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1 PROOF OF THEOREM 4

Before proving Theorem 4, we need to bound two important
terms shown in Lemma 1.

Lemma 1. Let f : Rd → R be a convex function and
θ∗ = argminθf(θ). In iteration t, gt is the estimated
gradient. Suppose ||E[g+t ]||2 ≤ G, ||E[g−t ]||2 ≤ G, and
||θt − θ∗||2 ≤ R. If there exists a constant c ≥ 1 s.t.
1
c [∇f(θt)]

+ ≤ E[g+t ] ≤ c[∇f(θt)]
+ and c[∇f(θt)]

− ≤
E[g−t ] ≤ 1

c [∇f(θt)]
−, then we have

1

c
||E[gt]||22 ≤ ⟨∇f(θt),E[gt]⟩+ 2(c− 1

c
)G2. (1)

⟨∇f(θt), θt − θ∗⟩ ≤ c⟨E[gt], θt − θ∗⟩+ 2(c− 1

c
)GR.

(2)

1.1 PROOF OF LEMMA 1

Proof. (Lemma 1) Since we have the constant bound that

1

c
[∇f(θt)]

+ ≤ E[g+t ] ≤ c[∇f(θt)]
+. (3)

c[∇f(θt)]
− ≤ E[g−t ] ≤

1

c
[∇f(θt)]

−. (4)

and because of g+t ≥ 0 and g−t ≤ 0 we can obtain

1

c
||E[g+t ]||22 =

1

c
⟨E[g+t ],E[g+t ]⟩ ≤ ⟨[∇f(θt)]

+,E[g+t ]⟩

≤ c⟨E[g+t ],E[g+t ]⟩ = c||E[g+t ]||22.
1

c
||E[g−t ]||22 =

1

c
⟨E[g−t ],E[g−t ]⟩ ≤ ⟨[∇f(θt)]

−,E[g−t ]⟩

≤ c⟨E[g−t ],E[g−t ]⟩ = c||E[g−t ]||22.

For cross terms, we have:

⟨[∇f(θt)]
+,E[g−t ]⟩ ≥ c⟨[∇E[g+t ],E[g

−
t ]⟩

⟨[∇f(θt)]
−,E[g+t ]⟩ ≥ c⟨[∇E[g−t ],E[g

+
t ]⟩

Notice that:

1

c
||E[gt]||22

=
1

c
||E[g+t ] + E[g−t ]||22

=
1

c
(||E[g+t ]||22 + ||E[g−t ]||22 + 2⟨E[g+t ],E[g−t ]⟩)

Then we can further derive:

1

c
||E(gt)||22

≤⟨[∇f(θt)]
+,E[g+t ]⟩+ ⟨[∇f(θt)]

−,E[g−t ]⟩+
1

c2
⟨[∇f(θt)]

+,E[g−t ]⟩+
1

c2
⟨[∇f(θt)]

−,E[g+t ]⟩

=⟨[∇f(θt)]
+,E[g+t ]⟩+ ⟨[∇f(θt)]

−,E[g−t ]⟩+
⟨[∇f(θt)]

+,E[g−t ]⟩+ ⟨[∇f(θt)]
−,E[g+t ]⟩+

(
1

c2
− 1)

(
⟨[∇f(θt)]

+,E[g−t ]⟩+ ⟨[∇f(θt)]
−,E[g+t ]⟩

)
=⟨∇f(θt),E[gt]⟩+ (

1

c2
− 1)⟨[∇f(θt)]

+,E[g−t ]⟩

+ (
1

c2
− 1)⟨[∇f(θt)]

−,E[g+t ]⟩

≤⟨∇f(θt),E[gt]⟩+ (
1

c
− c)⟨E[g+t ],E[g−t ]⟩

+ (
1

c
− c)⟨E[g−t ],E[g+t ]⟩.

According to Cauchy-Schwarz Inequality, there is
|⟨E[g+t ],E[g−t ]⟩| ≤ ||E[g+t ]||2||E[g−t ]||2 ≤ G2. Combin-
ing the proof above, we can get Equation 1.
To prove Equation 2, first notice:

1

c
⟨E[g+t ], [θt − θ∗]+⟩ ≤ ⟨[∇f(θt)]

+, [θt − θ∗]+⟩

≤ c⟨E[g+t ], [θt − θ∗]+⟩,
1

c
⟨E[g−t ], [θt − θ∗]−⟩ ≤ ⟨[∇f(θt)]

−, [θt − θ∗]−⟩

≤ c⟨E[g−t ], [θt − θ∗]−⟩,
c⟨E[g+t ], [θt − θ∗]−⟩ ≤ ⟨[∇f(θt)]

+, [θt − θ∗]−⟩
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≤ 1

c
⟨E[g+t ], [θt − θ∗]−⟩,

c⟨E[g−t ], [θt − θ∗]+⟩ ≤ ⟨[∇f(θt)]
−, [θt − θ∗]+⟩

≤ 1

c
⟨E[g−t ], [θt − θ∗]+⟩,

where [θt − θ∗]+ = max{θt − θ∗, 0} and [θt − θ∗]− =
min{θt − θ∗, 0}.
Then we have:

⟨∇f(θt), θt − θ∗⟩
=⟨[∇f(θt)]

+ + [∇f(θt)]
−, [θt − θ∗]+ + [θt − θ∗]−⟩

=⟨[∇f(θt)]
+, [θt − θ∗]+⟩+ ⟨[∇f(θt)]

+, [θt − θ∗]−⟩+
⟨[∇f(θt)]

−, [θt − θ∗]+⟩+ ⟨[∇f(θt)]
−, [θt − θ∗]−⟩

≤c⟨E[g+t ], [θt − θ∗]+⟩+ c⟨E[g−t ], [θt − θ∗]−⟩+
1

c
⟨E[g−t ], [θt − θ∗]+⟩+ 1

c
⟨E[g+t ], [θt − θ∗]−⟩

=c⟨E[g+t ], [θt − θ∗]+⟩+ c⟨E[g−t ], [θt − θ∗]−⟩+
c⟨E[g−t ], [θt − θ∗]+⟩+ c⟨E[g+t ], [θt − θ∗]−⟩+

(
1

c
− c)(⟨E[g−t ], [θt − θ∗]+⟩+ ⟨E[g+t ], [θt − θ∗]−⟩)

=c⟨E[gt], [θt − θ∗]⟩+

(
1

c
− c)(⟨E[g−t ], [θt − θ∗]+⟩+ ⟨E[g+t ], [θt − θ∗]−⟩)

In addition, ⟨E[g−t ], [θt − θ∗]+⟩ and ⟨E[g+t ], [θt − θ∗]−⟩
could be bounded by Cauchy-Schwarz Inequality:

|⟨E[g+t ], [θt − θ∗]−⟩| ≤ ||E[g+t ]||2||[θt − θ∗]−||2
= ||E[g+t ]||2||min{θt − θ∗,0}||2
≤ ||E[g+t ]||2||θt − θ∗||2
≤ GR

|⟨E[g−t ], [θt − θ∗]+⟩| ≤ ||E[g−t ]||2||[θt − θ∗]+||2
= ||E[g−t ]||2||max{θt − θ∗,0}||2
≤ ||E[g−t ]||2||θt − θ∗||2
≤ GR

Therefore Equation 2 can be proved, and this completes the
proof.

Lemma 1 gives the new bounds of two terms assuming the
constant bound on the gradient, which are essential to the
proof of convergence rate. Based on Lemma 1, we can prove
Theorem 4, which bounds the error of Stochastic Gradient
Descent (SGD) on a convex optimization problem when the
estimated gradient gt in the t-th step resides in a constant
bound of ∇f(θt).

Proof. (Theorem 4) By L-smooth of f , for the t-th iteration,

f(θt+1) ≤ f(θt) + ⟨∇f(θt), θt+1 − θt⟩+
L

2
||θt+1 − θt||22,

= f(θt)− η⟨∇f(θt), gt⟩+
Lη2

2
||gt||2.

Because of the constant bound on gradient and ||E[gt]||22 =
E[||gt||22] − V ar(gt), by taking expectation on both sides
w.r.t gt we get from Lemma 1 that

E[f(θt+1)] ≤ f(θt)− η⟨∇f(θt),E[gt]⟩+
Lη2

2
E[||gt||22]

≤ f(θt)− η

(
1

c
||E[gt]||22 − 2(c− 1

c
)G2

)
+

Lη2

2
E[||gt||22]

= f(θt)− η

(
1

c

(
E[||gt||22]− V ar(gt)

)
− 2(c− 1

c
)G2

)
+

Lη2

2
E[||gt||22]

≤ f(θt)−
η(2− Lηc)

2c
E[||gt||22] +

η

c
σ2 + 2η(c− 1

c
)G2

≤ f(θt)−
ηc

2
E[||gt||22] +

η

c
σ2 + 2η(c− 1

c
)G2

where the last inequality follows as Lηc ≤ 2− c2. Because
f is convex, still from Lemma 1 we get

E[f(θt+1)]

≤ f(θ∗) + ⟨∇f(θt), θt − θ∗⟩ − ηc

2
E[||gt||22]+

η

c
σ2 + 2η(c− 1

c
)G2,

≤ f(θ∗) + c⟨E[gt], θt − θ∗⟩+ 2(c− 1

c
)GR− ηc

2
E[||gt||22]+

η

c
σ2 + 2η(c− 1

c
)G2,

= f(θ∗) + cE[⟨gt, θt − θ∗⟩ − η

2
||gt||22] +

η

c
σ2+

2(c− 1

c
)GR+ 2η(c− 1

c
)G2.

Denote Λ = η
cσ

2 + 2(c− 1
c )GR+ 2η(c− 1

c )G
2. We now

repeat the calculations by completing the square for the
middle two terms to get

E[f(θt+1)]

≤ f(θ∗) +
c

2η
E[2η⟨gt, θt − θ∗⟩ − η2||gt||22] + Λ,

≤ f(θ∗) +
c

2η
E[||θt − θ∗||22 − ||θt − θ∗ − ηgt||22] + Λ,

= f(θ∗) +
c

2η
E[(||θt − θ∗||22 − ||θt+1 − θ∗||22)] + Λ.

Summing the above equations for t = 0, . . . , T − 1, we get

T−1∑
t=0

E[f(θt+1)− f(θ∗)]

≤ c

2η
(||θ0 − θ∗||22 − E[||θT − θ∗||22]) + TΛ

≤ c||θ0 − θ∗||22
2η

+ TΛ.



Finally, by Jensen’s inequality, tf(θT ) ≤
∑T

t=1 f(θt),

T−1∑
t=0

E[f(θt+1)− f(θ∗)] = E[
T∑

t=1

f(θt)]− Tf(θ∗)

≥ TE[f(θT )]− Tf(θ∗).

Combining the above equations we get

E[f(θT )] ≤f(θ∗) +
c||θ0 − θ∗||22

2ηT
+

η

c
σ2+

2(c− 1

c
)GR+ 2η(c− 1

c
)G2.

This completes the proof.

2 PROOF OF THEOREM 3

To prove Theorem 3, we first introduce a Lemma as follows:

Lemma 2. If the total variation maxθ V arP (f(τ)) ≤ σ2
2 ,

then L(θ) is σ2
2-smooth w.r.t. θ.

Proof. Since L(θ) = 1
N

∑
τ∈D logP (τ |θ, T ), σ2

2-
smoothness requires that

||∇L(θ1)−∇L(θ2)||2 ≤ σ2
2 ||θ1 − θ2||2

where L is a constant. Because of the mean value theorem,
there exists a point θ̃ ∈ (θ1, θ2) such that

∇L(θ1)−∇L(θ2) = ∇(∇L(θ̃))(θ1 − θ2).

Taking the L2 norm for both sides, we have

||∇L(θ1)−∇L(θ2)||2 =||∇(∇L(θ̃))(θ1 − θ2)||2
≤||∇(∇L(θ̃))||2 ||θ1 − θ2||2 (5)

Then, the problem is to bound the matrix 2-norm
||∇(∇L(θ̃))||2. Since we know the explicit form of L(θ),
we know

∇L(θ) =
1

|D|
∑
τ∈D

f(τ)−∇ logZθ,

∇(∇L(θ))

=−
∑
τ∈T

[f(τ)−∇ logZθ][f(τ)−∇ logZθ]
TP (τ |θ, T ),

(6)

where ∇(∇L(θ)) is the co-variance matrix. Denote
Covθ[f(τ)] = −∇(∇L(θ)), which is both symmetric and
positive semi-definite. We have

||∇(∇L(θ̃))||2 = ||Covθ[f(τ)]||2 = λmax,

where λmax is the maximum eigenvalue of the matrix
Covθ[f(τ)]. Then, because of the positive semi-definiteness
of the co-variance matrix, all the eigenvalues are non-
negative, and we can bound λmax as

λmax ≤
∑
i

λi = Tr(Covθ[f(τ)]),

where Tr(Covθ[ϕ(X)]) is the trace of matrix Covθ[f(τ)].
Using the definition in Equation 6, Tr(Covθ[f(τ)]) can be
further derived as:

Tr(Covθ[f(τ)]) = EP [||f(τ)||22]− ||EP [f(τ)]||22,

which is equal to the total variation V arP (f(τ)). Therefore,
we have

||∇(∇L(θ̃))||2 ≤ V arP (f(τ)) ≤ σ2
2 .

Combining this with Equation 5, we know

||∇L(θ1)−∇L(θ2)||2 ≤ σ2
2 ||θ1 − θ2||2.

This completes the proof.

We give the full proof of Theorem 3 as follows:

Proof. (Theorem 3) Since we use M1 samples from the
training set {τi}M1

i=1 and M2 samples τ ′1, . . . , τ
′
M2

from
P (τ |T, θ) using XOR-Sampling at each iteration, we have

gk =
1

M1

∑
τ∈DM1

f(τ)− 1

M2

M2∑
j=1

f(τ ′j)

Denote gik = 1
M1

∑M1

j=1 f(τj)− f(τ ′i), we have the expec-
tation of gk as

ED,P [gk] = ED,P [g
i
k].

In each iteration k we can adjust the parameters in XOR-
Sampling to give the constant factor approximation of both
the denominator and the nominator, then for each gik we can
obtain from Theorem 2 that

1

δ
[∇L(θk)]

+ ≤ ED,P [g
i+
k ] ≤ δ[∇L(θk)]

+, (7)

δ[∇L(θk)]
− ≤ ED,P [g

i−
k ] ≤ 1

δ
[∇L(θk)]

−. (8)

where we denote

gi+k =max{gik, 0}, gi−k = min{gik, 0},
[∇L(θk)]

+ = EP [[ED[f(τ)]− f(τ ′)]+]

[∇L(θk)]
− = EP [[ED[f(τ)]− f(τ ′)]−].



Notice that g+k = 1
M2

∑M2

i=1 g
i+
k and g−k = 1

M2

∑M2

i=1 g
i−
k .

Combined with Equation 7 and 8, we know,

1

δ
[∇L(θk)]

+ ≤ E[g+k ] ≤ δ[∇L(θk)]
+,

δ[∇L(θk)]
− ≤ E[g−k ] ≤

1

δ
[∇L(θk)]

−.

As required in Theorem 3, ||E[g+k ]||2 and ||E[g−k ]||2 can be
bounded by

E[g+k ] = EP [[ED[f(τ)]− f(τ ′)]+]

≤ δEP [[ED[f(τ)]− f(τ ′)]+]

≤ δEP [[ED[f(τ)]]
+ + [−f(τ ′)]+]

= δ{[ED[f(τ)]]
+ − EP [[f(τ

′)]−]}.

E[g−k ] = EP [[ED[f(τ)]− f(τ ′)]−]

≥ δEP [[ED[f(τ)]− f(τ ′)]−]

≥ δEP [[ED[f(τ)]]
− + [−f(τ ′)]−]

= δ{[ED[f(τ)]]
− − EP [[f(τ

′)]+]}.

Therefore, we have ||E[g+k ]||22 ≤ δ2(G + E)2 and
||E[g−k ]||22 ≤ δ2(G+ E)2.

In terms of variance, because ED,P [gk] = ED,P [g
i
k],

the variance of gk, denoted as V arD,P (gk), can then be
bounded as

V arD,P (gk)

=V arD

 1

M1

M1∑
j=1

f(τj)

+ V arP

(
1

M2

M2∑
i=1

f(τ ′i)

)

=
1

M1
V arD(f(τj)) +

1

M2
V arP (f(τ

′
i))

≤ σ2
1

M1
+

σ2
2

M2
.

The last inequality is because V arD(f(τ)) ≤ σ2
1 and

maxθ V arP (f(τ
′
j)) ≤ σ2

2 .

Since L(θ) is convex and σ2
2−smooth from Lemma 2, ac-

cording to Theorem 4, when the learning rate η is bounded
by:

η ≤ 2− δ2

σ2δ
, (9)

we can then apply Theorem 4 to get the result in Theorem
3:

E[L(θK)]−OPT

≤ δ||θ0 − θ∗||22
2ηK

+
ησ2

1

δM1
+

ησ2
2

δM2
+

2(δ2 − 1)(G+ E)R+ 2η(δ3 − δ)(G+ E)2.

This completes the proof.

3 PROOF OF THEOREM 5

Proof. (Theorem 5) Since we use flow constraints
to ensure valid trajectories, the number of bi-
nary variables in XOR-Sampling in O(|S||A|).
From Theorem 2 we know that in each iteration
of X-MEN, we need to access O(−|S||A| log(1 −
1/
√
δ) log(−|S||A|/γ log(1− 1/

√
δ))) queries of NP

oracles in order to generate one sample. However, as
specified also in Ermon et al [2013b], only the first
sample needs those many queries. Once we have the
first sample, the number of XOR constraints to add can
be known in generating future samples for this SGD
iteration. Therefore, we fix the number of XOR constraints
added starting the generation of the second sample. As a
result, we only need one NP oracle query in generating
each of the following (M2 − 1) samples. Therefore,
total queries in each iteration will be O(−|S||A| log(1 −
1/
√
δ) log(−|S||A|/γ log(1− 1/

√
δ))+M2). To complete

all K SGD iterations, X-MEN needs O(−K|S||A| log(1−
1/
√
δ) log(−|S||A|/γ log(1− 1/

√
δ))+KM2) NP oracle

queries in total.
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