforceable. In case 2, if enforceability does not exclude a, then αAB = a. Otherwise, the
non-excluded region must decrease down from v(ϵ,K) or increase up to v(ϵ,K); either way, αAB = v(ϵ,K) is optimal.

Finally, we also construct the Bully solution for the second Leader expert by following the procedure above, except with
a “selfish” score ρ(xA, xB) := maxαAB

αABR
(1)(xA) + (1− αAB)R

(1)(xA). This is, again, a monotone function over
U(ϵ), so searching over pairs of joint actions suffices. If R(1)(xA) ≤ R(1)(xB), ρ is nondecreasing in αAB , so as before
we set αAB = v(ϵ,K). If R(1)(xA) > R(1)(xB), we set αAB = 1.

C PROOF OF LEMMA 1

Lemma 1. (Reward Bounds When LAFF Leads) Let t∗ + 1 be the start time of a sequence of time steps of total length
τ +K ′. If player 1 uses ϕE over this sequence, then with probability at least 1− 3δ

T :

t∗+K′+τ∑
t=t∗+K′+1

R
(2)
t ≤ K ′ + 1 + τµ

(2)
E,ϵ + 3

√
1
2τ log(

T
δ ).

Further, if player 2 is a Follower with V (2) = 0, and player 1 uses ϕB , then with probability at least 1 − 5δ
T , we have

r
(1)
i,τ ≥ µ

(1)
B,ϵ−B(τ). If V (2) = µ

(2)
E,ϵ, and player 1 uses ϕE , then with probability at least 1− 5δ

T , we have r(1)i,τ ≥ µ
(1)
E,ϵ−B(τ).

Proof. We define the function B that controls the false positive rate of LAFF’s hypothesis tests as follows:

ξ(ϵ, r) :=


ϵ

2K′ , if r ≥ 0
ϵ+r
2K′ , if − ϵ < r < 0

−r, otherwise,

B(τ) := 1

τ
· K

′ξ(ϵ, r(X )) + C1T0 +K ′ + 1

ξ(ϵ, r(X ))

+
1

τ
·
C2RQ(τ,

δ
T ) + (3 + ξ(ϵ, r(X )))

√
τ log(T

δ )

2

ξ(ϵ, r(X ))
.

Where X = XB := {(a(1)B (y), a
(2)
B (y))}y=0,1 for expert index j ≤ 2, X = XE := {(a(1)E (y), a

(2)
E (y))}y=0,1 for j > 2, and

δ > 0 is some confidence level.

First suppose V (2) = µ
(2)
E,ϵ. Consider the target action pair XE and weight αE. Note that after the first K ′ time steps,

ϕE is stationary and thus induces a communicating MDP from player 2’s perspective, with optimal average reward
µ
(2)
∗ . We have that µ(2)

∗ ≥ µ
(2)
E,ϵ when player 2 plays against ϕE . To see this, note that the policy of playing a

(2)
E (y

(1)
t )

for all times t, when player 1 uses ϕE , induces a Markov reward process defined by two “states” {0, 1}, with rewards
(R(2)(a

(1)
E (0), a

(2)
E (0)),R(2)(a

(1)
E (1), a

(2)
E (1))) and the following transition matrix:[

αE 1− αE
αE 1− αE

]
.

This process has stationary distribution (αE, 1− αE), hence the limit average reward of this policy is µ(2)
E,ϵ.

For time t, let Dt be the event that ϕE is not following v
(1)
P and A

(2)
t ̸= a

(2)
E (Y

(1)
t ), and Mt be the event that ϕE is following

v
(1)
P . Respectively, these represent the events that ϕE is not punishing but player 2 deviates from the target solution, and that

ϕE is punishing. Define the random set T := {t ∈ {ti +K ′, . . . , ti + τ −K ′} | Dt}, and for each t ∈ T , let τt be the first
time t′ > t such that Mt′ holds but Mt′+1 does not.

For simplicity of notation, reindex ti = 0, and let τ+ =
∑τ

t=1 I[Dc
t ∩M c

t ] and τ+,K′ =
∑τ

t=K′+1 I[Dc
t ∩M c

t ]. Define

r
(i)
j := R(i)(a

(1)
E (j), a

(2)
E (j)) for players i = 1, 2 and targets j = 0, 1. WLOG, let r(i)0 ≥ r

(i)
1 . Conditional on Dc

t ∩M c
t ,
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we have R
(i)
t

iid∼ r
(i)
1 + (r

(i)
0 − r

(i)
1 )Bern(αE), and µ

(i)
E,ϵ = r

(i)
1 + (r

(i)
0 − r

(i)
1 )αE. Then, by Hoeffding’s inequality:

P

(
τ∑

t=1

R
(1)
t I[Dc

t ∩M c
t ] ≤ τ+

(
µ
(1)
E,ϵ − (r

(1)
0 − r

(1)
1 )

√
log(T/δ)

2τ+

))
≤ δ

T
,

P

(
τ∑

t=K′+1

R
(2)
t I[Dc

t ∩M c
t ] ≥ τ+,K′

(
µ
(2)
E,ϵ + (r

(2)
0 − r

(2)
1 )

√
log(T/δ)

2τ+,K′

))
≤ δ

T
.

Since ϕE only conditions on the past after the first K ′ time steps, there are no punishments for actions player 2 may have
taken prior to time t = 1. This guarantees that, for t ≥ K ′, any event Mt must be preceded by either Mt−1 or Dt−1 for
t−1 ≥ K ′. Therefore

∑τ
t=K′+1 R

(2)
t I[Dt∪Mt] ≤ K ′+

∑
t∈T (R

(2)
t +

∑τt
t′=t+1 R

(2)
t′ ). So with probability at least 1− 2δ

T :

τ(µ
(1)
E,ϵ − r

(1)
i,τ ) =

τ∑
t=1

(µ
(1)
E,ϵ −R

(1)
t )I[Dt ∪Mt] +

τ∑
t=1

(µ
(1)
E,ϵ −R

(1)
t )I[Dc

t ∩M c
t ]

≤
τ∑

t=1

(µ
(1)
E,ϵ −R

(1)
t )I[Dt ∪Mt] + τ+µ

(1)
E,ϵ − τ+

[
r
(1)
1 + (r

(1)
0 − r

(1)
1 )

(
αE −

√
log(T/δ)

2τ+

)]

≤
τ∑

t=1

I[Dt ∪Mt] + τ+(r
(1)
0 − r

(1)
1 )

√
log(T/δ)

2τ+
,

(τ −K ′)(µ
(2)
E,ϵ − r

(2)
i,τ )

≥
τ∑

t=K′+1

(µ
(2)
E,ϵ −R

(2)
t )I[Dt ∪Mt] + τ+,K′µ

(2)
E,ϵ − τ+,K′

[
r
(2)
1 + (r

(2)
0 − r

(2)
1 )

(
αE +

√
log(T/δ)

2τ+,K′

)]

=

τ∑
t=K′+1

(µ
(2)
E,ϵ −R

(2)
t )I[Dt ∪Mt]− τ+,K′(r

(2)
0 − r

(2)
1 )

√
log(T/δ)

2τ+,K′

≥ µ
(2)
E,ϵ

τ∑
t=K′+1

I[Dt ∪Mt]−K ′ −
∑
t∈T

(
R

(2)
t +

τt∑
t′=t+1

R
(2)
t′

)
− τ+,K′(r

(2)
0 − r

(2)
1 )

√
log(T/δ)

2τ+,K′
.

Let R(2)
E,t := R(2)(a

(1)
E (Y

(1)
t ), a

(2)
E (Y

(1)
t )). By enforceability, r(XE)+K ′µ

(2)
S ≤ K ′µ

(2)
E,ϵ−ϵ. Now, first, suppose r(X E) ≥ 0.

In this case, K ′ ≥ 1, that is, player 2 has a profitable deviation and so punishment is necessary for ϵ-enforceability. Then,
further, (τt − t−K ′)µ

(2)
S ≤ (τt − t−K ′)µ

(2)
E,ϵ −

(
τt−t−K′

K′

)
ϵ. Given that for any t ∈ T we have A

(1)
t = a

(1)
E (Y

(1)
t ) and

A
(2)
t ̸= a

(2)
E (Y

(1)
t ):

∑
t∈T

(
R

(2)
t +

τt∑
t′=t+1

R
(2)
t′

)
≤
∑
t∈T

(
r(XE) +R

(2)
E,t +

τt∑
t′=t+1

R
(2)
t′

)
(since t ∈ T )

≤
∑
t∈T

(
K ′µ

(2)
E,ϵ − ϵ−K ′µ

(2)
S +R

(2)
E,t +

τt∑
t′=t+1

R
(2)
t′

)
(by enforceability)

≤
∑
t∈T

(
(τt − t)µ

(2)
E,ϵ − ϵ+R

(2)
E,t −

(
τt − t−K ′

K ′

)
ϵ− (τt − t)µ

(2)
S +

τt∑
t′=t+1

R
(2)
t′

)

=
∑
t∈T

(
(τt − t)µ

(2)
E,ϵ +R

(2)
E,t −

(
τt − t

K ′

)
ϵ− (τt − t)µ

(2)
S +

τt∑
t′=t+1

R
(2)
t′

)
.

Let τT := |T | and τM :=
∑

t∈T (τt − t). Let E := E
(∑

t∈T
∑τt

t′=t+1 R
(2)
t′

)
. Because ϕE punishes for t′ such that Mt′
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holds, E ≤ τMµ
(2)
S . Then, again by Hoeffding:

P

∑
t∈T

R
(2)
E,t ≥ τT

r(2)1 + (r
(2)
0 − r

(2)
1 )

αE +

√
log(T/δ)

2τT

 ≤ δ

T
,

P

(∑
t∈T

τt∑
t′=t+1

R
(2)
t′ ≥ τMµ

(2)
S +

√
τM log(T/δ)

2

)
≤ P

(∑
t∈T

τt∑
t′=t+1

R
(2)
t′ ≥ E +

√
τM log(T/δ)

2

)

≤ δ

T
.

Then, with probability at least 1− 2δ
T :

∑
t∈T

(
R

(2)
t +

τt∑
t′=t+1

R
(2)
t′

)
≤
∑
t∈T

(
(τt − t)µ

(2)
E,ϵ −

(
τt − t

K ′

)
ϵ− (τt − t)µ

(2)
S

)

+ τT µ
(2)
E,ϵ + τT (r

(2)
0 − r

(2)
1 )

√
log(T/δ)

2τT
+ τMµ

(2)
S +

√
τM log(T/δ)

2

=
∑
t∈T

(
(τt − t+ 1)µ

(2)
E,ϵ −

(
τt − t

K ′

)
ϵ

)

+ (r
(2)
0 − r

(2)
1 )

√
τT log(T/δ)

2
+

√
τM log(T/δ)

2

≤
∑
t∈T

(τt − t+ 1)(µ
(2)
E,ϵ − ξ(ϵ, r(XE))) + 2

√
τ log(T/δ)

2
. (*)

In the last step we use the fact that τt− t+1 ≤ 2(τt− t). Second, suppose −ϵ < r(XE) < 0, which still guarantees K ′ ≥ 1.
Then:

∑
t∈T

(
R

(2)
t +

τt∑
t′=t+1

R
(2)
t′

)
≤
∑
t∈T

(
r(XE) +R

(2)
E,t +

τt∑
t′=t+1

R
(2)
t′

)
(t ∈ T )

≤
∑
t∈T

r(XE) +
∑
t∈T

µ
(2)
E,ϵ +

∑
t∈T

(τt − t)µ
(2)
S + 2

√
τ log(T/δ)

2
(Hoeffding)

≤
∑
t∈T

r(XE) +
∑
t∈T

µ
(2)
E,ϵ +

∑
t∈T

(τt − t)

(
µ
(2)
E,ϵ −

ϵ+ r(XE)

K ′

)
+ 2

√
τ log(T/δ)

2

(enforceability)

=
∑
t∈T

r(XE) +
∑
t∈T

(τt − t+ 1)

(
µ
(2)
E,ϵ −

τt − t

(τt − t+ 1)K ′ (ϵ+ r(XE))

)
+ 2

√
τ log(T/δ)

2
.

But then the inequality (*) holds in this case as well, since
∑

t∈T r(XE) ≤ 0. Finally, if r(XE) ≤ −ϵ, then by construction
of ϕE , there is no punishment, so τt − t = 0, and we have:

∑
t∈T

(
R

(2)
t +

τt∑
t′=t+1

R
(2)
t′

)
≤
∑
t∈T

r(XE) +
∑
t∈T

µ
(2)
E,ϵ +

√
τ log(T/δ)

2

=
∑
t∈T

(τt − t+ 1)(µ
(2)
E,ϵ + r(XE)) +

√
τ log(T/δ)

2
.

Since r(XE) ≤ −ξ(ϵ, r(XE)), again, inequality (*) holds. Putting these parts for player 2’s regret together, with probability
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at least 1− 3δ
T :

τ∑
t=K′+1

R
(2)
t ≤

τ∑
t=K′+1

R
(2)
t I[Dt ∪Mt] + τ+,K′

(
µ
(2)
E,ϵ + (r

(2)
0 − r

(2)
1 )

√
log(T/δ)

2τ+,K′

)

≤ K ′ +
∑
t∈T

(τt − t+ 1)(µ
(2)
E,ϵ − ξ(ϵ, r(XE))) + 2

√
τ log(T/δ)

2
+ τ+,K′µ

(2)
E,ϵ +

√
τ log(T/δ)

2

≤ K ′ + (µ
(2)
E,ϵ − ξ(ϵ, r(XE)))

(
1 +

τ∑
t=K′+1

I[Dt ∪Mt]

)
+ τ+,K′µ

(2)
E,ϵ + 3

√
τ log(T/δ)

2
. (3)

Line 3 follows because τt − t + 1 is one more than the number of time steps ϕE punishes, so
∑

t∈T (τt − t + 1) ≤
1 +

∑τ
t=K′+1 I[Dt ∪Mt]. The first claim of the lemma follows by (µ

(2)
E,ϵ − ξ(ϵ, r(XE)))(1 +

∑τ
t=K′+1 I[Dt ∪Mt]) ≤

1 + (τ − τ+,K′)µ
(2)
E,ϵ, since this part of the argument does not require that player 2 is a Follower. Thus with probability at

least 1− 3δ
T :

τ∑
t=K′+1

(µ
(2)
∗ −R

(2)
t ) ≥

τ∑
t=K′+1

(µ
(2)
E,ϵ −R

(2)
t )

≥ µ
(2)
E,ϵ

τ∑
t=K′+1

I[Dt ∪Mt]−K ′

− (µ
(2)
E,ϵ − ξ(ϵ, r(XE)))

(
1 +

τ∑
t=K′+1

I[Dt ∪Mt]

)
− 3

√
τ log(T/δ)

2

≥ ξ(ϵ, r(XE))

τ∑
t=K′+1

I[Dt ∪Mt]−K ′ − 1− 3

√
(τ −K ′) log(T/δ)

2
.

By stipulation, the Follower’s regret is C1T0 + C2DS1/2A1/2τ1/2(log(Tτ/δ))1/2 with probability at least 1− δ
T , where

T0 in general depends on the length of previous epochs. Therefore, with probability at least 1− 5δ
T :

τ(µ
(1)
E,ϵ − r

(1)
i,τ )

≤
τ∑

t=1

I[Dt ∪Mt] +

√
τ+ log(T/δ)

2

≤ K ′ +
1

ξ(ϵ, r(XE))

(
ξ(ϵ, r(XE))

τ∑
t=K′+1

I[Dt ∪Mt]

)
+

√
τ+ log(T/δ)

2

≤ K ′ +
1

ξ(ϵ, r(XE))

(
τ∑

t=K′+1

(µ
(2)
E,ϵ −R

(2)
t ) +K ′ + 1 + 3

√
τ log(T/δ)

2

)
+

√
τ log(T/δ)

2

≤ K ′ +
1

ξ(ϵ, r(XE))

(
C1T0 + C2DS1/2A1/2τ1/2(log(τ/δ))1/2 +K ′ + 1 + 3

√
τ log(T/δ)

2

)
+

√
τ log(T/δ)

2
,

r
(1)
i,τ ≥ µ

(1)
E,ϵ −

1

τ

(
K ′ +

C1T0

ξ(ϵ, r(XE))
+

K ′ + 1

ξ(ϵ, r(XE))

)
− 1

τ1/2

[
C2DS1/2A1/2(log(Tτ/δ))1/2

ξ(ϵ, r(XE))
+

(
3

ξ(ϵ, r(XE))
+ 1

)√
log(T/δ)

2

]

≥ µ
(1)
E,ϵ −

1

τ

(
K ′ +

C1T0

ξ(ϵ, r(XE))
+

K ′ + 1

ξ(ϵ, r(XE))

)
− 1

τ1/2

[
C2RQ(τ, δ/T )

τ1/2ξ(ϵ, r(XE))
+

(
3

ξ(ϵ, r(XE))
+ 1

)√
log(T/δ)

2

]
.

Given that RQ(τ, δ/T ) ≥ DS1/2A1/2(log(Tτ/δ))1/2. The same argument applies for the case V (2) = 0, using the
corresponding target actions and weight and considering ϕB .
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D PROOF OF LEMMA 2

Lemma 2. (False Positive and Negative Control of Exploitation Test) Consider a sequence of k epochs each of length H .
Let m∗

F or m∗
M be, respectively, the index of the subepoch within this sequence at the start of which ϕF or ϕM switches

to punishing with ϕE , if at all (if not, let m∗
F or m∗

M =∞). Let ηe ≥ 2RQ(H/2,δ/T )
H +

√
2S2A log(c0/δ)

c1H
, where c0, c1 are

defined as in Theorem 5.1 of Mannor and Tsitsiklis [2005], and ηm ≥
√

log(T/δ)
2(H/2−K) +

√
64e log(Nq/δ2)
(1−λ)(H/2−K) , where λ and Nq

are constants with respect to time defined in Lemma 4 (see Appendix).

Then, suppose player 2 is Bounded Memory, and ϕF is used. If µ(1)
∗ < V (1) − ηe, then with probability at least 1 − δ,

m∗
F ≤ ⌈H

1/2

2 ⌉. If µ(1)
∗ ≥ V (1), then with probability at most kH1/2δ

T , m∗
F <∞. If ϕM is used, and µ

(2)
M > µ

(2)
E,ϵ, then with

probability at least 1− δ, m∗
M ≤ ⌈H

1/2

2 ⌉.

Suppose player 2 is Adversarial, with a sequence of action distributions {π(2)
t } such that, for any M ≥ H1/2 −K and i,

1
M

∑i+M
t=i+1 v

(1)
M

⊺
R(2)π

(2)
t ≤ µ

(2)
E,ϵ − ηm. Then, if ϕM is used, with probability at most kH1/2δ

T , m∗
M <∞.

Proof. First suppose µ(1)
∗ ≥ V (1). Let τ be the number of time steps since the current instance of ϕF was first deployed. By

definition ofRQ, we have P (τ(µ
(1)
∗ −ri,τ )

(1) > RQ(τ, δ/T )) ≤ δ
T . Then, for any of kH1/2 subepochs (and corresponding

time τ ):

P

(
r
(1)
i,τ < V (1) − RQ(τ, δ/T )

τ

)
≤ P

(
r
(1)
i,τ < µ

(1)
∗ −

RQ(τ, δ/T )

τ

)
= P (τ(µ

(1)
∗ − r

(1)
i,τ ) > RQ(τ, δ/T ))

≤ δ

T
.

Suppose µ
(1)
∗ < V (1) − ηe. Let r ∈ R|S|×|A|×|S| be the vector such that r(s, a, s′) = R(1)(s′), and ti + 1 be the

start time of the sequence of epochs. As in Mannor and Tsitsiklis [2005], define q̂τ (s, a, s
′) := 1

τ

∑ti+τ
t=ti+1 I[St =

s,A
(1)
t = a, St+1 = s′] and for any policy π, given that in a communicating MDP the initial state does not matter, define

qπ(s, a, s′) := limT→∞
1
T

∑T
t=1 Eπ(I[St = s,A

(1)
t = a, St+1 = s′]|S0). Then r

(1)
i,τ = r⊺q̂τ , and the expected average

reward of π is r⊺qπ . Further, as in Mannor and Tsitsiklis [2005], let Q be the set of vectors q that satisfy:

q(s, a, s′) = P (s′|s, a)
∑
s′′

q(s, a, s′′) (for all s, a, s′,)∑
s,a

q(s, a, s′) =
∑
a′,s′′

q(s′, a′, s′′) (for all s′.)

Then by Proposition 3.2 of Mannor and Tsitsiklis [2005], since the MDP induced by a Bounded Memory player 2 is
communicating, for any q ∈ Q, there exists a stationary policy π such that q = qπ. By construction of Q by a set of linear
constraints, Q is closed, and so there exists a q′π ∈ Q such that ||q̂τ − q′π||2 = infq∈Q ||q̂τ − q||2. By Theorem 5.1 of
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Mannor and Tsitsiklis [2005], there exist constants c0, c1 > 0 such that P (infq∈Q ||q̂τ − q||2 ≥ x) ≤ c0 exp(−c1x2τ). So:

P

(
r
(1)
i,τ ≥ V (1) − RQ(τ, δ/T )

τ

)
≤ P

(
r⊺q̂τ ≥ r⊺qπ

∗
+ ηe −

RQ(τ, δ/T )

τ

)
≤ P

(
r⊺(q̂τ − q′π) ≥ ηe −

RQ(τ, δ/T )

τ

)
≤ P

(
||r||2||q̂τ − q′π||2 ≥ ηe −

RQ(τ, δ/T )

τ

)
≤ P

(
inf
q∈Q
||q̂τ − q||2 ≥

1√
S2A

(
ηe −

RQ(τ, δ/T )

τ

))
≤ c0 exp

(
− c1τ

S2A

(
ηe −

RQ(τ, δ/T )

τ

)2
)
.

Now, suppose that up until and excluding the ⌈H
1/2

2 ⌉’th subepoch, ϕF has not switched to ϕE . At this subepoch:

P

(
r
(1)
i,τ ≥ V (1) − RQ(τ, δ/T )

τ

)
≤ c0 exp

(
− c1H

2S2A

(
ηe −

RQ(H/2, δ/T )

H/2

)2
)

≤ c0 exp

(
− c1H

2S2A
· 2S

2A log(c0/δ)

c1H

)
= δ.

Hence, with probability at least 1− δ, we have m∗
F ≤ ⌈H

1/2

2 ⌉.

Suppose player 2 is Bounded Memory, and suppose that up until and excluding the ⌈H
1/2

2 ⌉’th subepoch, ϕM has not
switched to ϕE . At this subepoch:

P

(
r
(2)
i,τ ≤ µ

(2)
E,ϵ − ηm +

√
log(T/δ)

2(H1/2⌈H1/2

2 ⌉ −K)

)

≤ P

(
r
(2)
i,τ − µ

(2)
M ≤ −ηm +

√
log(T/δ)

2(H2 −K)

)

≤

√√√√√Nq exp

− (1− λ)(H2 −K)

64e

(√
log(T/δ)

2(H2 −K)
− ηm

)2
 (Lemma 4)

≤

√√√√Nq exp

(
−
(1− λ)(H2 −K)

64e
· 64e log(Nq/δ2)

(1− λ)(H2 −K)

)
= δ.

If v(1)
M is deterministic, then Lemma 4 applies exactly. Otherwise, all transient states are those with player 1 action histories

that include actions outside the support of v(1)
M , or inconsistent y(i)t . After K time steps, the state sK+1 must not be such a

state, and again the restriction of the MDP to recurrent states is irreducible. Hence Lemma 4 also applies in this case. Thus,
with probability at least 1− δ, we have m∗

M ≤ ⌈H
1/2

2 ⌉.

Now suppose player 2 is Adversarial, with expected rewards bounded as described. Let π(2)
t be the (arbitrary) distribution

vector over actions used by player 2 at time t. Then R
(2)
t is distributed such that P (R

(2)
t = R(2)(i, j)) = (v

(1)
M )i(π

(2)
t )j ,
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with expected value v
(1)
M

⊺
R(2)π

(2)
t . For fixed v

(1)
M and π

(2)
t , the random variables R(2)

K+1, . . . , R
(2)
τ are independent. Thus

Hoeffding’s inequality applies, and we have, for any of kH1/2 subepochs (and corresponding time τ ):

P

(
r
(2)
i,τ > µ

(2)
E,ϵ − ηm +

√
log(T/δ)

2(τ −K)

)

≤ P

(
r
(2)
i,τ − E(r(2)i,τ ) ≥

√
log(T/δ)

2(τ −K)

)

≤ exp

−2(τ −K)

(√
log(T/δ)

2(τ −K)

)2


=
δ

T
.

E PROOF OF THEOREM 1

Theorem 1. Let C be the set of player 2 algorithms that are any of the following:

• Adversarial, with a sequence of action distributions {π(2)
t } such that 1

M

∑i+M
t=i+1 v

(1)
M

⊺
R(2)π

(2)
t ≤ µ

(2)
E,ϵ − ηm for any

M ≥ T 1/4 and i,

• Follower, with V (2) ∈ {0, µ(2)
E,ϵ}, or

• Bounded Memory, with µ
(1)
∗ ≥ V (1).

Let y and ηe satisfy the conditions of Lemma 2. Then, with probability at least 1− 5δ, LAFF satisfies:

max
C
R(T ) = O(RQ(T, δ/T )).

Further, with probability at least 1− 6δ, LAFF is (V (1), ηe)-non-exploitable when there exists an enforceable EBS.

Proof. We consider each case in turn, and let H = ⌊T 1/2⌋. For each expert index j = 1, ..., 5, let kj be the index of the
epoch in which ϕj is switched to ϕj+1, if at all (otherwise, define kj =∞).

Non-exploitative Bounded Memory. In general, if the total regret is bounded by the sum of a constant number of
consecutive regret terms each bounded by O(RQ(τ, δ/T )), where τ is the length of time for that regret term, then total
regret is O(RQ(T, δ/T )). For brevity, we will only state the proofs of the bounds of these respective terms, also using the
fact that with probability at least 1− H3/4δ

T ≥ 1− δ, the exploitation test is negative every time by Lemma 2. For Bounded
Memory players, we need to consider the different possible orderings of µ(1)

∗ relative to the target values {µj}.

If µ(1)
∗ ≥ µ

(1)
B,ϵ, for each epoch in which ϕF is used, with probability at least 1− δ

T we have τ(µ
(1)
∗ − r

(1)
i,τ ) ≤ RQ(τ, δ/T ),

so r
(1)
i,τ ≥ µ

(1)
∗ − RQ(τ,δ/T )

τ ≥ µ
(1)
B,ϵ −B(τ). Thus Optimistic Q-learning is used each epoch, and so with probability at least

1− 2δ,R(T ) = O(RQ(T, δ/T )). Otherwise, if k1 =∞, this same argument applies. If k1 <∞, up to the end of epoch
k1, LAFF will have used ϕF continuously, so with probability at least 1− δ

T , the boundRQ holds for the first k1H time
steps. If k2 =∞, this implies that r(1)i,τ ≥ µ

(1)
B,ϵ − B(τ) for every epoch i up to the end of the second-to-last epoch. Thus,

with probability at least 1− 2δ, the remaining regret is bounded as
∑T

t=k1H+1(µ
(1)
∗ −R

(1)
t ) ≤

∑T
t=k1H+1(µ

(1)
B,ϵ −R

(1)
t ) ≤

H + (T − (k1 + 1)H)B(T − (k1 + 1)H). Since τB(τ) = O(RQ(τ, δ/T )), the result follows.

If k2 < ∞ and µ
(1)
∗ ≥ µ

(1)
E,ϵ, then with probability at least 1 − (T/H−k2)δ

T , we have r
(1)
i,τ ≥ µ

(1)
E,ϵ − B(τ) for all epochs i

afterwards, so k3 =∞. Thus, with probability at least 1−2δ, the first two terms are bounded as in the last case, and the third
term is O(RQ(T − k2H, δ/T )). If µ(1)

∗ < µ
(1)
E,ϵ, yet k3 =∞, LAFF has used ϕF indefinitely after k2, thus the same bound

as directly above holds with probability at least 1− 2δ. If k3 <∞ but k4 =∞, after k3 we will have r
(1)
i,τ ≥ µ

(1)
E,ϵ − B(τ)
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for all but possibly the last epoch. Hence, with probability at least 1− 2δ, along with the first three terms we have a bound
of H + (T − (k3 + 1)H)B(T − (k3 + 1)H) for the last term.

Lastly, if k4 <∞, LAFF will always use ϕF thereafter as long as we do not have r(1)i,τ < µ
(1)
S −B(τ). But since µ(1)

∗ ≥ µ
(1)
S ,

with probability at least 1− ⌈T/H⌉δ
T that never happens. So, with probability at least 1− 2δ, the first four terms are bounded

as in the last case and the last term is O(RQ(T − k4H, δ/T )).

Follower, V (2) = 0 (Unconditional) If k1 = ∞, we always have r
(1)
i,τ ≥ µ

(1)
B,ϵ − B(τ). Then R(T ) ≤ TB(T ) =

O(RQ(T, δ/T )). Otherwise, by Lemma 1, we will for each of ⌈T/H⌉−k1 epochs have r(1)i,τ ≥ µ
(1)
B,ϵ−B(τ) with probability

1− 5δ
T after k1 by using ϕB . So, with probability at least 1−5δ, the first term is bounded by H+(k1−1)HB((k1−1)H) =

O(RQ(k1H, δ/T )) and the second by (T − k1H)B(T − k1H) = O(RQ(T − k1H, δ/T )).

Follower, V (2) = µ
(2)
E,ϵ (Conditional) If k1 =∞, we always have r(1)i,τ ≥ µ

(1)
B,ϵ − B(τ) ≥ µ

(1)
E,ϵ − B(τ). So the same proof

holds as for the first case of the Unconditional Follower. Otherwise, if k2 =∞, again we always have r
(1)
i,τ ≥ µ

(1)
E,ϵ − B(τ)

after k1, and the same proof holds as for the second case. If k2 < ∞ but k3 = ∞, then after k2 we will always have
r
(1)
i,τ ≥ µ

(1)
E,ϵ − B(τ), so the third regret term is bounded by (T − k2H)B(T − k2H) = O(RQ(T − k2H, δ/T )) and the

result follows. Finally, if k3 <∞, by Lemma 1, we will always have r
(1)
i,τ ≥ µ

(1)
E,ϵ − B(τ) with probability 1− 5δ

T after k3
by using ϕE . So with probability at least 1− 5δ, the result follows by the same logic as the second Unconditional Follower
case.

Adversarial Since µ
(1)
S ≤ µ

(1)
E,ϵ, all the arguments for Conditional Follower above go through except we do not have a

guarantee that k4 =∞ with high probability. If k4 <∞, up to k4 we still have r
(1)
i,τ ≥ µ

(1)
E,ϵ − B(τ) ≥ µ

(1)
S − B(τ) (except

possibly for epochs k1, k2, k3, and k4). Now, if k5 =∞, then after k4 we always have r(1)i,τ ≥ µ
(1)
S −B(τ). So with probability

at least 1−5δ, each term k for a length of time τk is bounded by H+(τk−H)B(τk−H), and the result follows. If k5 <∞,
with probability at least 1− H3/2δ

T ≥ 1− δ we never switch to ϕE , and instead play the maximin policy for the rest of the

game, by Lemma 2. In that case, by Hoeffding, we have P
(∑T

t=k5H+1 R
(1)
t ≤ (T − k5H)µ

(1)
S −

√
(T−k5H) log( 1

δ )

2

)
≤ δ,

since the maximin policy guarantees that E(R(1)
t ) ≥ µ

(1)
S . Therefore, with probability at least 1− 2δ, the same bound for

the first five terms applies as in the previous case, and the last term is O(RQ(T − k5H, δ/T )).

Exploitative Bounded Memory Finally, suppose we have both µ
(1)
∗ < V (1) − ηe and µ

(2)
M > µ

(2)
E . Suppose k1 is infinite.

By Lemma 2, m∗
F ≤ ⌈H

1/2

2 ⌉ with probability at least 1− δ. Let t := K ′ + (m∗
F − 1)H1/2. Define player 2’s regret over a

time intervalR(2)(a, b) :=
∑b

t=a(µ
(2)
E,ϵ + c−R

(2)
t ). So with probability at least 1− 3δ

T , by Lemma 1:

T∑
t=t+1

R
(2)
t ≤ K ′ + 1 + (T − t)µ

(2)
E,ϵ + 3

√
1
2 (T − t) log(Tδ ),

R(2)(1, T ) ≥ −t+ (T − t)(µ
(2)
E,ϵ + c)−

T∑
t=t+1

R
(2)
t

≥ c(T − t)− t−K ′ − 1− 3
√

1
2 (T − t) log(T/δ)

= Ω(T ).

Note that the last step requires T − t = Ω(T ), as proven, because we have m∗
FH

1/2 ≤ T 1/2

2 + 1.

If k1 <∞, we still have, by the above argument (replacing T with k1H),R(2)(1, k1H) = Ω(k1H). If k2 =∞, the above
argument also implies R(2)(k1H + 1, T ) = Ω(T − k1H) since µ

(2)
B,ϵ ≤ µ

(2)
E,ϵ, and the same Hoeffding and enforceability

arguments bound player 2’s rewards against ϕB . Thus in this case, player 2’s regret is Ω(T ) with probability at least 1− 6δ.

Next, if k2 <∞ but k3 =∞, since Lemma 2 guarantees ϕF has switched to ϕE with high probability before the end of
the first epoch, then after k2 LAFF always uses ϕE . So, again, player 2’s regret is Ω(T ) with probability at least 1− 6δ. If
k3 < ∞ but k4 = ∞, again after k3 LAFF always uses ϕE and the same argument applies. If k4 < ∞ but k5 = ∞, the
same argument as for the case of k3 =∞ applies.
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Finally, if k5 < ∞, R(2)(1, k5H) = Ω(k5H), and for the rest of the game, we use ϕM . With probability at least 1 − δ,
Lemma 2 gives m∗

M ≤ ⌈H
1/2

2 ⌉, soR(2)(k5H + 1, T ) = Ω((T/H − k5)H) by the same argument, and with probability at
least 1− 6δ, player 2’s regret is Ω(T ).

Hence, in all cases, an exploitative player 2 has linear regret.

F PROOF OF LEMMA 4

Lemma 4. Consider an episode of length τ within a repeated game, starting from any state, in which player 1 follows
a fixed deterministic policy π

(1)
D and player 2 is Bounded Memory. Then after K steps of this episode, the Markov chain

induced by these policies is irreducible, with a state space S0 ⊂ S and transition probabilities given by the restriction
of P (S ′|S × A(1)) to S0. Further, let q be the initial state distribution at time K + 1, π be the stationary distribution

of the induced chain, Eπ be the |S0| × |S0| matrix each of whose rows is π, and Nq := Eπ

((
dq
dπ

)2)
. (Because after

K steps the Markov chain is irreducible, π must have positive probability on the initial state, so Nq is finite.) Define
||v||L2(π) :=

∑
s π(s)v

2
s and λ := max||v||L2(π)=1 ||(P − Eπ)v||L2(π), as in Rao [2019]. Lastly, let µ(2)

D be the average

expected reward to player 2 in the Markov reward process defined by π
(1)
D and π(2). Then, for x > 0:

P
(
r
(2)
i,τ − µ

(2)
D ≤ −x

)
≤

√
Nq exp

(
− (1− λ)(τ −K)x2

64e

)
.

Proof. We will show that S0 := S \ STr is the state space of the induced Markov chain after K steps, hence that chain is
irreducible.

Let the start state be s1 := (a
(1)
−K+1, . . . , a

(1)
0 , a

(2)
−K+1, . . . , a

(2)
0 , y

(1)
−K+1, . . . , y

(1)
1 , y

(2)
−K+1, . . . , y

(2)
1 ), starting at t = 1 for

notational convenience. Then sK+1 = (π(1)(s1), . . . , π
(1)(sK), a

(2)
1 , . . . , a

(2)
K , y

(1)
1 , . . . , y

(1)
K+1, y

(2)
1 , . . . , y

(2)
K+1) is the start

state of the chain after K steps. Let s := (a
(1)
−K+1, . . . , a

(1)
0 , a

(2)
−K+1, . . . , a

(2)
0 , y

(1)
−K+1, . . . , y

(1)
1 , y

(2)
−K+1, . . . , y

(2)
1 ) ∈ STr.

Since π(2)(a|s) > 0 for all a, s, this state can only be transient if at least one of the following holds: 1) w(i) ∈ {0, 1} and
y
(i)
−k is inconsistent with w(i) for some i, k. Or 2) there is some a(1)−k such that π(1)(a

(1)
−k|s) = 0 for any state s ∈ S0 such that

s = (a
(1)
−K+1, . . . , a

(1)
0 , a

(2)
−K+1, . . . , a

(2)
0 , y

(1)
−K+1, . . . , y

(1)
1

, y
(2)
−K+1, . . . , y

(2)
1

) with action history that is inconsistent with

the deterministic π(1); that is, (a(2)−K+2, . . . , a
(2)
−k) = (a

(2)
−K+1, . . . , a

(2)
−k−1) and (y

(2)
−K+2, . . . , y

(2)
−k) = (y

(2)
−K+1, . . . , y

(2)
−k−1).

We thus have sK+1 /∈ STr, as π(1)(sk) and y
(i)
k are clearly consistent with the preceding states; that is, sK+1 does not satisfy

either condition. And any state for which either condition holds is not reachable with positive probability from any state in
S0, including sK+1. Therefore all states visited with positive probability in this induced chain after K steps are in S0.

Next, define R(i)(s) := R(i)(a(1)(s), a(2)(s)) and ft(St) :=
R(2)(St)−Eπ(R(2)(St))

τ−K for t = K + 1,K + 2, . . . , τ . Since
|ft(s)| ≤ 1

τ−K for all s, and the induced chain is irreducible after K steps, we have by Theorem 1.1 of Rao [2019]:

Pπ

(
τ∑

t=K+1

ft(St) ≤ −x

)
≤ exp

(
− (1− λ)(τ −K)x2

64e

)
.

Proposition 3.10 of Paulin [2015] (applying the Cauchy-Schwarz inequality and change of measure) gives:

P (r
(2)
i,τ − µ

(2)
D ≤ −x) ≤

√√√√NqPπ

(
τ∑

t=K+1

ft(St) ≤ −x

)

≤

√
Nq exp

(
− (1− λ)(τ −K)x2

64e

)
.
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G DETAILS ON NUMERICAL EXPERIMENTS

G.1 ALGORITHMS

The chosen algorithms in Table 2 were, with one exception, top performers in a recent tournament study [Crandall et al.,
2018]. We include FTFT as a Bounded Memory algorithm that, in some games, can have µ(1)

∗ > µ
(1)
B,ϵ or µ(1)

∗ > µ
(1)
E,ϵ. While

rather exploitable, FTFT can avoid cycles of mutual punishment to which Leader strategies are prone, and was highly
successful in a Prisoner’s Dilemma tournament [Stewart and Plotkin, 2012]. Although Q-learning was outperformed by
model-based RL in Crandall et al. [2018], we found the opposite trend in preliminary experiments, so we include the former.

G.2 GAMES AND HYPERPARAMETERS

The taxonomy of reward families is based only on the ordinal rankings of rewards in each bimatrix. By default, we use the
cardinal values of 1, 2, 3, and 4 for each game as in Supplementary Figure 1 of Crandall et al. [2018], normalized to [0, 1].
However, some games use different cardinal values, chosen either to ensure that an enforceable Bully solution (distinct
from the EBS) exists for K = 1 if possible, or to otherwise generate more “interesting” reward structures. For example, the
Asymmetric Win-Win game is designed such that the security value for player 2 is relatively high; this increases player 2’s
incentive to play the risk-dominant Nash equilibrium, rather than the reward-dominant one.

Although the slack terms B(τ) andRQ(τ, δ/T ) of LAFF are sufficient to provide the results in Theorem 1, in practice we
found that these are highly conservative. Specifically, prior to experiments involving the games in Table 3, we evaluated
LAFF’s performance on the following training set of games:

3/4, 3/4 0, 1
1, 0 1/4, 1/4

5/8, 5/8 3/8, 1
1, 3/8 0, 0

1, 1/2 0, 0
0, 0 1/5, 1

0, 1 1, 2/3
1/3, 0 2/3, 1/3

The first two games have the same outcome orderings as Symmetric Inferior and Symmetric Unfair, respectively, but the
cardinal values differ.

We found that LAFF generally performed as intended under the following conditions. Let C3 be a factor by which the
τ−1/2-order term of B(τ) is multiplied, and C4 be a factor by whichRQ is multiplied when performing the hypothesis tests
of ϕF and ϕM . We set C1 = 0.05, C3 = 0.005, and C4 = 0.005.

G.3 ROUND ROBIN AND REPLICATOR DYNAMIC

We set K = 1 and ϵ = 0.05. Each pair of algorithms plays 50 trials of each of the 11 games, for T = 2 · 105 rounds each
trial. For symmetric games, the order of the players does not matter. Thus, for a pair of algorithms indexed by i, j such
that i < j, we record the results for the case of player 1 as i and player 2 as j, and for the reversed case we copy these
results. The rewards of each algorithm pair are averaged over the 50 trials, and over the set of games, providing a bimatrix of
empirical rewards in the learning game between algorithms.

A single trial of the replicator dynamic experiment proceeds as follows. With J algorithms, we initialize a uniform population
distribution p = 1

J 1. For each of N generations, the bimatrix (M
(k,g)
1 ,M

(k,g)
2 ) of average rewards in algorithm pairings from

one of the 50 trials (indexed by k) was drawn with replacement for each game g. To compute an algorithm i’s performance
against each algorithm, we take the elementwise minimum over the bimatrices: r(g)i,n := min{M (k,g)

1 (i, :),M
(k,g)
2

⊺
(i, :)}.

The motivation for this is that, for asymmetric games, we assume a given algorithm may find itself as player 1 or player
2 in a game, but with unknown probability, and so we take the minimum to account for this indexical uncertainty. This
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matches the motivation for the EBS, as opposed to bargaining solutions where one self-copy is bullied by the other. Thus,
the minimum metric incentivizes cooperation between self-copies. Each algorithm’s fitness in generation n is:

fi,n :=

(
1

G

G∑
g=1

r(g)i,n

)⊺

p.

That is, an algorithm’s fitness is a weighted average of its performance against the population of algorithms. Letting fn be the
vector of fi,n, f := 1

J 1
⊺fn, and ⊙ be the elementwise product, the replicator dynamic update rule to the next generation is:

p← p⊙ ((1− f)1+ fn).

We take 1000 repetitions of these trials, and compute averages and standard deviations over these trajectories. We take the
average over full replicator dynamic trials rather than compute fitness in each generation by averages over the 50 trials,
because of the consideration of bullying self-copies discussed above. That is, in pairings of an algorithm like Manipulator
with itself, averaging over trials would mask the bimodal distribution of rewards each self-copy receives depending on
whether it is the Leader or Follower in one trial of a game. Our simulation is therefore based on a more appropriate model of
the algorithm users’ strategic incentives.
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Table 2: Details of algorithms used in experiments

Algorithm Classification Description and Parameters

Bully [Littman and Stone,
2001]

Leader Equivalent to our Bully Leader expert. This corresponds to aug-
menting the state space used by Littman and Stone [2001]’s Bully
algorithm to match that of our experts.

Forgiving Generalized Tit-
for-Tat (FTFT) [Stewart
and Plotkin, 2012]

Leader Equivalent to our Egalitarian Leader expert, except that past devi-
ations from the EBS are punished only with probability p = 0.2.

M-Qubed [Crandall and
Goodrich, 2010]

Follower An optimistic SARSA-based algorithm that empirically coop-
erates in self-play. Parameters are as in Crandall and Goodrich
[2010], with ζ = 0.05. We omit the exploration stopping rule
(equation 16) to avoid excessive slowdown of the algorithm; Cran-
dall and Goodrich [2010] find that this omission does not notice-
ably decrease M-Qubed’s performance.

ϵ-Greedy Q-Learning
[Watkins and Dayan, 1992]

Follower Given a discount factor γ = 0.95, initializes Q-value estimates
as 1

1−γ (as in M-Qubed), and with probability 1 − 1
10+t/10

takes the action with the highest Q-value estimate (else, takes
a uniformly random action). Using the standard Q-learning rule,
α = 5

10+t/100 .

Fictitious Play [Brown,
1951]

Follower Letting p̂ be the empirical frequency vector of player 1’s past
actions (independent of state), plays a∗ = argmaxa(p̂

⊺R(2))a.

S++ [Crandall, 2014] Bounded Memory
+ Follower

Applies the aspiration learning algorithm S to “actions” given by
a set of Leader and Follower experts. The Leader targets are given
by enforceable action sequences, rather than randomization over
bargaining solution actions; accordingly, we compute the experts’
policies over the simplified state space given by the past joint
action, without including the randomization signals. Parameters
are as in Crandall [2014]. We also set the initial aspiration level for
player i to µ

(i)
E,ϵ, given this remark from the supplement of Crandall

et al. [2018]: “In later studies, we set the initial aspiration level
based on a fair, Pareto optimal, target solution.”

Manipulator [Powers and
Shoham, 2005]

Bounded Memory
+ Follower

For the first T
20 time steps, uses the Leader expert of S++ for

which the user’s reward from the target solution is maximized. If
its average rewards drop below µ

(2)
B,ϵ − ϵ′ for ϵ′ = 0.025 some-

time after this phase, with probability p = 0.00005 it switches to
model-based RL. After 3T

10 more time steps, if the other player
is nonstationary, the highest-performing expert is locked in. Oth-
erwise, model-based RL is tested for another T

20 time steps, and
locked in if the other player remains stationary; otherwise, the
highest-performing expert is locked in. The locked-in expert is
temporarily overriden by maximin if rewards drop below µ

(2)
S −ϵ′.
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Table 3: Game matrices used in experiments

Reward Family Symmetric Asymmetric

Win-Win
1, 1 0, 2/3

2/3, 0 1/3, 1/3
1, 1 0, 5/6

1/3, 0 2/3, 2/3

Biased
1/3, 1/3 2/3, 1
1, 2/3 0, 0

2/3, 0 0, 1
1, 2/3 1/3, 1/3

Second-Best
1/3, 1/3 0, 1

1, 0 2/3, 2/3
1, 1/3 1/3, 1
0, 0 2/3, 2/3

Unfair
1/2, 1/2 1/4, 1
1, 1/4 0, 0

0, 1 3/4, 3/4
1, 1/4 1/4, 0

Inferior
4/5, 4/5 0, 1

1, 0 1/5, 1/5
1, 3/4 0, 1
3/4, 0 1/4, 1/4

Cyclic
0, 1 3/4, 3/4
1, 0 1/4, 1/4
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