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1 EXTENDED EXPERIMENTAL RESULTS:

This section presents the extended experimental results for comparison among baseline and proposed methods (CSSRP and
CSSRP− L) using metrics: similarity search (defined in section 5.3 in the paper) and variance analysis via box plot (defined
in section 5.4 in the paper). We summarized our findings for similarity search using recall in Figure 1, and for variance
analysis via box plot in Figure 2.
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Figure 1: Comparison among the baselines on the task of top-k similarity search. A higher value of recall indicates a better
performance.

2 MISSING PROOFS:

In this section, we present the missing proofs from the main paper. For convenience, we also restate them here.

Proof of Lemma 3:
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Figure 2: Comparison among baselines on the task of variance analysis via box plot. The sampled pairs are at angles 85°
and 90°, respectively. The smaller interquartile range is an indicator of lower variance. The dotted line represents the actual
angle in degree.

Lemma 3 (Adapted from Lemma 4 of ?). Let ~r = (r1, . . . , rj , . . . , rD) ∈ RD s.t.

rj ∼


1 with probability 1

2K

0 with probability K−1
K

−1 with probability 1
2K

and ~a ∈ RD. Denote α =
∑D

j=1 rjaj = 〈~r,~a〉. Then if D → ∞ and K = o(D), we have α
L
=⇒ N

(
0, ||~a||2

K

)
with the rate

of convergence

|Fα(y)− Φ(y)| ≤ 0.8
√
K

∑D
i=1 |ai|3

(
∑D

i=1 a
2
i )

3/2
= 0.8

√
K

D

E[|ai|3]
(E[a2i ])3/2

→ 0,

where L
=⇒ denotes “convergence in distribution", Fα(y) is the empirical cumulative density function of α, and Φ(y) is the

CDF of N
(
0, ||~a||2

K

)
.

Proof. We know that

α =
D∑

j=1

rjaj ,

where

rj ∼


1 with probability 1

2K ,
0 with probability K−1

K ,
−1 with probability 1

2K .

Let

zj = rjaj .

Then

E[zj ] = E[rjaj ] = ajE[rj ] = 0.

Var[zj ] = E[(zj − E[zj ])2] = E[z2j ] = E[r2ja2j ] =
a2j
K

.

E[|zj |2+δ] = |aj |2+δE[|rj |2+δ] = |aj |2+δ

(
1× 1

K
+ 0× K − 1

K

)
=

|aj |2+δ

K
.

Let

S2
D =

D∑
j=1

Var[zj ] =

∑D
j=1 a

2
j

K
.



To prove that
∑D

j=1 zj

SD

L
=⇒ N (0, 1), we need to show that following Lindeberg condition is satisfied.

1

S2
D

D∑
j=1

E
[
z2j ; |zj | > εSD

]
→ 0 for any ε > 0. (1)

Now, we compute the LHS of the Equation (1):

1

S2
D

D∑
j=1

E
[
z2j ; |zj | > εSD

]
≤ 1

S2
D

D∑
j=1

E
[
|zj |2+δ

(εSD)δ

]
.

=
1∑D

j=1 a2
j

K

· 1

εδ
·
∑D

j=1
|aj |2+δ

K(∑D
j=1 a2

j

K

) δ
2

.

=
1

εδ
·
∑D

j=1
|aj |2+δ

K(∑D
j=1 a2

j

K

) 2+δ
2

.

= K
δ
2 · 1

εδ
·
∑D

j=1
|aj |2+δ

D(∑D
j=1 a2

j

D

) 2+δ
2

· 1

D
δ
2

.

=

(
K

D

) δ
2

· 1

εδ
·
E
[
|aj |2+δ

]
(
E[a2j ]

) 2+δ
2

.

→ 0. (2)

Equation (2) holds as K = o(D). Therefore, for K = o(D), due to Lindeberg Central Limit theorem [??], we have

∑D
j=1 zj

SD
=

∑D
j=1 rjaj√∑D

j=1 a2
j

K

=
α√

||~a||2/K
L
=⇒ N (0, 1).

α
L
=⇒ N

(
0,

||~a||2

K

)
. (3)

We remain to find the rate of convergence. For this we use Berry Esseen theorem [??]. Let us denote

ρD =
D∑

j=1

E
[
|zj |3

]
.

=

D∑
j=1

|aj |3E
[
|rj |3

]
.

=

∑D
j=1 |aj |3

K



Then, due to Berry Esseen theorem, we have

|Fα(y)− Φ(y)| ≤ 0.8
ρD
S3
D

.

= 0.8

∑D
j=1 |aj |3

K(∑D
j=1 a2

j

K

) 3
2

.

= 0.8×
√

K

D

∑D
j=1 |aj |3/D(∑D
j=1 a

2
j/D

) 3
2

.

= 0.8×
√

K

D

E[|aj |3](
E[a2j ]

) 3
2

.

→ 0 as D → ∞. (4)

Equation (4) holds for K = o(D). Equation (3) and (4) completes a proof of the Lemma 3.

Proof of Theorem 6:

Theorem 6. Let ~a,~b ∈ RD, and h(~a), h(~b) be their K-dimensional binary vector obtained via our proposal (Definition 2
define in the paper). If K = o(D), then as D → ∞ we have the following

Var
[ π
K

||h(~a)− h(~b)||1
]

=
π2

K2

(
Kθ(~a,~b)

π
+K(K − 1)

θ(~a,~b)

π
× η

)
− θ2

(~a,~b)
.

where, k1 6= k2, k1, k2 ∈ [K], and

η = Pr
[(

h(k2)(~a) 6= h(k2)(~b)
)
|
(
h(k1)(~a) 6= h(k1)(~b)

)]
.

Proof. We know that

Var
[ π
K

||h(~a)− h(~b)||1
]
=

π2

K2
Var

[
||h(~a)− h(~b)||1

]
.

=
π2

K2
Var

[
K∑

k=1

Yk

]
. (5)

where Yk := 1{h(k)(~a) 6=h(k)(~b)}.

We focus on the term

Var

[
K∑

k=1

Yk

]
= E

( K∑
k=1

Yk

)2
−

(
E

[
K∑

k=1

Yk

])2

.

= E

 K∑
k=1

Y 2
k +

∑
k1 6=k2,k1,k2∈[K]

Yk1
Yk2

−

(
E

[
K∑

k=1

Yk

])2

.

=

K∑
k=1

E [Yk] +
∑

k1 6=k2,k1,k2∈[K]

E [Yk1
Yk2

]−

(
E

[
K∑

k=1

Yk

])2

. (6)



We compute the value of each term one-by-one as follows:

K∑
k=1

E [Yk] =

K∑
k=1

Pr
[
h(k)(~a) 6= h(k)(~b)

]
.

=

K∑
k=1

θ(~a,~b)

π

=
Kθ(~a,~b)

π
. (7)

Now, we compute the following∑
k1 6=k2,k1,k2∈[K]

E [Yk1Yk2 ] =
∑

k1 6=k2

Pr
[(

h(k2)(~a) 6= h(k2)(~b)
)
∩
(
h(k1)(~a) 6= h(k1)(~b)

)]
.

=
∑

k1 6=k2,k1,k2∈[K]

Pr
[(

h(k2)(~a) 6= h(k2)(~b)
)
|
(
h(k1)(~a) 6= h(k1)(~b)

)]
× Pr

[(
h(k1)(~a) 6= h(k1)(~b)

)]
.

=
∑

k1 6=k2,k1,k2∈[K]

θ(~a,~b)

π
· Pr

[(
h(k2)(~a) 6= h(k2)(~b)

)
|
(
h(k1)(~a) 6= h(k1)(~b)

)]
. (8)

From linearity of expectation and Equation (7), we have(
E

[
K∑

k=1

Yk

])2

=

(
Kθ(~a,~b)

π

)2

.

We denote
Pr
[(

h(k2)(~a) 6= h(k2)(~b)
)
|
(
h(k1)(~a) 6= h(k1)(~b)

)]
:= η in Equation (8), and η ∈

[
0, θ

π

]
. Therefore

Var

[
K∑

k=1

Yk

]
=

Kθ(~a,~b)

π
+K(K − 1)

θ(~a,~b)

π
× η −

(
Kθ(~a,~b)

π

)2

Hence, the variance of our estimate is

Var
[ π
K

||h(~a)− h(~b)||1
]
=

π2

K2

Kθ(~a,~b)

π
+K(K − 1)

θ(~a,~b)

π
× η −

(
Kθ(~a,~b)

π

)2
 .

=
π2

K2

(
Kθ(~a,~b)

π
+K(K − 1)

θ(~a,~b)

π
× η

)
− θ2

(~a,~b)
. (9)

Equation (9) completes a proof of the theorem.

Proof of Theorem 9:

In order to prove Theorem 9, we require the following lemma which is similar to Lemma 3. We first complete its proof and
then conclude with the proof of Theorem 9.

Lemma 12. [Adapted from Lemma 4 of ?] Let ~r′ = (r′1, . . . , r
′
j , . . . , r

′
D) ∈ RD s.t.

r′j ∼


1 with probability l

2K

0 with probability K−l
K

−1 with probability l
2K

and ~a ∈ RD. Denote α′ =
∑D

j=1 r
′
jaj = 〈~r′,~a〉. Then if D → ∞ and K = o(lD), we have α′ L

=⇒ N
(
0, ||~a||2

K

)
with the

rate of convergence

|Fα′(y)− Φ(y)| ≤ 0.8

√
K

l

∑D
i=1 |ai|3

(
∑D

i=1 a
2
i )

3/2
= 0.8

√
K

lD

E[|ai|]3

(E[a2i ])3/2
→ 0,



where L
=⇒ denotes “convergence in distribution", Fα′(y) is the empirical cumulative density function of α′, and Φ(y) is the

CDF of N
(
0, ||~a||2

K

)
.

Proof. We know that

α′ =

D∑
j=1

r′jaj ,

where

r′j ∼


1 with probability l

2K ,
0 with probability K−l

K ,
−1 with probability l

2K .

Let

z′j = r′jaj .

Then

E[z′j ] = E[r′jaj ] = ajE[r′j ] = 0.

Var[z′j ] = E[(z′j − E[z′j ])2] = E[z′2j ] = E[r′2j a2j ] =
l

K
a2j .

E[|z′j |2+δ] = |aj |2+δE[|r′j |2+δ] = |aj |2+δ

(
1× l

K
+ 0× K − l

K

)
=

l

K
|aj |2+δ.

Let

S′2
D =

D∑
j=1

Var[zj ] =
l

K

D∑
j=1

a2j .

To prove that
∑D

j=1 z′
j

S′
D

L
=⇒ N (0, 1), we need to show that following Lindeberg condition [??] is satisfied.

1

S′2
D

D∑
j=1

E
[
z′2j ; |z′j | > εS′

D

]
→ 0 for any ε > 0. (10)

Now, we compute the LHS of the Equation (10):

1

S′2
D

D∑
j=1

E
[
z′2j ; |z′j | > εS′

D

]
≤ 1

S′2
D

D∑
j=1

E

[
|z′j |2+δ

(εS′
D)δ

]

=
1

l
K

∑D
j=1 a

2
j

· 1

εδ
·

l
K

∑D
j=1 |aj |2+δ(

l
K

∑D
j=1 a

2
j

) δ
2

.

=
1

εδ
·

l
K

∑D
j=1 |aj |2+δ(

l
K

∑D
j=1 a

2
j

) 2+δ
2

.

=

(
K

l

) δ
2

· 1

εδ
·
∑D

j=1
|aj |2+δ

D(∑D
j=1 a2

j

D

) 2+δ
2

· 1

D
δ
2

.

=

(
K

lD

) δ
2

· 1

εδ
·
E
[
|aj |2+δ

]
(
E[a2j ]

) 2+δ
2

.

→ 0. (11)



Equation (11) holds when K = o(lD). Therefore, for K = o(lD), due to Lindeberg Central Limit theorem [??], we have∑D
j=1 z

′
j

S′
D

=

∑D
j=1 r

′
jaj√∑D

j=1 a2
j

K

=
α′√

||~a||2/K
L
=⇒ N (0, 1).

α′ L
=⇒ N

(
0,

||~a||2

K

)
. (12)

We remain to find the rate of convergence. For this we use Berry Esseen theorem [??]. Let us denote

ρ′D =

D∑
j=1

E
[
|z′j |3

]
.

=

D∑
j=1

|aj |3E
[
|r′j |3

]
.

=
l

K

D∑
j=1

|aj |3.

From Berry Esseen theorem [??], we have

|Fα′(y)− Φ(y)| ≤ 0.8
ρ′D
S′3
D

.

= 0.8
l
K

∑D
j=1 |aj |3(

l
K

∑D
j=1 a

2
j

) 3
2

.

= 0.8×
√

K

lD

∑D
j=1 |aj |3/D(∑D
j=1 a

2
j/D

) 3
2

.

= 0.8×
√

K

lD

E[|aj |3](
E[a2j ]

) 3
2

.

→ 0 as D → ∞. (13)

Equation (13) holds for K = o(lD). Equation (12) and (13) completes a proof of the Lemma 12.

We now complete a proof of Theorem 9.

Theorem 9. Let ~a,~b ∈ RD, and h′(~a), h′(~b) be their K-dimensional binary vector obtained via our improved estimator
proposal (stated in Definition 8 in the paper). If K = o(lD), then as D → ∞ we have the following

E
[ π
K

||h′(~a)− h′(~b)||1
]
= θ(~a,~b).

Proof. Let R′ be a K ×D projection matrix (defined in Definition 8 in the paper) such that each column of R′ has exactly l
non-zero entries. These l positions are sampled uniformly at random and each of them takes value {±1} with probability
1/2

R′ =


~r′1
...
~r′k
...

~r′K


K×D

. (14)



We first consider each row ~r′k, 1 ≤ k ≤ K of the random matrix in Equation (14). The goal is to find the distribution of each
~r′k, and hence compute

E

[
K∑

k=1

|h′(k)(~a)− h′(k)(~b)|

]
=

K∑
k=1

E
[
|h′(k)(~a)− h′(k)(~b)|

]
.

Suppose we denote Z ′
k := |h′(k)(~a)− h′(k)(~b)|. While each Z ′

k are not independent due to our construction of R′, let us
briefly consider how each ~r′k is distributed.

When k = 1, we have that each entry in ~r′1 comes from a sparse Bernoulli distribution with

r′1j ∼


1 with probability l

2K

0 with probability K−l
K

−1 with probability l
2K .

(15)

where E[r′1j ] = 0, with Var[r′1j ] =
l
K . Here, we note that each entry in ~r′1 is i.i.d.

We can also compute the moment generating function of each r′1j and get

E
[
esr

′
1j

]
=

K − l

K
+

l · (exp{s}+ exp{−s})
2K

. (16)

Now let us consider the case k = 2, and compute the moment generating function for each r′2j . By using the Law of Total
Expectation, we have that

E
[
esr

′
2j

]
= E

[
esr

′
2j | r′1j = 0

]
P
[
r′1j = 0

]
+ E

[
esr

′
2j | r′1j = 1

]
P
[
r′1j = 1

]
+ E

[
esr

′
2j | r′1j = −1

]
P
[
r′1j = −1

]
.

(17)

=

(
l(exp{s}+ exp{−s})

2(K − 1)
+

K − l − 1

K − 1

)
K − l

K
+

(
(l − 1)(exp{s}+ exp{−s})

2(K − 1)
+

K − l

K − 1

)
l

2K

+

(
(l − 1)(exp{s}+ exp{−s})

2(K − 1)
+

K − l

K − 1

)
l

2K
. (18)

= l(K − 1)× (exp{s}+ exp{−s})
2K(K − 1)

+
(K − l)(K − 1)

(K − 1)K
. (19)

=
l · (exp{s}+ exp{−s})

2K
+

(K − l)

K
. (20)

which is the same moment generating function as the Sparse Bernoulli distribution mentioned in Equation (15).

Now consider ~rk, 2 < k ≤ K − l, and suppose we have seen l′ non-zero entries so far. Denote λ = exp{s}+ exp{−s}.

For ease of notation, if we have seen l′ non-zero entries so far, then we have max(l − l′, 0) non-zero entries to choose,
out of the remaining K − k + 1 terms, and the probability of drawing a non-zero for our kth entry has to be given by
1
2p

(l−l′)
(K−k+1) =

max(l−l′,0)
(K−k+1) .

Then we can write

E
[
esr

′
kj

]
=

l′∑
i=0

(
E
[
esr

′
kj | i non-zeroes for r′k′j , k

′ < k
]
× P

[
i non-zeroes for r′k′j , k

′ < k
] )

.

=

l′∑
i=0

[(
1

2
λp

(l−i)
(K−k+1) +

(
1− p

(l−i)
(K−k+1)

) )
× P

[
i non-zeroes for r′k′j , k

′ < k
] ]

.



Consider each term in the above summation. For the right term, we have

l′∑
i=1

(1− p
(l−i)
(K−k+1))P

[
i non-zeroes for r′k′j , k

′ < k
]

=

l′∑
i=1

p
(K−l−(k−1−i))
(K−k+1) P

[
k − 1− i zeroes for r′k′j , k

′ < k
]

= pK−l
K

=
K − l

K
. (21)

The left term is more straightforward, and we have

1

2

l′∑
i=0

p
(l−i)
(K−k+1)P [i non-zeroes for rk′j , k

′ < k] =
1

2

l

K
λ.

Adding both terms together, we get the MGF of the Sparse Bernoulli distribution mentioned in Equation (15). Using
Lemma 12, we can show that α′

k = 〈~r′k,~a〉 and β′
k = 〈~r′k,~b〉 converge in distribution to N

(
0, ||~a||2

K

)
as D grows large.

This fact and Lemma 4 (defined in paper), concludes a proof of the theorem.

3 OTHER DETAILS:

GUARANTEE OF COUNT-SKETCH ALGORITHM:

The following theorem states that for a pair of real-valued vectors their sketches obtained via COUNT-SKETCH closely
approximate the original pairwise inner product.

Theorem 13 (??). Given vectors ~a = (a1, . . . aD),~b = (b1, . . . bD) get compressed into vectors ~α = (α1, ..αk, ..αK) and
~β = (β1, ..βk, ..βK), respectively, using the COUNT-SKETCH algorithm, where k ∈ [K]. Then, we have the following

E[~α] = E[~β] = ~0. (22)

E[〈~α, ~β〉] = 〈~a,~b〉. (23)

Var[〈~α, ~β〉] = 1

K

D∑
i 6=j,i,j=1

(
a2i b

2
j + aibiajbj

)
. (24)
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