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Abstract

This document contains the following: 1) the mathematical formulation of the KL loss; 2) the technical details
of our experiments, including the values of the hyperparameters that we used, and the details for the training of
the deep nets; 3) results on each benchmark in the OOD-detection task (in the paper we reported only the average
results across those benchmarks); 4) empirical evaluation of different features for the reconstruction weighting; 5)
details regarding the datasets used in the paper; 6) implementation and hardware details; 7) an intuitive explanation
for the effect of the overall proposed loss; 8) details of the auto-encoders used for the reconstruction step.

1 THE GAUSSIAN CLASS-CONDITIONED KL DIVERGENCE LOSS
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Now recall our KL loss term is

LKL(xi) = −DKL(q(·|g(xi))||p(·|yi)) (11)

where q(·|g(xi)) is a d-dimensional Gaussian probability density function (pdf) with a mean vector µ(g(xi)) and a diagonal
covariance matrix whose (j, j) entry is σ2

j (g(xi)) while p(·|yi) is an isotropic d-dimensional Gaussian pdf, associated with
class yi, with a mean vector m(yi) = (m1(yi), . . . ,md(yi)) and variance s2. Note that both q and p are d-dimensional
multivariate Gaussians and each of them has a diagonal covariance matrix. It follows that

DKL(q(·|g(xi))||p(·|yi)) =
∑d

j=1
DKL(qj(·|g(xi))||pj(·|yi)) (12)



Table 1: Experiments hyperparameters.

Dataset Backbone d k Md Mt Optimizer Bc Bn LR Finetune LR

CIFAR-10 VGG [Yoshihashi et al., 2019] 32 1024 32 0.1 Adam 8 40 0.001 N/A
CIFAR-10 ResNet18 [He et al., 2016] 32 512 32 0.1 SGD 10 40 0.01 N/A
CIFAR-10 ResNet34 [He et al., 2016] 32 512 32 0.1 SGD 10 8 0.005 N/A
CIFAR-10 DenseNet-BC100 [Huang et al., 2017] 32 342 32 0.1 SGD 10 40 0.1 N/A
CIFAR-10 WideResnet28 [Zagoruyko and Komodakis, 2016] 32 640 32 0.1 SGD 10 20 0.001 0.01
CIFAR-100 DenseNet-BC100 [Huang et al., 2017] 64 342 64 0.1 SGD 20 20 0.0001 0.01
MNIST CNN [Yoshihashi et al., 2019] 32 500 32 0.1 Adam 10 64 0.0001 N/A

where qj(·|g(xi)) and pj(·|yi) are the univariate Gaussians N (µj(g(xi)), σ
2
j (g(xi))) and N (mj(yi), s

2), respectively.
Putting it altogether, we obtain that:
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Finally, using the above term in the loss function results in the following expression:
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2 EXPERIMENTS DETAILS

Each of the well-known datasets, CIFAR10 and MNIST, comes with a partition to training data and test data. For our training
we have only used the training data. The test data was used for only evaluation.

hyperparameters. All the training hyperparameters appear in Table 1. Recall, from the paper, that we trained our model on
each of the following pairs of dataset/backbone:

1. MNIST & CNN;

2. CIFAR10 & VGG;

3. CIFAR10 & ResNet18;

4. CIFAR10 & ResNet34;

5. CIFAR10 & DenseNet-BC100;

6. CIFAR10 & WideResnet28.

7. CIFAR100 & DenseNet-BC100.

Moreover, and as was also stated in the paper, in five of these cases we trained the model from scratch, while only in the
(CIFAR100, DenseNet-BC100) and (CIFAR10, WideResnet28) pairs we merely fine-tuned a pre-trained Deep Neural Net
(DNN). Thus, in Table 1, the learning rate (LR) for the fine tuning appears only in the row that corresponds to such a pair.

We emphasize, and as was mentioned in the main text, that in our method (regardless if we train a model from scratch or
if take a pre-trained model and fine tune it for our tasks) there are no parameters that are learned/tuned using OOD data.
Particularly, the only hyperparameters are standard training parameters, as described in Table 1, while the weights of the
DNN are learned using only data from the known classes, not OOD data.

2.1 TRAINING DETAILS FOR THE FIVE CASES WHERE THE TRAINING WAS DONE FROM SCRATCH

In these experiments we used Md warm-up rounds (where the value of Md appears in Table 1), where we gradually increased
the distancing margin from 0.15 to Md. While this warm-up stage is optional, we found that it increases the stability of the
training. In addition, we have started with B′

s = Bs/5 for the first 150 epochs. This step too is optional, but it improves the
convergence speed. We reduced the LR by a factor of 1

10 every 100 epochs. The total number of epochs was 500 epochs.



Table 2: ODIN [Liang et al., 2018] OOD Benchmarks

CIFAR-10 CIFAR-100

AUROC TNR@TPR95 AUROC TNR@TPR95

ImageNet-Crop 0.991 0.957 0.945 0.731
ImageNet-Resize 0.985 0.925 0.855 0.430
LSUN-Crop 0.979 0.962 0.968 0.814
LSUN-Resize 0.992 0.937 0.871 0.420

Table 3: ODIN* [Hsu et al., 2020] OOD Benchmarks

In-distribution CIFAR-10 CIFAR-100

OOD AUROC TNR@TPR95 AUROC TNR@TPR95

ImageNet-Crop 0.882 0.478 0.905 0.560
ImageNet-Resize 0.901 0.519 0.911 0.594
LSUN-Crop 0.913 0.635 0.899 0.530
LSUN-Resize 0.923 0.592 0.930 0.640

2.2 TRAINING DETAILS FOR THE TWO CASES WHERE WE FINE-TUNED A PRE-TRAINED DNN

For the fine-tuning experiments (i.e., CIFAR-100 with the DenseNet backbone and CIFAR-10 with the WideResnet28
backbone), we have loaded the pre-trained weights from [Liang et al., 2018] for CIFAR100, or first trained a SoftMax-based
classifier for CIFAR10 and then loaded its weights. Then, using the ‘Finetune LR’ (Table 1) we have trained the µ and σ
layers for (only) 20 epochs. Next, we unfroze the entire network, and continued training for additional 130 epochs, with two
LR decreases, each after 64 epochs, starting from ‘LR’ (Table 1).

2.3 DATA AUGMENTATION

We have used standard random augmentations during training. Specifically, for the MNIST experiments we have used
random rotations and random resized crops. For the CIFAR experiments we have used random crops and random horizontal
flips.

2.4 FEATURE ENSEMBLES

As noted in the main text, for block-based networks (such as DenseNet or ResNet) we used the output of the first three
blocks for (t1, t2, t3). For the non-block based networks that we used in the experiments (i.e., VGG and the plain CNN), we
have chosen the following features: For VGG, we have taken the outputs of the second, fourth, and eight convolution layer,
each after Batch Norm and ReLU. For the plain CNN, we have used the outputs of the second, third and fourth convolution
layers.

3 OOD BENCHMARKS

In this section we provide the full results of the OOD benchmarks. The results for each method are shown in its own table:
ODIN in Table 2; ODIN* in Table 3; Mahalanobis in Table 4; Mahalanobis* in Table 5; DeConf-C in Table 6; CSI in
Table 7; SubSpaces in Table 8; VDMLSb (ours) in Table 9; VDMLS (ours) in Table 10; Each such table shows the results,
where the in-distribution data is either CIFAR10 or CIFAR100, using one of four different OOD datasets. The reported
numbers in these seven tables stand for the macro-average results across those four OOD datasets.



Table 4: Mahalanobis [Lee et al., 2018] OOD Benchmarks

CIFAR-10 CIFAR-100

AUROC TNR@TPR95 AUROC TNR@TPR95

ImageNet-Crop 0.998 0.997 0.996 0.998
ImageNet-Resize 0.988 0.952 0.974 0.866
LSUN-Crop 0.996 0.996 0.993 0.982
LSUN-Resize 0.992 0.973 0.982 0.914

Table 5: Mahalanobis* [Hsu et al., 2020] OOD Benchmarks

In-distribution CIFAR-10 CIFAR-100

OOD AUROC TNR@TPR95 AUROC TNR@TPR95

ImageNet-Crop 0.963 0.812 0.924 0.635
ImageNet-Resize 0.982 0.909 0.964 0.820
LSUN-Crop 0.922 0.642 0.812 0.316
LSUN-Resize 0.982 0.917 0.966 0.826

Table 6: DeConf-C [Hsu et al., 2020] OOD Benchmarks

CIFAR-10 CIFAR-100

AUROC TNR@TPR95 AUROC TNR@TPR95

ImageNet-Crop 0.987 0.934 0.976 0.878
ImageNet-Resize 0.991 0.958 0.986 0.933
LSUN-Crop 0.983 0.915 0.953 0.750
LSUN-Resize 0.994 0.976 0.987 0.938

4 EMPIRICAL EVALUATION OF THE RECONSTRUCTION FEATURES

deep-level features. In Figure 1, we can see not only that the weighting based on reconstruction of low-level features (b) is
better (i.e., achieves better separation) using either no weighting (a) or weighting based on reconstruction of deep-level
features (c) but also that the weighting based on reconstruction of deeper features deteriorates the performance (i.e., is even
worse than using no weighting). Thus the choice of low-level features is the optimal for our use case.

5 DATASETS

In the paper we have used several datasets:

• ImageNet [Deng et al., 2009], which contains a large set of images of various categories. The curators of ImageNet do
not hold the copyright of all the images, and the usage of that dataset is governed by the terms of the ImageNet license
https://www.image-net.org/download.php.

• CIFAR10 and CIFAR100 [Krizhevsky, 2009] (datesets of 32 x 32 RGB images).

• LSUN [Yu et al., 2015].

• MNIST [LeCun, 1998] (an image dataset of handwritten digits in which each instance consists of a 28x28 gray-scale
image).

• Omniglot [Lake et al., 2015], under the MIT license.

.



Table 7: CSI [Tack et al., 2020] OOD Benchmarks

CIFAR-10 CIFAR-100

AUROC TNR@TPR95 AUROC TNR@TPR95

ImageNet-Crop 0.982 0.900 0.966 0.805
ImageNet-Resize 0.978 0.875 0.839 0.284
LSUN-Crop 0.987 0.944 0.974 0.849
LSUN-Resize 0.978 0.870 0.871 0.388

Table 8: SubSpaces [Zaeemzadeh et al., 2021] OOD Benchmarks

CIFAR-10 CIFAR-100

AUROC TNR@TPR95 AUROC TNR@TPR95

ImageNet-Crop 0.981 0.910 0.891 0.583
ImageNet-Resize 0.985 0.924 0.940 0.706
LSUN-Crop 0.994 0.972 0.936 0.612
LSUN-Resize 0.993 0.966 0.960 0.797

6 IMPLEMENTATION AND HARDWARE DETAILS

6.1 IMPLEMENTATION DETAILS

We have implemented our model using PyTorch [Paszke et al., 2019], with the aid of several useful frameworks: PyTorch-
Lighting [Falcon, 2019], PyTorch Metric Learning [Musgrave et al., 2020]. For the DenseNet [Huang et al., 2017]
implementation, we have modified the model implementation from https://github.com/andreasveit/densenet-pytorch. For
the WideResnet28 [Zagoruyko and Komodakis, 2016] implementation, we have modified the model implementation
from [Zaeemzadeh et al., 2021].

6.2 HARDWARE DETAILS

All our experiments were done using a single NVIDIA Tesla P100 card, with the exception of the WideResNet experiments,
which were done using a single NVIDIA RTX3090 card.

7 AN INTUITIVE EXPLANATION FOR THE EFFECT OF THE OVERALL PROPOSED
LOSS

Recall, e.g., from Figure 4d in the paper, that the empirical effect of the overall loss is not only creating small isotropic
Gaussians that are far from each other but also forming a large empty area between them. In this section we provide some
intuition behind this behavior which was consistent throughout our experiments.

For simplicity, suppose that there are only 5 classes and that each class consists of a single example. Let us de-
note the examples, as represented in a 2D latent space, by µ1, µ2, µ3, µ4 and µ5. Now consider the following configuration.
µ1 = (−1, 0), µ2 = (0,−1), µ3 = (1, 0), µ4 = (0, 1), and µ5 = (0, 0). Here, µ5 is at a relatively-small distance
from each of the other 4 points. Moving µ5 elsewhere would thus yield an improvement in terms of the distancing loss.
In fact, a simple calculation (together with the fact that the hypotenuse is the longest side of a right-angled triangle)
will show that moving µ5 by some small epsilon in any direction from (0, 0) will improve (in effect, decrease) the
distancing loss. Thus, the central region between the clusters remains effectively empty and the points will move away from it.

Note however, that in our case all clusters are initialized in the center of the dataset (assuming random intializa-
tion of the latent space), thus they move simultaneously outwards, pushing away from the center of the latent space and in
different directions to maximize the inter-cluster distances (if two clusters were to move together in the same direction, they



Table 9: VMDLSb OOD Benchmarks

CIFAR-10 CIFAR-100

AUROC TNR@TPR95 AUROC TNR@TPR95

ImageNet-Crop 0.989 0.999 0.997 0.998
ImageNet-Resize 0.961 0.953 0.949 0.748
LSUN-Crop 0.991 0.999 0.996 0.999
LSUN-Resize 0.967 0.972 0.961 0.768

Table 10: VMDLS OOD Benchmarks

In-distribution CIFAR-10 CIFAR-100

OOD AUROC TNR@TPR95 AUROC TNR@TPR95

ImageNet-Crop 0.997 0.999 0.999 0.999
ImageNet-Resize 0.985 0.959 0.987 0.946
LSUN-Crop 0.991 0.999 0.999 0.999
LSUN-Resize 0.988 0.973 0.994 0.973

would be too close to each other, incurring a penalty). Effectively, this creates a sphere-like shape (empirically, the center of
that sphere tends to coincide with the origin of the latent space). For example, when the five points are placed on a circle
in some radius at the angles (in degrees) {0, 72, 144, 216, 288} then each point is close to only two other points, while
its distances from the others are larger. Thus, in terms of the distancing loss the penalty is smaller when compared to the
aforementioned original configuration.

Now, in practice cluster will of course usually contain many points, not just a single one. However, the KL loss
pushes each cluster to be small and isotropic, and thus effectively behaving like a single point so the informal analysis above
still holds. In contrast, without the KL loss, and due to the varying and elongated shapes of the clusters, the metric losses by
themselves do not suffice for obtaining that effect.

8 DETAILS OF THE AUTO-ENCODERS

During the test phase of VMDLS, we use a pre-trained Auto-Encoder to reconstruct the images, and use the difference
between the shallow features of the reconstructed image and the original one, in order to use it as weighting during the
likelihood-based decision. The Auto-Encoders we have used are fairly simple and standard: For CIFAR10 and CIFAR100
experiments we have used a ResNet18-based AE, as implemented by [Falcon, 2019]. For the MNIST experiment we have
used a simple convolutional AE, which consists of 5 convolution layers, each followed by a ReLU activation function and a
pooling layer. The exact implementation of the AEs is available in our publicly-available code.
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