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Abstract

We study the problem of adaptability in repeated
games: simultaneously guaranteeing low regret for
several classes of opponents. We add the constraint
that our algorithm is non-exploitable, in that the
opponent lacks an incentive to use an algorithm
against which we cannot achieve rewards exceed-
ing some “fair” value. Our solution is an expert
algorithm (LAFF), which searches within a set
of sub-algorithms that are optimal for each oppo-
nent class, and punishes evidence of exploitation
by switching to a policy that enforces a fair solu-
tion. With benchmarks that depend on the oppo-
nent class, we first show that LAFF has sublinear
regret uniformly over these classes. Second, we
show that LAFF discourages exploitation, because
exploitative opponents have linear regret. To our
knowledge, this work is the first to provide guar-
antees for both regret and non-exploitability in
multi-agent learning.

1 INTRODUCTION

General-sum repeated games represent interactions between
agents aiming to maximize their respective reward func-
tions, with the possibility of compromise over conflicting
goals. Despite their simplicity, achieving high rewards in
such games is a challenging learning problem due to the
complex space of possible opponents. Both the behavior of
a given opponent throughout a game, and that opponent’s
choice of learning algorithm, may depend on one’s own
algorithm. Crandall [2020] argues, based on empirical stud-
ies of repeated game tournaments, that a successful agent
must achieve two goals. First, it must optimize its actions
with respect to its beliefs about the opponent. Second, it
should act such that the opponent forms beliefs motivating
a response that is beneficial to the agent.

In particular, multi-agent reinforcement learning (MARL)
features the following tradeoff: how to adapt to a variety
of potential opponents, while also actively shaping other
agents’ models of oneself such that they respond with co-
operation, rather than exploitation. If an agent commits to
a fixed policy to “lead” the other player’s best response
[Littman and Stone, 2001], it may perform arbitrarily poorly
against players that do not converge to such a response. This
motivates the design of adaptive algorithms that try to lead,
but can retreat to a “Follower” (best response) approach if
doing so gives greater rewards [Powers and Shoham, 2005,
Chakraborty and Stone, 2010]. An effective algorithm in
this class is S++ [Crandall, 2014], which, due to its Follower
sub-algorithm, has the drawback that it is exploitable—that
is, it rewards agents insisting on unfair bargains (“bully”
strategies) [Crandall et al., 2018, Stastny et al., 2021].

A simple motivating example of Follower exploitability is
the game of Chicken (Figure 1), between players Row and
Column. Suppose Column knows Row will take the appar-
ently optimal action 1 if Column repeats action 2. Column
will then want to use the Leader strategy of committing to ac-
tion 2 to gain the highest reward. Row thus only gets reward
0.25, and if Column has truly committed, an attempt by Row
to dissuade this strategy by taking action 2 would give both
players reward 0. A cooperative outcome, e.g., alternating
between the off-diagonal cells, could be achieved if Row’s
learning algorithm were designed to publicly disincentivize
commitments to the exploitative Leader strategy.

0.5, 0.5 0.25, 1
1, 0.25 0, 0

Figure 1: Reward bimatrix for Chicken.

MARL research has largely neglected the latter half of the
adaptability vs. non-exploitability tradeoff. Existing algo-
rithms are either evaluated solely by their rewards con-
ditional on given opponents [Powers and Shoham, 2005,
Crandall, 2014], or, when the evaluation criterion does ac-
count for the incentives of algorithm selection, the pool of
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competitor algorithms typically excludes bully strategies
[Crandall and Goodrich, 2010]. Previous MARL algorithms
addressing the adaptability half of the tradeoff lack finite-
time guarantees on rewards. We aim to provide a theoret-
ically grounded algorithm for repeated games that is both
adaptable, by using Leader and Follower sub-algorithms,
and non-exploitable. More broadly, this paper addresses a
challenge of interest in several areas of machine learning:
designing algorithms that account for how the distribution
of data the algorithms are applied to may change based on
the choice of the algorithms themselves.

Related work Previous algorithms for repeated games
have combined Leader and Follower modules, aiming for
the following guarantees: worst-case safety, best response to
players with bounded memory, and convergence in self-play
to Pareto efficiency, i.e., an outcome in which no player
can do better without the other doing worse [Powers and
Shoham, 2004]. Like ours, these algorithms aim for adapt-
ability, but they do not have regret guarantees — the desired
properties are only shown to hold asymptotically. Manipu-
lator [Powers and Shoham, 2005] achieves these properties
by starting with a fixed strategy that maximizes the user’s
rewards conditional on the opponent using a best response,
and switching to reinforcement learning (RL) with a safety
override if that strategy does not yield its target rewards.
Related to the self-play guarantee, we prove a more general
property of Pareto efficiency against effective RL algorithms
(see Section 2.1). Like Manipulator, our approach tests sub-
algorithms sequentially. S++ [Crandall, 2014] has empiri-
cally strong performance on the guarantees above. However,
neither of these algorithms guarantee non-exploitability.

Although to our knowledge no previous works have proven
non-exploitability in our sense, several algorithms are de-
signed to achieve “fair” Pareto efficiency in self-play with-
out using Follower approaches that would be exploitable.
Littman and Stone [2005]’s algorithm for computation of
Nash equilibria, like our Leader sub-algorithms, enforces
a Pareto efficient outcome by punishing deviations. If an
agent played this equilibrium, which satisfies properties of
symmetry similar to the outcome our Egalitarian Leader sub-
algorithm aims for, it would be non-exploitable. However,
committing to this equilibrium precludes learning a best re-
sponse to fixed strategies that offer higher rewards than the
cooperative solution, or exploiting adaptive players, which
our Conditional Follower and Bully Leader sub-algorithms
achieve, respectively. In two-player bandit problems where
the reward bimatrix must be learned, UCRG [Tossou et al.,
2020] has near-optimal regret in self-play with respect to
the egalitarian bargaining solution (Section 2.2). However,
it cannot provably cooperate with agents other than itself,
learn best responses, or exploit adaptive players.

Our objectives of adaptability and non-exploitability are
inspired by work on learning equilibrium [Brafman and Ten-

nenholtz, 2004, Jacq et al., 2020, Clifton and Riché, 2021],
a solution concept in which players’ learning algorithms
are in a Nash equilibrium, beyond merely the equilibrium
of an individual game itself. This objective accounts for the
dependence of the problems faced by multi-agent learning
algorithms on the design of such algorithms.

Contributions We propose an algorithm (LAFF) that, to
our knowledge, is the first proven to have both strong per-
formance against different classes of players in repeated
games and a guarantee of non-exploitability, formalized in
Section 2.3. Specifically, these classes consist of station-
ary algorithms (“Bounded Memory”), unpredictable adver-
saries (“Adversarial”), and adaptive RL agents (“Follower”).
LAFF’s modular design allows for extensions to a broader
variety of opponent classes in future work. We propose re-
gret metrics appropriate for games against Followers, based
on the goal of Pareto efficiency. Our method of proof of
adaptability and non-exploitability is novel, applying “op-
timistic” principles at two levels. First, LAFF starts with
the sub-algorithm (or expert) that would give the highest
expected rewards if the opponent were in that expert’s target
class (“potential”), then proceeds through experts in de-
scending order of potential. Second, LAFF chooses whether
to switch experts by comparing the potential of the active
expert with its empirical average reward plus a slack term,
which decreases with the time for which the expert is used.
For non-exploitability and regret against Followers, we use
the properties of an enforceable bargaining solution (see
Section 2.2) to upper-bound the other player’s rewards.

2 PRELIMINARIES

We study a special class of Markov games: repeated games
with a bounded memory state representation [Powers and
Shoham, 2005] and public randomization.

2.1 SETUP AND OPPONENT CLASSIFICATION

Consider a repeated game over T time steps, defined for
players i = 1, 2 by action spaces A(i), reward matrices
R(i), and a fixed player memory length K ∈ N. Here,
all R(i)(a(1), a(2)) ∈ [0, 1] are known by both players. At
time t the following random variables are drawn: St for state,
A

(i)
t for actions, and R

(i)
t = R(i)(A

(1)
t , A

(2)
t ) for rewards.

A state space S := (A(1))K × (A(2))K × {0, 1}2K+2, and
transition probabilities P(s′|s, a(1), a(2)) between states,
are induced by two features: (1) the tuple of both players’
last K actions, and (2) the tuple of the last K and cur-
rent outcome of a randomization signal, for each player.
(See Section 2.1.2 of Mailath and Samuelson [2006].) Thus,
players condition their actions on their memory of the last
K time steps, and a signal that permits correlated action
choices.
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Formally, let (w(1)
t , w

(2)
t ) ∈ [0, 1]2 be weights chosen by the

respective players at time t,1 and draw Xt ∼ Unif[0, 1] inde-
pendent of all other random variables in the game. Then, let-
ting y

(i)
t be the realized value of Y (i)

t := I[Xt < w
(i)
t ], the

second feature at time t is (y
(1)
t−K , ..., y

(1)
t , y

(2)
t−K , ..., y

(2)
t ).

This allows the players to correlate actions through the pub-
lic signal Xt, even if one player unilaterally generates the
signal. For instance, in Chicken (Figure 1), players could
flip a fair coin (w(1)

t = w
(2)
t = 0.5) at each time step and

play the pair of actions leading to the top-right cell when
it comes up heads, otherwise play the bottom-left cell. In
this framework, at each time step each player has a choice
of both a weight w(i)

t and policy π
(i)
t : S → ∆|A(i)|, a

mapping from states to distributions over actions.

Given a fixed policy of player 2, a repeated game is a
Markov decision process (MDP) given by (S,A(1), r, p)
as follows. Let a(i)(s) be the last action of player i that
defines state s. Here, r : S × A(1) → [0, 1] is r(s, a) =
R(1)(a(1)(s), a(2)(s)), and p : S × A(1) × S → [0, 1] is
p(s′|s, a) =

∑
a(2) P(s′|s, a, a(2))π(2)(a(2)|s). A policy is

called Markov if it is conditioned only on the current state.

The problem faced by our learner, player 1, depends on
which of the following classes player 2’s algorithm is in:

1. Bounded Memory: (i) Player 2 uses a constant w(2),
reported at the start of the game; (ii) π(2) is Markov and
does not depend on time or player 1’s signals w(1)

t or
y
(1)
t ; and (iii) for all s, a(2) we have π(2)(a(2)|s) > 0.2

2. Adversarial: Player 2 selects actions according to any
arbitrary distribution, which may depend on the history
of play and on player 1’s policy at each time step.

3. Follower: A Follower learns a best response when
player 1 is “eventually stationary” (formalizing the fol-
lower concept in Littman and Stone [2001]), and when
the value of that best response meets player 2’s stan-
dard of fairness. For some fairness threshold V (2) ≥ 0
(depending on the game), player 2’s algorithm has the
following properties. Suppose that after time T0, player
1 always plays a Bounded Memory algorithm (without
condition 3), which induces an MDP of finite diame-
ter D where player 2’s optimal average reward is at
least V (2). Then with probability at least 1− δ, player
2’s regret up to time T (see Section 2.3) is bounded by
C1T0+C2D(SAT log(T/δ))1/2 for constants C1, C2.

A repeated game against a Bounded Memory player is
1We restrict to cases where players commit to a fixed weight,

so the effective action space is finite. See the Appendix for details.
2This relatively strong condition is needed for a concentration

result in our analysis, ruling out cases where players remain in a
transient state for an unknown time. We need to know the exit time
from the transient states to compute the quantity r

(2)
i,τ used by one

of our experts. Section 5 shows strong results against a Bounded
Memory player (FTFT) for which this condition does not hold.

equivalent to a communicating MDP [Puterman, 1994]. A
Follower formalizes an agent that models our agent as an
MDP (Leader), and the regret bound in our definition is of a
standard form for RL algorithms [Wei et al., 2020]. Many
MARL algorithms take this approach at least partly [Powers
and Shoham, 2005, Chakraborty and Stone, 2010, Crandall
and Goodrich, 2010], hence this is a reasonable class to con-
sider. For example, Littman and Stone [2005]’s algorithm,
which plays a certain sequence of actions and punishes de-
viations from that sequence, is Bounded Memory — this
algorithm does not change its policy in response to the other
player, but its policy conditions on past actions. A standard
RL algorithm, which would learn the sequence played by
Littman and Stone [2005]’s algorithm and converge to an
optimal policy against it, and which is a component of more
complex repeated games algorithms like Manipulator and
S++, is a case of a Follower.

As discussed in Crandall [2020], a large proportion of top-
performing algorithms are Bounded Memory (Leaders) or
Followers, or switch between the two. These classes illus-
trate fundamental approaches to multi-agent learning (thus,
likely opponents that our algorithm would face): Either an
agent behaves consistently, trying to shape the learning op-
ponents behavior (Bounded Memory), or the agent changes
policies in a process of learning how the opponent behaves
and computing an optimal response to that opponent, pos-
sibly subject to fairness standards as they try to avoid ex-
ploitation (Follower). The Adversarial class accounts for
opponent behavior between these two extremes, which is
difficult to learn in generality, but a worst-case guarantee
can still be achieved. We thus restrict to guarantees against
formalizations of these classes. Bounds against a wider vari-
ety of opponents would be less theoretically tractable, as far
as finding the optimal strategy against one class interferes
with performance against another. (For example, Powers and
Shoham [2005] note that in the repeated Prisoner’s Dilemma,
it is impossible for an algorithm to guarantee the best re-
sponse to an opponent that may play either grim trigger —
“defect if and only if either player defected last round” — or
“always cooperate.”) Extending to other opponent classes is
an important direction for future work.

2.2 BACKGROUND ON BARGAINING THEORY

To define appropriate optimality criteria for these oppo-
nent classes and construct corresponding experts, we use
several concepts from bargaining theory. We also illus-
trate these concepts in the game of Chicken from the
introduction (Example 2.1). Define the security values
µ
(i)
S := maxvi minv−i v

ᵀ
1R

(i)v2, i.e., the rewards that
each player can guarantee regardless of their opponent’s
actions, with player 1’s maximin strategy as v

(1)
M =

argmaxv1
minv2

vᵀ
1R

(1)v2. Let G := {(R(1)(i, j),

R(2)(i, j)) | i ∈ A(1), j ∈ A(2)}, the set of reward
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pairs achievable by pure actions in the game. An impor-
tant set of rewards in the computation of enforceable bar-
gaining solutions is the convex polytope U := Conv(G) ∩
{(u1, u2) | u1 ≥ µ

(1)
S , u2 ≥ µ

(2)
S }, reward pairs that are

achievable by randomizing over joint actions and give each
player at least their security value. One reward pair sat-
isfying several desirable properties is the egalitarian bar-
gaining solution (EBS) [Tossou et al., 2020], given by
(µ

(1)
E , µ

(2)
E ) := argmax(u1,u2)∈U mini=1,2{ui − µ

(i)
S }.

The reward pairs over which we search for optimal bench-
mark values, described in Section 2.3, are subject to the
following constraint of enforceability. To our knowledge,
this definition, including the formalization of enforceabil-
ity for finite punishment lengths, has not been provided
in previous work on non-discounted games. However, see
Definition 2.5.1 in Mailath and Samuelson [2006] for the
discounted case.

Definition 1. Let (u1, u2) ∈ U be a convex combination
of points in some set of joint actions X . Let r(X ) :=
max(x1,x2)∈X {maxj 6=x2

R(2)(x1, j) − R(2)(x1, x2)} be
player 2’s deviation profit. Then (u1, u2) is ε-enforceable,
relative to a memory length K and ε > 0, if:

Ku2 ≥ Kµ
(2)
S + r(X ) + ε.

Intuitively, if player 2 does not deviate from player 1’s
desired action sequence, player 2 receives u2 on average for
each of K steps. If player 2 deviates, gaining at most r(X )
profit, player 1 may punish with player 2’s security value
for K steps. We call the total sequence reward “enforceable”
if it exceeds the total deviation reward by at least ε. Let U(ε)
be the set of ε-enforceable rewards in U . Then, the feasible
region U(ε), used to compute an enforceable version of the
EBS, shrinks with increasing ε and decreasing K.

The ε-enforceable EBS, which we will use to design one
of the Leader experts, is found by solving the optimization
problem from Section 3.2.4 of Tossou et al. [2020] under
the constraint in Definition 1. A similar procedure, applied
to the objective of maximizing only player 1’s reward, gives
the Bully solution for the second Leader expert. We provide
details on these solutions in the Appendix.

Example 2.1. In Chicken (Figure 1), both players’ security
value is 0.25, guaranteed by playing action 1. The EBS is
given by 50% weight on the top-right action pair, and 50%
on the bottom-left, giving both players 0.625. If player 1
plays its half of either action pair in the EBS, player 2 does
worse by deviating (by a margin of at least 0.25), so no
punishment is necessary to enforce the EBS. Thus the EBS
is enforceable for any K and ε < 0.375K + 0.25.

2.3 OBJECTIVES

The metric of regret, which we aim to minimize, varies
based on the class of player 2 our algorithm faces. For a

player 2 algorithm B, regret with respect to a benchmark
µ(B) isR(T ) := Tµ(B)−

∑T
t=1 R

(1)
t .

Bounded Memory By condition 3 for Bounded Mem-
ory, player 2 induces a communicating MDP. Let Π be
the set of time-independent deterministic Markov poli-
cies. Then the state-independent optimal average reward is
µ
(1)
∗ := maxπ(1)∈Π limt→∞

1
tEπ(1)(

∑t
i=0 R

(1)
i |S0). Here,

µ(B) = µ
(1)
∗ .

Adversarial Against an Adversarial player, an appropri-
ate benchmark is the greatest expected value that player 1
can guarantee, no matter player 2’s actions. This is player 1’s
security value: µ(B) = µ

(1)
S . Note the distinction from ex-

ternal regret used in adversarial bandits and MDPs. While
the problem is trivial if player 2 is known to be Adversarial,
since one can always play the maximin strategy, our chal-
lenge is to maintain low Adversarial regret without losing
guarantees on other regret measures. This corresponds to
safety in multi-agent learning [Powers and Shoham, 2004].

Follower The concept of regret against a Follower is more
complex. Player 2’s sequence of policies can vary signif-
icantly based on player 1’s actions. Evaluating our algo-
rithm by the maximum average reward in hindsight would
have to account for this counterfactual dependence [Cran-
dall, 2014]. However, by considering enforceability, we can
define benchmarks by lower bounds on this maximum, con-
strained by the Follower’s fairness value V (2). We consider
two cases depending on V (2), focusing for simplicity on the
extremes where the Follower either accepts nothing less than
the EBS or accepts any enforceable bargain. In principle,
our framework could be extended for other V (2) values.

First, the EBS is Pareto efficient, meaning we cannot achieve
greater than µ

(1)
E without player 2 receiving less than µ

(2)
E .

When the EBS can be enforced with a fixed policy, µ(1)
E

is thus an appropriate benchmark if the fairness threshold
V (2) is player 2’s part of the EBS pair. The EBS is not
always enforceable for finite K, however. In this case, the
enforceable version of the EBS is the maximizer (µ(1)

E,ε, µ
(2)
E,ε)

of the objective f(u1, u2) = mini=1,2{ui − µ
(i)
S } in U(ε)

for some ε > 0. For this first case, we therefore consider
V (2) = µ

(2)
E,ε, where player 2 follows conditionally. If U(ε)

is empty, (µ(1)
E,ε, µ

(2)
E,ε) := (µ

(1)
S , µ

(2)
S ). We set µ(B) = µ

(1)
E,ε.

The second case is V (2) = 0, i.e., player 2 follows uncon-
ditionally. Here, we compute the maximizer over U(ε) of
f(u1, u2) = u1. Let (µ(1)

B,ε, µ
(2)
B,ε) be the solution to this op-

timization problem (the Bully values), or (µ(1)
B,ε, µ

(2)
B,ε) :=

(µ
(1)
S , µ

(2)
S ) if no solution exists. We define µ(B) = µ

(1)
B,ε.

While these regret metrics provide standards for adaptabil-
ity, we must also formalize non-exploitability. We seek a
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guarantee on an algorithm’s performance against its best
response. It is unclear how to characterize the best response
to an algorithm capable of adapting to several opponent
classes. Given this, we focus on a tractable and practically
relevant subproblem: guaranteeing that the best response to
our algorithm is not a “bully” in the sense discussed in the in-
troduction, which is the most common exploitative strategy
in MARL literature [Powers and Shoham, 2005, Littman
and Stone, 2001, Press and Dyson, 2012, Littman and Stone,
2005]. Even this weaker guarantee is absent from previous
work, and we show numerically in Section 5 that this suf-
fices for our algorithm to be in learning equilibrium with
itself (see Section 1) in a pool of top-performing algorithms.

Definition 2. Let player 2 be Bounded Memory, and µ
(1)
M

and µ
(2)
M be the expected rewards for players 1 and 2 when

player 1 uses v(1)
M and player 2 uses π(2). An algorithm A is

(V (1), ηe)-non-exploitable if, whenever µ(1)
∗ < V (1) − ηe

and µ
(2)
M > µ

(2)
E,ε, for all c > 0 player 2’s regret with respect

to µ
(2)
E,ε + c against A is Ω(T ).

Our algorithm is exploitable if player 2 can profit (do better
than µ

(2)
E,ε) from a policy against which we cannot achieve

close to some value corresponding to a standard of fairness.
The hyperparameter V (1) tunes the tradeoff between ex-
ploitability and flexibility to various opponents. Player 2
does not profit from exploitation if they incur linear regret.

Example 2.2. In Chicken (Figure 1), let V (1) = 0.625 (i.e.,
the EBS), and consider the following strategies: a) always
play action 2, b) always play the opponent’s last action,
and c) play the best response to the empirical distribution
of the opponent’s past actions. Strategy (a) is exploitative
Bounded Memory. Thus, we argue that an effective algo-
rithm should avoid playing the “best response” of action 1,
instead discouraging the use of this strategy by, e.g., con-
sistently playing the EBS (see Egalitarian Leader in the
next section). Strategy (b) is also Bounded Memory, but not
exploitative since one can achieve at least V (1) against this
player on average. Our algorithm should therefore learn the
best response to (b). Strategy (c) is a Follower with V (2) = 0,
thus our algorithm should converge to consistently playing
action 2 against (c), achieving the Bully value.

3 LEAD AND FOLLOW FAIRLY (LAFF)

We apply an expert algorithm to a set of experts designed for
our target classes. Expert algorithms use an active expert to
choose an action at a given time, and switch active experts
based on their relative performance [Crandall, 2014]. LAFF
switches experts sequentially, going to the next expert in
a predefined sequence only if the rewards obtained by its
active expert fall short of the current target value. Some of
the experts are also designed to guarantee non-exploitability.

φF φE φM φB

Q-learning v
(1)
M v

(1)
P

Figure 2: Algorithmic components (white) of LAFF’s
experts (gray). An arrow from one node to another means
the former is used in computation of the output by the latter.

3.1 DESCRIPTION OF EXPERTS

LAFF uses an active expert for an epoch of length H before
checking whether to switch. Let τ be the time elapsed since
LAFF started using the current instance of the active expert
(at time ti + 1), and define r

(1)
i,τ := 1

τ

∑ti+τ
t=ti+1 R

(1)
t and

r
(2)
i,τ := 1

τ−K

∑ti+τ
t=ti+K+1 R

(2)
t . See Figure 2 for a summary

of algorithmic elements that these experts depend on.

Conditional Follower (φF ) Recall the benchmarks µ(1)
B,ε,

µ
(1)
E,ε, and µ

(1)
S from Section 2.3. To handle cases where µ

(1)
∗

against a Bounded Memory player 2 lies between these
values, LAFF uses φF multiple times in the sequence (called
“instances”). This expert starts off equivalent to Optimistic
Q-learning [Wei et al., 2020], whose regret bound (in an
MDP with S states and A actions) with probability at least
1 − δ is RQ(τ, δ) = O((SA log( τδ ))

1/3τ2/3). After each
subepoch of length H1/2, if r(1)i,τ < V (1) − RQ(τ,δ/T )

τ , this
expert switches to the Egalitarian Leader φE (below) for
as long as any instance of φF is used. Otherwise, it uses
Optimistic Q-learning for the next subepoch.

Conditional Maximin (φM ) Initially, φM uses the policy
π(1)(·|s) = v

(1)
M for all s. Let ηm > 0 be a slack variable,

chosen based on the class of Adversarial players considered
in Theorem 1. After each subepoch, if r(2)i,τ > µ

(2)
E,ε − ηm +√

log(T/δ)
2(τ−K) , this expert switches to φE for the rest of the

game. Otherwise, it uses v(1)
M for the next subepoch.

Egalitarian Leader (φE) If there is no enforceable EBS,
let φE ≡ v

(1)
M . Otherwise, let the EBS action pairs be

denoted (a
(1)
E (y), a

(2)
E (y)) for y = 0, 1, and the weight

on the first action pair be αE. While ε-enforceability
requires that a punishment of length K is sufficient
to make a reward pair player 2’s best response, this
length may not be necessary. We therefore consider the
least harsh punishment (if any) needed to enforce the
EBS, that is, the value K ′ ≤ K satisfying K ′ =

max
{
0,
⌈
r({(a(1)

E (0),a
(2)
E (0)),(a

(1)
E (1),a

(2)
E (1))})+ε

µ
(2)
E,ε−µ

(2)
S

⌉}
.

Let v(1)
P := argminv1

maxv2 v
ᵀ
1R

(2)v2, player 1’s pun-
ishment strategy. Recall that policies in our framework are
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conditioned on binary signals Y (i)
t , whose distributions are

determined by players’ reported weights w(i)
t . Then, for the

first K ′ time steps, with the realized value y(1)t of the signal
given by w

(1)
t = αE for all t, φE plays a

(1)
E (y

(1)
t ). (This

ensures that, if LAFF switches to φE mid-game, player 2
is not punished for having played actions other than the
EBS before LAFF started signaling enforcement of the
EBS.) Afterwards, φE uses the following stationary pol-
icy. If, for any of the past K ′ timesteps, player 2 has played
A

(2)
t 6= a

(2)
E (y

(2)
t ) — i.e., deviated from the EBS — the

distribution over actions for that state is v
(1)
P . Otherwise,

a
(1)
E (y

(1)
t ) is played.

Bully Leader (φB) This expert is defined like φE , but
using the Bully solution from Section 2.2 (maximizing the
selfish objective). If there is no enforceable solution, given
by (a

(1)
B (y), a

(2)
B (y)) for y = 0, 1 and αB, let φB ≡ v

(1)
M .

Otherwise, define φB just as φE for this solution.

3.2 ALGORITHM

We design the selection of experts by LAFF (Algorithm 1)
such that, for any of our target classes, LAFF eventually
commits to the optimal expert against player 2 in a sequence
{φj}j . Over an epoch, the active expert is executed, and
we update this expert’s average rewards since it was made
active (line 5). Afterwards, LAFF switches to the next expert
in the schedule if and only if it rejects the hypothesis that the
current expert’s expected value exceeds its corresponding
target µj (line 7). The false positive rate of this hypothesis
test is controlled by a function B, which decreases with√
τ . We define B in the proof of Lemma 1 (see Appendix).

Because µ
(1)
B,ε ≥ µ

(1)
E,ε ≥ µ

(1)
S , and the optimal reward µ

(1)
∗

against a Bounded Memory player may be greater than µ
(1)
B,ε

or in between these values, {φj}j prioritizes the order of
experts based on the optimal average reward they could
achieve against the corresponding player 2 class (line 1).

4 ANALYSIS

We will now show that LAFF meets our key criteria of
adaptability and non-exploitability. See Appendix for proofs
of lemmas and the detailed proof of Theorem 1. Lemma
1 shows that with high probability player 2’s rewards
against φE are not much greater than the EBS (thus non-
exploitability is feasible), and player 1’s rewards against a
Follower are near the target when the correct Leader is used.

Lemma 1. (Reward Bounds When LAFF Leads) If player
1 uses φE over a sequence of length τ +K ′ starting at time

Algorithm 1 Lead and Follow Fairly (LAFF)

1: Init target schedule {µj}j = {µ(1)
B,ε, µ

(1)
B,ε, µ

(1)
E,ε, µ

(1)
E,ε,

µ
(1)
S }, expert schedule {φj}j = {φF , φB , φF , φE ,

φF , φM}, expert index j = 1, τ = 0, Rτ = 0
2: for i = 1, 2, . . . , dT/He do
3: for t = (i− 1)H + 1, . . . ,min{iH, T} do
4: Run expert φj

5: Rτ ← Rτ +R(1)(A
(1)
t , A

(2)
t )

6: τ ← τ +H
7: if j < |{φj}j | and Rτ

τ < µj − B(τ) then
8: j ← j + 1, τ ← 0, Rτ ← 0

t∗ + 1, then with probability at least 1− 3δ
T :

t∗+K′+τ∑
t=t∗+K′+1

R
(2)
t ≤ K ′ + 1 + τµ

(2)
E,ε + 3

√
1
2τ log(

T
δ ).

If player 2 is a Follower with V (2) = 0, and player 1 uses
φB , then with probability at least 1 − 5δ

T , we have r
(1)
i,τ ≥

µ
(1)
B,ε − B(τ). If V (2) = µ

(2)
E,ε, and player 1 uses φE , then

with probability at least 1− 5δ
T , we have r(1)i,τ ≥ µ

(1)
E,ε−B(τ).

Lemma 2 guarantees that with high probability, LAFF fol-
lows or uses the maximin strategy against non-exploitative
players, and punishes exploitative players.

Lemma 2. (False Positive and Negative Control of Ex-
ploitation Test) Consider a sequence of k epochs each of
length H . Let m∗

F or m∗
M be, respectively, the index of

the subepoch within this sequence at the start of which
φF or φM switches to punishing with φE , if at all (if
not, let m∗

F or m∗
M = ∞). Let ηe ≥ 2RQ(H/2,δ/T )

H +√
2S2A log(c0/δ)

c1H
, where c0, c1 are defined as in Theorem 5.1

of Mannor and Tsitsiklis [2005], and ηm ≥
√

log(T/δ)
2(H/2−K) +√

64e log(Nq/δ2)
(1−λ)(H/2−K) , where λ and Nq are constants with re-

spect to time defined in Lemma 4 (see Appendix).

Then, suppose player 2 is Bounded Memory, and φF is used.
If µ(1)

∗ < V (1) − ηe, then with probability at least 1 − δ,
m∗

F ≤ dH
1/2

2 e. If µ(1)
∗ ≥ V (1), then with probability at

most kH1/2δ
T , m∗

F < ∞. If φM is used, and µ
(2)
M > µ

(2)
E,ε,

then with probability at least 1− δ, m∗
M ≤ dH

1/2

2 e.

Suppose player 2 is Adversarial, with a sequence of action
distributions {π(2)

t } such that, for any M ≥ H1/2−K and
i, 1

M

∑i+M
t=i+1 v

(1)
M

ᵀ
R(2)π

(2)
t ≤ µ

(2)
E,ε − ηm. Then, if φM is

used, with probability at most kH1/2δ
T , m∗

M <∞.

Our main result, Theorem 1, claims that 1) against each
of our target classes, LAFF achieves a regret bound of the
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same order as Optimistic Q-learning in single-agent MDPs
[Wei et al., 2020], and 2) LAFF satisfies non-exploitability.

Theorem 1. Let C be the set of player 2 algorithms that are
any of the following:

• Adversarial, with a sequence of action distributions
{π(2)

t } such that 1
M

∑i+M
t=i+1 v

(1)
M

ᵀ
R(2)π

(2)
t ≤ µ

(2)
E,ε −

ηm for any M ≥ T 1/4 and i,

• Follower, with V (2) ∈ {0, µ(2)
E,ε}, or

• Bounded Memory, with µ
(1)
∗ ≥ V (1).

Let ηm and ηe satisfy the conditions of Lemma 2. Then, with
probability at least 1− 5δ, LAFF satisfies:

max
C
R(T ) = O(RQ(T, δ/T )).

Further, with probability at least 1−6δ, LAFF is (V (1), ηe)-
non-exploitable when there exists an enforceable EBS.

If there is no enforceable EBS, µ(2)
E,ε = µ

(2)
S and so we can-

not guarantee player 2 does worse than µ
(2)
E,ε in expectation.

The class of Adversarial players for which Theorem 1 holds
is technically restrictive. However, non-exploitability re-
quires that for each strategy (expert) used by our algorithm
that could be exploited, including Conditional Maximin,
we exclude from our target class some subset of opponents.
That is, we cannot guarantee low Adversarial regret against
players who receive more than the EBS value against max-
imin, because such players may exploit us.

Proof Sketch. For each opponent class, we need to show
that with high probability LAFF does not lock in to a sub-
optimal expert for that class. If LAFF locks in to an expert
for which the corresponding target value µj is greater than
the opponent’s benchmark µ(B), this implies LAFF consis-
tently receives rewards such that “regret” with respect to µj

grows likeRQ, by design of B(τ). But since the benchmark
is less than µj , the true regret is also bounded as desired.

We therefore only need to consider the cases of µj ≤ µ(B).
First, we know that each expert achieves at mostRQ regret
against its target opponent class, by, respectively: the defi-
nitions ofRQ (for non-exploitative Bounded Memory) and
maximin (for Adversarial), and Lemma 1 (for Followers).
Lemma 2 ensures with high probability that φF and φM

do not switch to φE when not exploited, so they inherit the
desired regret bounds.

Then, we need only show that once LAFF reaches the expert
whose target class matches the opponent (thus guaranteeing
low regret using that expert), with high probability LAFF
does not switch. But if using the corresponding expert gives
LAFF low regret with respect to µ(B) ≥ µj , then its re-
wards are sufficiently high that the condition for switching

experts (line 7 of Algorithm 1) never holds. The first claim
of the theorem follows.

To show non-exploitability, suppose LAFF locks in to the
first instance of φF . By Lemma 2, φF detects evidence of
exploitation sufficiently early that the remaining time left
in the game is linear in T . After detecting exploitation, φF

plays the same policy as φE . But by Lemma 1, against
this policy player 2 cannot guarantee an average reward
greater than µ

(2)
E,ε plus a term that vanishes at a rate T 1/2. The

second claim of the theorem follows for the other possible
locked-in experts as well by considering two facts. First,
whenever φE or φB is used, Lemma 1 again bounds player
2’s rewards, since by Pareto efficiency of the EBS player 2’s
rewards from the Bully solution cannot exceed µ

(2)
E,ε. Second,

if LAFF reaches φM , again Lemma 2 ensures sufficiently
fast detection of exploitation with high probability. �

5 NUMERICAL EXPERIMENTS

Code for the experiments in this section is available on
Github.3 We evaluate LAFF by three empirical metrics. First,
we find LAFF’s empirical regret against one algorithm from
each target class. Second, LAFF and a set of top-performing
repeated games algorithms compete in a round-robin tourna-
ment. For each algorithm, we find its rewards against its best
response algorithm in this set, and check if it is in a learning
equilibrium by applying a Nash equilibrium solver [Knight
and Campbell, 2018] to the matrices of empirical rewards
for algorithm pairs. These criteria evaluate exploitability:
more exploitable algorithms have lower rewards against
algorithms that optimize against them, and an exploitable
algorithm cannot be in equilibrium with itself unless the fair-
ness threshold V (1) is low. Finally, we perform a replicator
dynamic simulation [Crandall et al., 2018]. Each generation,
the algorithms’ fitness values are computed as averages of
the round-robin scores weighted by the distribution of the
population of algorithms. Then, the population distribution
is updated in proportion to fitness. This evaluates how well a
given algorithm performs when the distribution of its oppo-
nents is determined by those algorithms’ own performance.
Exploitability is thus implicitly penalized by accounting
for opponents’ incentives. Details on the implementation of
these experiments are in the Appendix. We set V (1) = µ

(1)
E,ε.

Our set of competitors to LAFF consists of Bounded Mem-
ory (Bully, Forgiving Generalized Tit-for-Tat or FTFT), Fol-
lower (M-Qubed, Q-Learning, Fictitious Play), and expert
(Manipulator, S++) algorithms. See Appendix for details
and sources. We chose these algorithms because, first, they
performed well in a repeated games tournament [Crandall
et al., 2018], and second, they cover our opponent classes.
S++ and Manipulator do not fall cleanly into any of those
classes, but they are the closest comparisons in previous lit-

3https://github.com/digiovannia/ad_expl
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Unconditional Follower (Q-Learning) Conditional Follower (LAFF) Bounded Memory (FTFT)

Adversarial (Manipulator) Exploitative (Bully)

Figure 3: The first four plots show LAFF’s average regret, in each of 11 games detailed in the Appendix, for the following
opponents: Unconditional Follower (Q-Learning), Conditional Follower (LAFF), Bounded Memory (FTFT), Adversarial

(Manipulator). The last plot shows the regret of an Exploitative (Bully) algorithm against LAFF.

erature to LAFF, since they adapt to a variety of opponents
by switching between Leader and Follower experts.

To ensure sufficient diversity of test games, we choose
games based on the taxonomy of Figure 1 in Bruns [2010].
Six game families are categorized by the structures of their
Nash equilibria. We use two games from each family, one
with symmetric rewards and one with asymmetric, except
Cyclic, which has no symmetric games (see Appendix).

Regret Bounds Figure 3 shows LAFF’s regret, averaged
over 50 trials, in games against an algorithm from each tar-
get class, and the regret of an exploitative Bounded Memory
algorithm against LAFF. We chose Manipulator as “Adver-
sarial” because it does not play the EBS and is not a pure
Leader or Follower. However, in the symmetric Unfair game,
the empirical rewards indicate that Manipulator attempts to
exploit LAFF, so LAFF punishes Manipulator at the expense
of the Adversarial regret guarantee. From the plot evaluat-
ing player 2’s regret, we also exclude four games where
player 2’s Bully solution equals the EBS, since in these
cases µ

(1)
∗ ≥ V (1) (player 1 is not exploited by playing

the optimal policy). In most games, LAFF’s regret even-
tually plateaus, while the exploitative player has linear re-
gret, showing that LAFF is non-exploitable. In three games,
LAFF has linear regret against an Unconditional Follower
and non-exploitative Bounded Memory player. This may be
due to the practical difficulty of choosing hyperparameters
for tests used to decide when to switch to the next expert;
these tests depend on some unknown quantities, so for our
experiments, we tuned B(τ) on a training set of four games

that are not included in the set of 11 games for these results
(see Appendix). Longer time horizons may be required for
the conditions on ηe in Lemma 2 to hold. We used a horizon
of T = 2 · 105 to be on the same approximate scale as ex-
periments in other works on repeated games [Crandall and
Goodrich, 2010, Littman and Stone, 2005, Crandall, 2014].

Figure 4: Replicator dynamic results, where the bold curves
are average population shares and shaded regions are plus

and minus one standard deviation.

Round Robin Table 1 shows the average rewards of each
algorithm pair across the 11 games and 50 trials, which
provide an empirical bimatrix for the learning game, i.e.,
a meta-game in which users choose algorithms to deploy
across different repeated games. An algorithm’s reward
against its best response (highlighted in blue) measures
how much it bullies when possible and avoids exploitation.
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Table 1: Rewards of algorithm pairs, averaged over games and trials (pure learning equilibria in are highlighted in bold text,
and each algorithm’s reward against its best response is in blue)

S++ Manipulator M-Qubed Bully Q-Learning LAFF FTFT FP

S++ 0.75, 0.76 0.73, 0.80 0.73, 0.81 0.65, 0.77 0.82, 0.76 0.71, 0.8 0.70, 0.68 0.72, 0.55
Manipulator 0.87, 0.68 0.76, 0.71 0.77, 0.65 0.65, 0.77 0.89, 0.67 0.70, 0.65 0.71, 0.60 0.76, 0.55

M-Qubed 0.88, 0.68 0.68, 0.68 0.80, 0.74 0.65, 0.80 0.79, 0.75 0.76, 0.73 0.78, 0.65 0.62, 0.56
Bully 0.86, 0.61 0.83, 0.60 0.85, 0.61 0.48, 0.44 0.91, 0.63 0.61, 0.49 0.72, 0.55 0.76, 0.56

Q-Learning 0.82, 0.77 0.73, 0.83 0.79, 0.67 0.68, 0.85 0.83, 0.74 0.71, 0.84 0.81, 0.67 0.64, 0.56
LAFF 0.87, 0.65 0.71, 0.66 0.74, 0.72 0.55, 0.61 0.90, 0.66 0.77, 0.74 0.80, 0.70 0.75, 0.57
FTFT 0.64, 0.70 0.49, 0.71 0.59, 0.76 0.60, 0.71 0.59, 0.78 0.61, 0.78 0.80, 0.75 0.46, 0.72

FP 0.70, 0.73 0.66, 0.74 0.66, 0.55 0.63, 0.73 0.69, 0.57 0.61, 0.71 0.71, 0.60 0.68, 0.55

Both as player 1 and player 2, LAFF is second by this met-
ric, behind Bully. We also highlight the pure strategy Nash
equilibria of this learning game (in bold), noting that LAFF
is in a learning equilibrium with itself. Unfortunately, the
pairing in which Q-Learning follows Bully is also an equi-
librium. Thus there is an equilibrium selection problem, e.g.,
both users might choose Bully and receive very low rewards.
However, in practice it may be easier for users to coordinate
on both using LAFF, because there is no conflict over choos-
ing which side is the Leader (Bully) versus the Follower
(Q-Learning).

Replicator Dynamic On average over 1000 runs, LAFF
converges to 100% of the population in the pool of algo-
rithms (Figure 4), based on fitness computed as the minimum
of an algorithm’s average reward over the set of games when
playing as player 1 versus player 2. This metric matches
the motivation for the EBS; algorithm users will not know
a priori which of the two “sides” of the game they will
be in. Thus, they may prefer their algorithm to cooperate
with itself (maximize an egalitarian objective), instead of
bullying its copy in hopes of being on the side of the bully.

6 DISCUSSION

When choosing algorithms for multi-agent interactions,
users will have to trade off robustness to the variety of
possible algorithms they might face, with avoiding provid-
ing other users incentives to exploit them [Stastny et al.,
2021]. We have presented an algorithm for repeated games
that balances these desiderata. Both properties can facilitate
cooperation between learning agents, while still allowing
them to accept generous offers. If LAFF faces an agent
who “follows” fair, Pareto efficient bargaining proposals,
the Egalitarian Leader leads them to a mutual benefit over
their security values. If the other agent’s fairness standard is
different, the Conditional Follower can follow this alterna-
tive proposal using RL if it is not exploitative; otherwise, the
exploitation penalty encourages the other player to be more
cooperative. Against exploitable agents, the Bully Leader

can benefit from a more self-interested bargain. Finally, if
the other player is unwilling to cooperate at all but is not
exploitative, Conditional Maximin ensures safety. In future
work, more experts can be added based on agent classes
that we have neglected. For example, while LAFF includes
Leader experts only for the extreme cases in which player
2 has a high or minimal fairness standard, one could add
Leaders for other bargaining solutions.

The biggest limitations of our approach are restrictive as-
sumptions required for our non-exploitability criterion, and
the strictness of this criterion. The margin ηe is small only
for sufficiently large time horizons, hence the linear regret
in some of our experiments. Though LAFF successfully
punishes players against whom it receives less than fair re-
wards, this is only strategically necessary when such players
benefit from playing this way (genuine “exploitation”). It
may not be practically necessary to modify the experts to
not punish when the opponent also does worse, because an
opponent would not have an incentive to lead with a Pareto
inefficient policy. Finally, we note that our approach is not
intended to provide the optimal balance of the adaptability-
exploitability tradeoff; in particular, keeping a fixed fairness
threshold may not be ideal if it prevents an algorithm from
cooperating with algorithms that follow other intuitively
“fair” standards [Stastny et al., 2021].
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