
ResIST: Layer-Wise Decomposition of ResNets for Distributed Training
(Supplementary Material)

Chen Dun1 Cameron R. Wolfe1 Christopher M. Jermaine1 Anastasios Kyrillidis1

1Computer Science Dept., Rice University, Houston, Texas, USA

A ABLATIONS

These experiments provide an understanding of the algorithm’s behavior, as well as empirical support for its design.

A.1 DESIGNING RESIST

Extensive ablation experiments are conducted on the CIFAR10 dataset, outlined in Fig. 1, to empirically motivate the
design choices made within ResIST (i.e., see Sec. ??). For the two sub-ResNet case, the naive implementation of ResIST,
which evenly splits all convolutional blocks between subnetworks, is shown to perform poorly (i.e., <70% on CIFAR10).
The accuracy of ResIST is improved over 25% by only allowing select layers to be partitioned and ensuring activations
are scaled correctly when performing inference with the full network. The pre-activation ResNet is shown to yield an
improvement in accuracy, leading ResIST to perform near optimally with two sub-ResNets.

When ResIST is expanded to eight sub-ResNets, we initially observe a significant decrease in model accuracy. However,
as can be seen in Fig. 1, this gap can be closed by enforcing a minimum depth on sub-ResNets and tuning the number of
local iterations. By making these extra modifications, ResIST begins to perform similarly with two to eight sub-ResNets,
yielding compelling performance.

A.2 SHALLOW ENSEMBLES

The ResIST algorithm requires that independently-trained sub-ResNets must have their parameters synchronized intermit-
tently. Such synchronization, however, can be completely avoided by training each sub-ResNet separately and forming an
ensemble (i.e., ResIST without any aggregation). Although maintaining an ensemble has several drawbacks (e.g., slower
inference, more parameters, etc.), the training time of the ensemble would nonetheless be reduced in comparison to ResIST
by avoiding communication altogether. Therefore, the performance of such an ensemble should be compared to the models
trained with ResIST.

Table 1: Performance of indpendently-trained ensembles of shallow ResNets in comparison to ResIST on CIFAR10 and
CIFAR100 (denoted as C10 and C100, respectively).

Dataset Method 2 Model 4 Model 8 Model

C10 Ensemble 92.27 % ± 0.00 92.56% ± 0.03 90.67 % ± 0.04
ResIST 91.95% ± 0.32 92.35% ± 0.22 91.45% ± 0.30

C100 Ensemble 72.08% ± 0.05 72.12% ± 0.04 67.98 % ± 0.12
ResIST 70.06% ± 0.51 71.30% ± 0.20 70.26% ± 0.21

Figure 1: Test accuracies on the CIFAR10 dataset for a single run for the major ablation experiments performed with
ResIST.

Table 2: Test accuracy on CIFAR10 (C10) and CIFAR100 (C100) for deeper architectures trained with ResIST and local
SGD (LSGD). All tests were performed with 100 local iterations between synchronization rounds. All models were trained
for 80 epochs.

ResNet152 ResNet200
Dataset # Machines Method Time Test Acc. Speedup Time Test Acc. Speedup

C10 2 LSGD 3512s 92.27% ± 0.003 4575s 92.31% ± 0.001
ResIST 2215s 92.01% ± 0.002 1.58× 2380s 92.10% ± 0.001 1.92×

4 LSGD 3598s 91.39% ± 0.001 4357s 91.35% ± 0.000
ResIST 1054s 90.67% ± 0.001 3.41× 1161s 90.27% ± 0.001 3.75×

C100 2 LSGD 3528s 70.50% ± 0.003 4639s 71.05% ± 0.005
ResIST 2291s 70.32% ± 0.005 1.53× 2202s 70.71% ± 0.002 2.10×

4 LSGD 3518s 68.39% ± 0.004 4391s 69.05% ± 0.003
ResIST 1164s 67.27% ± 0.003 3.02× 1195s 67.62% ± 0.001 3.67×

The performance of sub-ResNet ensembles in comparison to models trained with ResIST is displayed in Table 1. For 8 Sub-
ResNets, the shallow ensembles achieve inferior performance in comparison to ResIST. When two and four Sub-ResNets
are used, the performance of shallow ensembles and ResIST is comparable (i.e., < 1% performance difference in most
cases). However, it should be noted that such shallow ensembles of two or four sub-ResNets, in comparison to ResIST,
cause a 2× to 4× slowdown in inference time (i.e., inference time for a single Sub-ResNet is not significantly faster than
that of the global ResNet). Furthermore, the ensembles consume more parameters in comparison to global ResNet trained
with ResIST.

A.3 ROBUSTNESS TO LOCAL ITERATIONS

50 100 250 500 1000 1500 2000 4000 6000
Local Iterations

20

30

40

50

60

70

Ac
cu

ra
cy

2 Machine LSGD
4 Machine LSGD
2 Sub-ResNet ResIST
4 Sub-ResNet ResIST

Figure 2: Test accuracy on CIFAR100 for ResNet-101 trained with both ResIST and local SGD (LSGD) with different
numbers of local iterations. ∞ local iterations refers to aggregating parameters only once at the end of training (i.e.,
single-shot averaging). Shaded regions reflect deviations in accuracy.
ResIST is robust to various numbers of local iterations [Lin et al., 2018, Zhang et al., 2016, McMahan et al., 2017]. An
extensive sweep over possible values of ℓ is performed on CIFAR100. The results of this experiment are depicted in Fig. 2.
As can be seen, ResIST achieves high accuracy even with thousands of local SGD iterations (i.e., previous work typically
uses much fewer [Lin et al., 2018]). However, if more sub-ResNets are used, performance tends to deteriorate more quickly
as local iterations increase. Due to the robustness of ResIST to large numbers of local iterations, training can be accelerated
without deteriorating model performance by simply increasing the value of ℓ. Local SGD was found to demonstrate similar
robustness to the number of local iterations, as shown in Fig. 2.

A.4 DEEPER ARCHITECTURES

The ResIST methodology is easily applicable to deeper architectures. To demonstrate this, results are replicated for
CIFAR10 and CIFAR100 datasets with ResNet152 and ResNet200. These deeper architectures are identical to the original
ResNet101 architecture (i.e., see Fig. ??). However, more residual blocks are added to the third section of the ResNet (i.e.,
the highlighted portion of Fig. ??) to increase the model’s depth. It should be noted that convolutional blocks within the
third section of the ResNet are partitioned in ResIST by default (see Sec. ??). As a result, all extra residual blocks within
these deeper architectures are partitioned to sub-ResNets by ResIST (i.e., no extra blocks are shared between sub-ResNets),
allowing ResIST to achieve greater acceleration in comparison to local SGD.

The results of experiments with deeper ResNets are presented in Table 2. ResIST performs competitively with localSGD in
all cases. Furthermore, ResIST achieves a significant speedup in comparison to local SGD that becomes more pronounced
as the model becomes deeper. E.g., for 4-GPUs, ResIST completes training > 3× faster than local SGD for ResNet200
on both datasets. This speedup is caused by a greater ratio of total network blocks being partitioned to sub-ResNets in
ResIST. While local SGD must communicate all parameters between machines, ResIST achieves a relative decrease in

Figure 3: Test accuracy vs. communication budget for ResIST, ResIST+quantization, ResIST+gradient compression,
local SGD and vanilla data parallel on CIFAR100. All models are trained over a 4-GPU cluster.

communication by partitioning all extra residual blocks evenly between sub-ResNets.

A.5 RESIST AND QUANTIZATION/SPARSE GRADIENTS

Many quantization [Alistarh et al., 2017, Yu et al., 2019] and sparsification [Aji and Heafield, 2017, Jiang and Agrawal,
2018] techniques have been proposed for reducing communication costs in distributed training. Such techniques focus on
compressing communicated data, and they do not interfere with our methodology, which provides a novel approach to
model synchronization and training. The proposed approach can be easily combined with existing compression techniques
to further reduce communication costs and accelerate training with no extra tuning or modifications. To demonstrate
that ResIST works well with quantization, we compress all communicated parameters using both four-bit and eight-bit
compression. Table 3 shows that ResIST retains its performance until the compression level reaches five-bit and lower. We
also perform experiments with sparsification of communicated weights by only keeping 25% of total weights within each
synchronization round. Such a strategy reaches a validation peformance of 71.25% on CIFAR100. We summarize the results
of all quantization experiments in Fig. 3, where we compare communication budgets across different compression techniques
with ResIST. From this figure, it is clear that ResIST is most efficient with six-bit quantization and is compatible with
most main-stream compression techniques.

Table 3: Test Accuracy for ResIST combined with quantization on CIFAR10 and CIFAR100 (denoted as C10 and C100).

Dataset 8 bit 7 bit 6 bit 5 bit 4 bit

C10 92.14% 92.26% 91.91% 91.35% 76.33%
C100 71.38% 72.15% 71.37% 68.29% 40.48%

A.6 FURTHER ANALYSIS ON COMMUNICATION COST REDUCTION OF RESIST

The significant communication cost reduction of ResIST, in comparison with Local SGD, comes from that fact that (1)
it reduces the communication volume at each global synchronization by only communicating subnetworks (2) it has the

Figure 4: Test accuracy vs. global synchronization rounds for ResIST, ResIST+quantization, ResIST+gradient com-
pression, local SGD and vanilla data parallel on CIFAR100. All models are trained over a 4-GPU cluster.

similar convergence speed in terms of number of global synchronization rounds, as shown in Fig 4. This is also true when
ResIST is combined with other compression techniques.

A.7 COMPARISON BETWEEN RESIST AND FEDERATED DROPOUT

Federated Dropout, a concurrent work with our paper, also explores splitting a global model into smaller ones, in order to
achieve acceleration and preserve final accuracy. Yet, we have not found any work in the literature that handles ResNets and
residual blocks specifically and utilized similar additional technique we have applied (such as layer scaling in subnetworks as
shown in Figure 1). More importantly, Federated Dropout and its variants do not utilize multiple rounds of local subnetwork
training before global synchronization. In other words, Federated Dropout variants need to communicate and synchronize
at every training iteration. On the other hand, ResIST and its baseline local SGD locally train for a number of iterations
(e.g., 50) on its local model before each synchronization. Thus, compared with Federated Dropout, ResIST significantly
reduces the communication frequency and accordingly the total communication volume/cost, as we show in the experiments.
Further, Federated Dropout and its variants can only support around 25% dropout rate for each subnetwork, where ResIST,
with our additional technique, can support above 50% dropout rate for each subnetwork. This further reduces the total
communication cost, local computation cost and local memory cost. In CIFAR100 experiments with 4 workers, to reach test
accuracy of 71%, the total communication cost/volume for ResIST is 112.32 GB, while for Federated Dropout the cost is
8138.81 GB. In other words, ResIST achieves 72.46x reduction in the communication cost.

B PROOF FOR RESIST

Suppose we have S workers, for subnetwork v at local training step lt ≤ ℓ and global synchronization step t ≤ T :

x
(1)
v,lt,t

=

√
cσ
m

σ
(
W

(1)
v,lt,t

xv,lt,t

)
,

x
(h)
v,lt,t

= x
(h−1)
v,lt,t

+
cres
H
√
m
σ
(
W

(h)
v,lt,t

x
(h−1)
v,lt,t

)
M

(h)
v,t

for 2 ≤ h ≤ H,

fres(x, θ) = a⊤v,lt,tx
(H)
v,lt,t

where 0 < cres < 1 is a small constant and M
(h)
v,t is random binary variable in layer dropout or the indicator in ResIST

that indicates whether this layer is partitioned to this subnetwork. such mask variable is constant during local training steps
and re-sampled/re-assigned at global synchronization step. In ResIST and other research on layer dropout for ResNet, last
layer is never dropped/paritioned but shared with all workers. Thus, in the following proof, we will follow this setting.Note
here we use a cres

H
√
m

scaling. We follow the general assumption made in Du et al. [2019] on some technical conditions on the
activation functions σ: There exists a constant c > 0 such that |σ (0)| ≤ c and for any z, z′ ∈ R,

|σ (z)− σ (z′)| ≤c |z − z′| ,
and |σ′(z)− σ′(z)| ≤c |z − z′| .

Also, we assume σ (·) is analytic and is not a polynomial function.

In practice, several actication function satisfy the above two assumptions. The guiding example is softplus: σ (z) =
log(1 + exp(z)). For softplus both Lipschitz constant and smoothness constant are 1. In this paper, we view all activation
function related parameters as constants.

The gradient for subnetwork is

∂L

∂W
(h)
v,lt,t

=
cres
H
√
m

n∑
i=1

(yi − ui)x
(h−1)
i,v,lt,t

·

[
a⊤v,lt,t

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,v,lt,t

W
(l)
v,lt,t

M
(l)
v,t

)
J
(h)
i,v,lt,t

M
(h)
v,t

]

For subnetwork, G(H) has the same form as in layer drop ResNet.

The accumulated gradients of all the subnetworks:

W(h)
t+1 −W(h)

t = η

∑S
v=1

∑ℓ
lt=1

∂L

∂W
(h)
v,lt,t∑S

v=1 M
(h)
v,t

=
η∑S

v=1 M
(h)
v,t

S∑
v=1

ℓ∑
lt=1

cres
H
√
m

n∑
i=1

(yi − ui)x
(h−1)
i,v,lt,t

·

[
a⊤v,lt,t

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,v,lt,t

W
(l)
v,lt,t

M
(l)
v,t

)
J
(h)
i,v,lt,t

M
(h)
v,t

]

The whole network at global synchronization step t+1

x
(1)
t =

√
cσ
m

σ

(∑S
v=1 W

(1)
v,ℓ,t

S
xt

)
,

x
(h)
t = x

(h−1)
t +

cres
H
√
m
σ

(∑S
v=1 W

(h)
v,ℓ,tM

(h)
v,t∑S

v=1 M
(h)
v,t

x
(h−1)
t

)
for 2 ≤ h ≤ H,

fres(x, θ) =

∑S
v=1 av,ℓ,t

S

⊤

x
(H)
t

Let W(h)
t =

∑S
v=1 W

(h)
v,ℓ,tM

(h)
v,t∑S

v=1 M
(h)
v,t

, at =
∑S

v=1 av,ℓ,t

S

The whole network at global synchronization step 0

x
(1)
0 =

√
cσ
m

σ
(
W

(1)
0 x

)
,

x
(h)
0 = x

(h−1)
0 +

cres
H
√
m
σ
(
W

(h)
0 x

(h−1)
0

)
for 2 ≤ h ≤ H,

fres(x, θ) = a⊤0 x
(H)
0

B.1 PROOF SKETCH

We can write the loss of the whole network at global syncrhonization step t+1 as

L(θ(t),M1,t,M2,t...MS,t) =
1

2
∥y − u(t,M1,t,M2,t...MS,t)∥22 .

where Mv,t = {M (1)
v,t ,M

(2)
v,t ...M

(H)
v,t } Let Mt = {M1,t,M2,t...MS,t}

For convience, we drop all mask notation in the following proof. Let û(t) be the output of the whole network at global
synchronization step t+ 1. Now recall the progress of loss function:

∥y − û(t+ 1)∥22 = ∥y − û(t)∥22 − 2 (y − û(t))
⊤
(û(t+ 1)− û(t)) + ∥û(t+ 1)− û(t)∥22

Following Du et al. [2019], we apply Taylor expansion on (û(t+ 1)− û(t)) and look at the ith coordinate.

ûi(t+ 1)− ûi(t) = −⟨θ(t+ 1)− θ(t), û′
i (θ(t))⟩+

∫ 1

s=0

⟨θ(t+ 1)− θ(t), û′
i (θ(t))− û′

i (θ(t)− s(θ(t)− θ(t+ 1)))⟩ds

≜ Ii1(t) + Ii2(t)

However, it is not obvious that I1(t) and I2(t) can be directed bounded to show the decrease of the loss of the whole network
as both of them involve the accumulated gradient change from distributed local subnetwork training. Thus, we introduce a
new term I ′i1 (t) as below, which relates to the hypothetical global gradient direction as if the whole network trained centrally.

I ′i1 (t) =− ηℓ⟨L′(θ(t)), û′
i (θ(t))⟩

=− ηℓ

n∑
j=1

(ûj − yj)⟨û′
j(θ(t)), û

′
i (θ(t))⟩

≜− ηℓ

n∑
j=1

(ûj − yj)

H+1∑
h=1

Ĝ
(h)
ij (t)

Accordingly,

∥y − û(t+ 1)∥22
= ∥y − û(t)∥22 − 2 (y − û(t))

⊤
(I1(t) + I2(t) + I′1(t)− I′1(t)) + ∥û(t+ 1)− û(t)∥22

= ∥y − û(t)∥22 − 2 (y − û(t))
⊤
I′1(t) + 2 (y − û(t))

⊤
(I′1(t)− I1(t))− 2 (y − û(t))

⊤
I2(t) + ∥û(t+ 1)− û(t)∥22

≤
(
1− ηℓλmin

(
Ĝ(H)(t)

))
∥y − û(t)∥22 + 2 (y − û(t))

⊤
(I′1(t)− I1(t))

− 2 (y − û(t))
⊤
I2(t) + ∥û(t+ 1)− û(t)∥22 .

Our hypothesis is:

Condition b.1. At the t+ 1-th global synchronization, for the whole network, we have

∥y − û(t,Mt)∥22 ≤ (1− ηℓλ0

2
)t ∥y − û(0)∥22 .

In order to prove this, we need to show 2 (y − û(t))
⊤
(I′1(t)− I1(t)),−2 (y − û(t))

⊤
I2(t) and ∥û(t+ 1)− û(t)∥22 are

proportional to η2 ∥y − û(t)∥22 so if we set η sufficiently small, this term is smaller than ηλmin

(
Ĝ(H)(t)

)
∥y − û(t)∥22

and thus the loss function decreases with a linear rate.

Further, similar to Du et al. [2019], to prove the induction hypothesis, it suffices to prove λmin

(
Ĝ(H)(t)

)
≥ λ0

2 for
t′ = 0, . . . , t, where λ0 is independent of m. Similar to Du et al. [2019], we can show at the beginning

λmin

(
Ĝ(H)(0)

)
≥ 3

4
λ0.

Now for the t-th global iteration, by matrix perturbation analysis, we know it is sufficient to show
∥∥∥Ĝ(H)(t)− Ĝ(H)(0)

∥∥∥
2
≤

1
4λ0. To do this, we show as long as m is large enough, every weight matrix is close its initialization in a relative error sense.

Lemma b.1 (Lemma on Initialization Norms for the whole network). If σ(·) is L−Lipschitz and m = Ω
(
n
δ

)
, assuming∥∥∥W(h)

0

∥∥∥
2
≤ cw,0

√
m for h ∈ [2, H] and cw,0 ≈ 2 for Gaussian initialization. We have with probability at least 1− δ over

random initialization, for every h ∈ [H] and i ∈ [n],

1

cx,0
≤
∥∥∥x(h)

i,0

∥∥∥
2
≤ cx,0

for some universal constant cx,0 > 1

Proof of Lemma b.1. As the global model at initialization is the same with original ResNet in Du et al. [2019], we can use
the same proof in Lemma C.1 in Du et al. [2019].

The following lemma lower bounds Ĝ(H)(0)’s least eigenvalue.

Lemma b.2 (Least Eigenvalue at the Initialization). If m = Ω
(

n2 log(Hn/δ)
λ2
0

)
, we have

λmin(Ĝ
(H)(0)) ≥ 3

4
λ0.

Proof of Lemma b.2. As the global model at initialization is the same with original ResNet in Du et al. [2019], we can use
the same proof in Lemma C.2 in Du et al. [2019].

Lemma b.3. Suppose σ(·) is L-Lipschitz and for h ∈ [H],
∥∥∥W(h)

0

∥∥∥
2

≤ cw,0
√
m,

∥∥∥x(h)
0

∥∥∥
2

≤ cx,0 and∥∥∥W(h)
v,lt,t

−W(h)
0

∥∥∥
F
≤

√
mR for some constant cw,0, cx,0 > 0 and R ≤ cw,0 . Then we have

∥∥∥x(h)
v,lt,t

− x
(h)
0

∥∥∥
2
≤
(
√
cσL+

cx,0
cw,0

+
cx,0
R

)
e2crescw,0LR ≜ c′xR.

Proof of Lemma b.3. We prove this lemma by induction. Our induction hypothesis is∥∥∥x(h)
v,lt,t

− x
(h)
0

∥∥∥
2
≤ g(h),

where

g(h) =

[
1 +

2crescw,0L

H

]
g(h− 1) +

cresLcx,0
H

(cw,0 +R).

For h = 1, we have ∥∥∥x(1)
v,lt,t

− x
(1)
0

∥∥∥
2
≤
√

cσ
m

∥∥∥σ (W(1)
v,lt,t

x
)
− σ

(
W(1)

0 x
)∥∥∥

2

≤
√

cσ
m

L
∥∥∥W(1)

v,lt,t
−W(1)

0

∥∥∥
F
≤

√
cσLR,

which implies g(1) =
√
cσLR, for 2 ≤ h ≤ H , we have∥∥∥x(h)

v,lt,t
− x

(h)
0

∥∥∥
2
≤ cres

H
√
m

∥∥∥σ (W(h)
v,lt,t

x
(h−1)
v,lt,t

)
M

(h)
v,t − σ

(
W(h)

0 x
(h−1)
0

)
1
∥∥∥
2

+
∥∥∥x(h−1)

v,lt,t
− x

(h−1)
0

∥∥∥
2

≤ cres
H
√
m

∥∥∥[σ (W(h)
v,lt,t

x
(h−1)
v,lt,t

)
− σ

(
W(h)

0 x
(h−1)
0

)
]M

(h)
v,t + σ

(
W(h)

0 x
(h−1)
0

)
(M

(h)
v,t − 1)

∥∥∥
2

+
∥∥∥x(h−1)

v,lt,t
− x

(h−1)
0

∥∥∥
2

≤ cres
H
√
m

∥∥∥[σ (W(h)
v,lt,t

x
(h−1)
v,lt,t

)
− σ

(
W(h)

0 x
(h−1)
0

)
]M

(h)
v,t

∥∥∥
2
+

cres
H
√
m

∥∥∥σ (W(h)
0 x

(h−1)
0

)
(M

(h)
v,t − 1)

∥∥∥
2

+
∥∥∥x(h−1)

v,lt,t
− x

(h−1)
0

∥∥∥
2

≤ cres
H
√
m

∥∥∥[σ (W(h)
v,lt,t

x
(h−1)
v,lt,t

)
− σ

(
W(h)

0 x
(h−1)
0

)
]
∥∥∥
2

∥∥∥M (h)
v,t

∥∥∥
2
+

cres
H
√
m

∥∥∥σ (W(h)
0 x

(h−1)
0

)∥∥∥
2

∥∥∥(M (h)
v,t − 1)

∥∥∥
2

+
∥∥∥x(h−1)

v,lt,t
− x

(h−1)
0

∥∥∥
2

≤ cres
H
√
m

∥∥∥[σ (W(h)
v,lt,t

x
(h−1)
v,lt,t

)
− σ

(
W

(h)
v,lt,t

x
(h−1)
0

)
+ σ

(
W

(h)
v,lt,t

x
(h−1)
v,lt,t

)
− σ

(
W(h)

0 x
(h−1)
0

)
]
∥∥∥
2

+
cresL

H
√
m

∥∥∥W(h)
0 x

(h−1)
0

∥∥∥+ ∥∥∥x(h−1)
v,lt,t

− x
(h−1)
0

∥∥∥
2

≤ cres
H
√
m

∥∥∥σ (W(h)
v,lt,t

x
(h−1)
v,lt,t

)
− σ

(
W

(h)
v,lt,t

x
(h−1)
0

)∥∥∥
2

+
cres
H
√
m

∥∥∥σ (W(h)
v,lt,t

x
(h−1)
0

)
− σ

(
W(h)

0 x
(h−1)
0

)∥∥∥
2

+
∥∥∥x(h−1)

v,lt,t
− x

(h−1)
0

∥∥∥
2
+

cresLcw,0cx,0
H

≤ cresL

H
√
m

(∥∥∥W(h)
0

∥∥∥
2
+
∥∥∥W(h)

v,lt,t
−W(h)

0

∥∥∥
F

)
·
∥∥∥x(h−1)

v,lt,t
− x

(h−1)
0

∥∥∥
2

+
cresL

H
√
m

∥∥∥W(h)
v,lt,t

−W(h)
0

∥∥∥
F

∥∥∥x(h−1)
0

∥∥∥
2
+
∥∥∥x(h−1)

v,lt,t
− x

(h−1)
0

∥∥∥
2
+

cresLcw,0cx,0
H

≤
[
1 +

cresL

H
√
m

(
cw,0

√
m+R

√
m
)]

g(h− 1) +
cresL

H
√
m

√
mRcx,0 +

cresLcw,0cx,0
H

≤
(
1 +

2crescw,0L

H

)
g(h− 1) +

cres
H

Lcx,0R+
cresLcw,0cx,0

H
.

Lastly, simple calculations show g(h) ≤
(√

cσL+
cx,0

cw,0
+

cx,0

R

)
e2crescw,0LR.

Lemma b.4. Suppose σ(·) is L-Lipschitz and for h ∈ [H],
∥∥∥W(h)

0

∥∥∥
2
≤ cw,0

√
m,
∥∥∥x(h)

0

∥∥∥
2
≤ cx,0 and

∥∥∥W(h)
t −W(h)

0

∥∥∥
F
≤

√
mR for some constant cw,0, cx,0 > 0 and R ≤ cw,0 . Then we have∥∥∥x(h)

t − x
(h)
0

∥∥∥
2
≤
(
√
cσL+

cx,0
cw,0

)
e2crescw,0LR ≜ cxR.

Proof of Lemma b.4. The proof is exactly the same with proof of C.3 in Du et al. [2019]

Next, we characterize how the perturbation on the weight matrices affect Ĝ(H).

Lemma b.5. Suppose σ(·) is differentiable, L−Lipschitz and β−smooth. Suppose for h ∈ [H],
∥∥∥W(h)

0

∥∥∥
2
≤ cw,0

√
m,

∥a0∥2 ≤ a2,0
√
m, ∥a0∥4 ≤ a4,0m

1/4 , 1
cx,0

≤
∥∥∥x(h)

0

∥∥∥
2
≤ cx,0, if

∥∥∥W(h)
r −W(h)

0

∥∥∥
F
, ∥ar − a0∥2 ≤

√
mR where

R ≤ cλ0H
2n−1 and R ≤ c for some small constant c , we have∥∥∥Ĝ(H)(t)− Ĝ(H)(0)

∥∥∥
2
≤ λ0

2
.

Proof of Lemma b.5. Similar to C.4 in Du et al. [2019] Because Frobenius-norm of a matrix is bigger than the operator
norm, it is sufficient to bound

∥∥∥Ĝ(H)(t)− Ĝ(H)(0)
∥∥∥
F

. For simplicity define zi,q(t) = W(H)⊤
t,q x

(H−1)
i,t , we have∣∣∣Ĝ(H)

i,j (t)− Ĝ
(H)
i,j (0)

∣∣∣
=

c2res
H2m

∣∣x(H−1)⊤
i,t x

(H−1)
j,t

m∑
q=1

aq(t)
2σ′ (zi,q(t))σ

′ (zj,q(t))

− x
(H−1)⊤
i,0 x

(H−1)
j,0

m∑
q=1

aq(0)
2σ′ (zi,q(0))σ

′ (zj,q(0))
∣∣

≤c2res
H2

L2a22,0

∣∣∣x(H−1)⊤
i,t x

(H−1)
j,t − x

(H−1)⊤
i,0 x

(H−1)
j,0

∣∣∣
+

c2res
H2

c2x,0
m

∣∣∣∣∣
m∑
q=1

aq(0)
2 (σ′ (zi,q(t))σ

′ (zj,q(t))− σ′ (zi,q(0))σ
′ (zj,q(0)))

∣∣∣∣∣
+

c2res
H2m

∣∣∣x(H−1)⊤
i,t x

(H−1)
j,t

∣∣∣ ∣∣∣∣∣
m∑
q=1

(
aq(t)

2 − aq(0)
2
)
σ′ (zi,q(t))σ

′ (zj,q(t))

∣∣∣∣∣
≜
c2res
H2

(Ii,j1 + Ii,j2 + Ii,j3).

For Ii,j1 , using Lemma b.4, we have

Ii,j1 =L2a22,0

∣∣∣x(H−1)⊤
i,t x

(H−1)
j,t − x

(H−1)⊤
i,0 x

(H−1)
j,0

∣∣∣
≤L2a22,0

∣∣∣(x(H−1)
i,t − x

(H−1)
i,0 ⊤)x

(H−1)
j,t

∣∣∣+ L2a22,0

∣∣∣x(H−1)⊤
i,0 (x

(H−1)
i,t − x

(H−1)
i,0)

∣∣∣
≤cxL

2a22,0R · (cx,0 + cxR) + cx,0cxL
2a22,0R

≤3cx,0cxL
2a22,0R,

Same with C.4 Du et al. [2019], to bound Ii,j2 , we have

Ii,j2 =c2x,0
1

m

∣∣∣∣∣
m∑
q=1

aq(0)
2σ′ (zi,q(t))σ

′ (zj,q(t))− aq(0)
2σ′ (zi,q(0))σ

′ (zj,q(0))

∣∣∣∣∣
≤
βLa24,0c

2
x,0√

m

√√√√ m∑
q=1

|zi,q(t)− zi,q(0)|2 +

√√√√ m∑
q=1

|zj,q(t)− zj,q(0)|2
 .

Using the same proof for Lemma b.4, it is easy to see

m∑
q=1

|zi,q(t)− zi,q(0)|2 ≤ (2cxcw,0 + cx,0)
2
L2mR2.

Thus

Ii,j2 ≤ 2βc2x,0 (2cxcw,0 + cx,0)L
2R.

The bound of Ii,j3 is the same to that Ii,j3 in Du et al. [2019] C.4,

Ii,j3 ≤ 12L2c2x,0a2,0R.

Therefore we can bound the perturbation

∥∥∥Ĝ(H)(t)− Ĝ(H)(0)
∥∥∥
F
=

√√√√n,n∑
(i,j)

∣∣∣Ĝ(H)
i,j (t)− Ĝ

(H)
i,j (0)

∣∣∣2

≤ c2res
H2

√
n2(3cx,0cxL2a22,0R+ 2βc2x,0 (2cxcw,0 + cx,0)L2R+ 12L2c2x,0a2,0R)

=
c2res
H2

n(3cx,0cxL
2a22,0R+ 2βc2x,0 (2cxcw,0 + cx,0)L

2R+ 12L2c2x,0a2,0R)

.

Plugging in the bound on R, we have the desired result.

Now we prove theorem ?? by induction, assume the condition b.1, we want to bound the change of weight to satisfy
lemma b.5 and then we want to show 2 (y − û(t))

⊤
(I′1(t) − I1(t)),−2 (y − û(t))

⊤
I2(t) and ∥û(t+ 1)− û(t)∥22 are

proportional to η2 ∥y − û(t)∥22 so if we set η sufficiently small, this term is smaller than ηλmin

(
Ĝ(H)(t)

)
∥y − û(t)∥22

and thus the loss function decreases with a linear rate.

Lemma b.6. If Condition b.1 holds for t′ = 0, . . . , t− 1, we have for any 1 ≤ v ≤ S, 0 ≤ lt ≤ ℓ∥∥∥W(h)
v,lt,t

−W(h)
0

∥∥∥
F
, ∥av,lt,t − a0∥2 ≤ R′√m,∥∥∥W(h)

v,lt,t
−W

(h)
v,lt−1,t

∥∥∥
F
, ∥av,lt,t − av,lt−1,t∥2 ≤ ηQ′(lt − 1, t),

where R′ =
16crescx,0a2,0Le2crescw,0L√

n∥y−u(0)∥2

Hλ0
√
m

< c for some small constant c ,
Q′(lt, t) = 4crescx,0a2,0Le

2crescw,0L
√
n ∥y − ut,lt∥2 /H and

Q′(t) = 4crescx,0a2,0Le
2crescw,0L

√
n ∥y − ût∥2 /H .

Proof of Lemma b.6. We will prove this corollary by induction. The induction hypothesis is∥∥∥W(h)
v,lt,t

−W(h)
0

∥∥∥
F
≤ R′√m

∥av,lt,t − a0∥2 ≤ R′√m.

First we want to prove it holds for t′ = 0 and 0 ≤ lt ≤ ℓ.

We prove it by induction w.r.t lt: It is easy to see that it holds for t′ = 0 and l′t = 0. Suppose it holds for 0 ≤ l′t ≤ lt, we
want to prove it holds for l′t = lt + 1 Following C.5 in Du et al. [2019], note

∥∥∥J(k)
i,v,lt,t

∥∥∥
2
≤ L. We have∥∥∥W(h)

v,lt+1,t −W
(h)
v,lt,t

∥∥∥
F

≤η
cres
H
√
m

∥av,lt,t∥2
n∑

i=1

|yi − ui,v,lt,t|
∥∥∥x(h−1)

i,v,lt,t

∥∥∥
2

H∏
k=h+1

∥∥∥∥I+ cres
H
√
m
J
(k)
i,v,lt,t

W
(k)
v,lt,t

M
(k)
v,t

∥∥∥∥
2

∥∥∥J(k)
i,v,lt,t

∥∥∥
2

∥∥∥M (h)
v,t

∥∥∥
2

≤η
Lcres
H
√
m

∥av,lt,t∥2
n∑

i=1

|yi − ui,v,lt,t|
∥∥∥x(h−1)

i,v,lt,t

∥∥∥
2

H∏
k=h+1

∥∥∥∥I+ cres
H
√
m
J
(k)
i,v,lt,t

W
(k)
v,lt,t

M
(k)
v,t

∥∥∥∥
2

Further

H∏
k=h+1

∥∥∥∥I+ cres
H
√
m
J
(k)
i,v,lt,t

W
(k)
v,lt,t

M
(k)
v,t

∥∥∥∥
2

≤
H∏

k=h+1

∥I∥2 +
∥∥∥∥ cres
H
√
m
J
(k)
i,v,lt,t

W
(k)
v,lt,t

M
(k)
v,t

∥∥∥∥
2

≤
H∏

k=h+1

∥I∥2 +
cres
H
√
m

∥∥∥J(k)
i,v,lt,t

∥∥∥
2

∥∥∥W(k)
v,lt,t

∥∥∥
2

∥∥∥M (k)
v,t

∥∥∥
2

≤
H∏

k=h+1

∥I∥2 +
cresL

H
√
m
(
∥∥∥W(k)

0

∥∥∥
F
+
∥∥∥W(k)

v,lt,t
−W(k)

0

∥∥∥
F
)

≤
H∏

k=h+1

1 +
cresL

H
(cw,0 +R′)

≤
H∏

k=h+1

1 +
cresL

H
2cw,0

≤e2cresxw,0L

Thus ∥∥∥W(h)
v,lt+1,t −W

(h)
v,lt,t

∥∥∥
F

≤η
Lcres
H
√
m

∥av,lt,t∥2
n∑

i=1

|yi − ui(s)|
∥∥∥x(h−1)

i,v,lt,t

∥∥∥
2

H∏
k=h+1

∥∥∥∥I+ cres
H
√
m
J
(k)
i,v,lt,t

W
(k)
v,lt,t

M
(k)
v,t

∥∥∥∥
2

≤η
Lcres
H
√
m

∥av,lt,t∥2
n∑

i=1

|yi − ui(s)|
∥∥∥x(h−1)

i,v,lt,t

∥∥∥
2
e2cresxw,0L

≤ηcres(cx,0 + cxR
′)La2,0e

2crescw,0L
√
n ∥y − ult,t∥2 /H

≤3ηcrescx,0La2,0e
2crescw,0L

√
n ∥y − ult,t∥2 /H

≤ηQ′(lt, t)

≤(1− ηλ0

2
)s/2

1

4
ηλ0R

′√m

Similarly, we have

∥av,lt+1,t − av,lt,t∥2 ≤3ηcx,0

n∑
i=1

|yi − ult,t|

≤ηQ′(lt, t)

≤(1− ηλ0

2
)lt/2

1

4
ηλ0R

′√m.

Thus ∥∥∥W(h)
v,lt+1,t −W(h)

0

∥∥∥
F

≤
∥∥∥W(h)

v,lt+1,t −W(h)
v,lt,t

∥∥∥
F
+
∥∥∥W(h)

v,lt,t
−W(h)

0

∥∥∥
F

≤
lt∑

l′t=0

η(1− ηλ0

2
)l

′
t/2

1

4
ηλ0R

′√m.

Similarly,

∥av,lt+1,t − a0∥2

≤
lt∑

l′t=0

η(1− ηλ0

2
)l

′
t/2

1

4
ηλ0R

′√m.

Now suppose the hypothesis hold for t’=0,1..,t and for 0 ≤ lt ≤ ℓ. We want to prove for t′ = t+ 1, the hypothesis holds.
By Lemma b.7, we know

∥∥∥W(h)
t −W(h)

0

∥∥∥
F
≤

√
mR′ Thus,

∥∥∥W(h)
v,lt=0,t+1 −W(h)

0

∥∥∥
F
≤

√
mR′ Thus, by using the same

induction on lt above, we can prove the hypothesis for t+ 1.

Lemma b.7. Assume ∥∥∥W(h)
v,lt,t

−W(h)
0

∥∥∥
F
, ∥av,lt,t − a0∥2 ≤

√
mR′

We have ∥∥∥W(h)
t −W(h)

0

∥∥∥
F
, ∥at − a0∥2 ≤

√
mR′

Proof of Lemma b.7.

∥∥∥W(h)
t −W(h)

0

∥∥∥
F
=

∥∥∥∥∥
∑S

v=1 W
(h)
v,ℓ,tM

(h)
v,t∑S

v=1 M
(h)
v,t

−W(h)
0

∥∥∥∥∥
F

≤

∑
v:M

(h)
v,t =1

∥∥∥W(h)
v,ℓ,t −W(h)

0

∥∥∥
F∑S

v=1 M
(h)
v,t

≤
√
mR′

Similarly,

∥at − a0∥2 ≤
∑S

v=1 ∥av,lt,t − a0∥2
S

≤
√
mR′

Lemma b.8. If Condition b.1 holds for t′ = 0, . . . , t− 1 and η ≤ cλ0H
2n−2ℓ−2S−1 for some small constant c, we have∥∥∥I′i1(t)− Ii1(t)

∥∥∥
2
≤ C∗

I1
η2 ∥yi − ûi,t−1∥2 where C∗

I1
is a constant and thus ∥I′1(t)− I1(t)∥2 ≤ 1

16ηλ0 ∥y − û(k)∥2.

Proof of Lemma b.8. ∥∥∥I′i1(t)− Ii1(t)
∥∥∥
2
= ∥⟨ηℓL′(θ(t))− (θ(t+ 1)− θ(t)), û′

i (θ(t))⟩∥2

≤
H∑

h=1

∥∥∥∥∥∥∥η
∑S

v=1

∑ℓ
lt=1

∂L

∂W
(h)
v,lt,t∑S

v=1 M
(h)
v,t

− ηℓ
∂L

∂W(h)
t−1

∥∥∥∥∥∥∥
F

∥û′
i (θ(t)∥2

+

∥∥∥∥∥∥η
∑S

v=1

∑ℓ
lt=1

∂L
∂av,lt,t

S
− ηℓ

∂L

∂at

∥∥∥∥∥∥
2

∥û′
i (θ(t)∥2

Let Mt,h =
∑S

v=1 M
(h)
v,t∥∥∥∥∥∥∥η

∑S
v=1

∑ℓ
lt=1

∂L

∂W
(h)
v,lt,t∑S

v=1 M
(h)
v,t

− ηℓ
∂L

∂W(h)
t−1

∥∥∥∥∥∥∥
F

≤η1/Mt,h

S∑
v=1

ℓ∑
lt=1

∥∥∥∥∥ ∂L

∂W
(h)
v,lt,t

− ∂L

∂W(h)
t−1

∥∥∥∥∥
F

≤η1/Mt,h

S∑
v=1

ℓ∑
lt=1

∣∣| cres
H
√
m

n∑
i=1

(yi − ui,v,lt,t)x
(h−1)
i,v,lt,t

·

[
a⊤v,lt,t

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,v,lt,t

W
(l)
v,lt,t

M
(l)
v,t

)
J
(h)
i,v,lt,t

M
(h)
v,t

]

− cres
H
√
m

n∑
i=1

(yi − ûi,t−1)x
(h−1)
i,t−1 ·

[
a⊤t−1

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,t−1W

(l)
t−1

)
J
(h)
i,t−1

] ∣∣|
F

≤η1/Mt,h

S∑
v=1

ℓ∑
lt=1

cres
H
√
m

n∑
i=1

∣∣|(yi − ui,v,lt,t)x
(h−1)
i,v,lt,t

·

[
a⊤v,lt,t

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,v,lt,t

W
(l)
v,lt,t

M
(l)
v,t

)
J
(h)
i,v,lt,t

M
(h)
v,t

]

− (yi − ûi,t−1)x
(h−1)
i,t−1 ·

[
a⊤t−1

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,t−1W

(l)
t−1

)
J
(h)
i,t−1

] ∣∣|
F

Through standard calculations, we have∥∥∥W(l)
t−1 −W

(l)
v,lt,t

∥∥∥
F
≤ηℓQ′(0, t),

∥at−1 − av,lt,t∥F ≤ηℓQ′(0, t),∥∥∥x(h−1)
i,t−1 − x

(h−1)
i,v,lt,t

∥∥∥
F
≤ηℓc′x

Q′(0, t)√
m

,∥∥∥J(l)
i,t−1 − J

(l)
i,v,lt,t

∥∥∥
F
≤2ℓ (cx,0 + cw,0c

′
x) ηβQ

′(0, t),

where c′x ≜
(√

cσL+
cx,0

cw,0
+

cx,0

R

)
e2crescw,0L. As we know ∥yi − ui,v,lt,t∥ ≤ ∥yi − ûi,t−1∥, suppose

∥ui,v,lt,t − ûi,t−1∥ ≤ Cu

According to Lemma G.1 in Du et al. [2019], we have

η1/Mt,h

S∑
v=1

ℓ∑
lt=1

cres
H
√
m

n∑
i=1

∣∣|(yi − ui,v,lt,t)x
(h−1)
i,v,lt,t

·

[
a⊤v,lt,t

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,v,lt,t

W
(l)
v,lt,t

M
(l)
v,t

)
J
(h)
i,v,lt,t

M
(h)
v,t

]

− (yi − ûi,t−1)x
(h−1)
i,t−1 ·

[
a⊤t−1

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,t−1W

(l)
t−1

)
J
(h)
i,t−1

] ∣∣|
F

≤η1/Mt,hSℓn
4

H
crescx,0La2,0e

2Lcw,0(Cu

+ ηℓ
Q′(0, t)√

m

(
cx
cx,0

+
2

L
(cx,0 + cw,0cx)β

√
m+ 4cw,0 (cx,0 + cw,0cx)β + L+ 1

)
) ∥yi − ûi,t−1∥2

On the other hand,∥∥∥∥∥∥η
∑S

v=1

∑ℓ
lt=1

∂L
∂av,lt,t

S
− ηℓ

∂L

∂at

∥∥∥∥∥∥
2

≤ η1/S

S∑
v=1

ℓ∑
lt=1

∥∥∥∥ ∂L

∂av,lt,t
− ∂L

∂at

∥∥∥∥
2

≤ η1/S

S∑
v=1

ℓ∑
lt=1

n∑
i=1

∥∥∥(yi − ui,v,lt,t)x
(H)
i,v,lt,t

− (yi − ûi,t)x
(H)
i,t−1

∥∥∥
2

≤ ηℓn(Cu + ηℓc′x
Q′(0, t)√

m
) ∥yi − ûi,t−1∥2

Also,

∥û′
i (θ(t))∥2 ≤ cres

H
√
m

H∑
h=1

∥∥∥∥∥∂ûi (θ(t))

∂W(h)
t−1

∥∥∥∥∥
2

=
cres
H
√
m

H∑
h=1

∥∥∥∥∥x(h−1)
i,t−1 ·

[
a⊤t−1

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,t−1W

(l)
t−1

)
J
(h)
i,t−1

]∥∥∥∥∥
2

≤ cres
H
√
m

H∑
h=1

∥∥∥x(h−1)
i,t−1

∥∥∥
2
∥at−1∥2

∥∥∥∥∥
H∏

l=h+1

(
I+

cres
H
√
m
J
(l)
i,t−1W

(l)
t−1

)∥∥∥∥∥
2

∥∥∥J(h)
i,t−1

∥∥∥
2

≤ cres
H

H2cx,0a2,0Le
2cresxw,0L

= 2crescx,0a2,0Le
2cresxw,0L

Thus, combine all above and also according to Lemma b.9

∥∥∥I′i1(t)− Ii1(t)
∥∥∥
2
≤

H∑
h=1

∥∥∥∥∥∥∥η
∑S

v=1

∑ℓ
lt=1

∂L

∂W
(h)
v,lt,t∑S

v=1 M
(h)
v,t

− ηℓ
∂L

∂W(h)
t−1

∥∥∥∥∥∥∥
2

∥û′
i (θ(t)∥2

+

∥∥∥∥∥∥η
∑S

v=1

∑ℓ
lt=1

∂L
∂av,lt,t

S
− ηℓ

∂L

∂at

∥∥∥∥∥∥
2

∥û′
i (θ(t)∥2

≤ C∗
I1η

2 ∥yi − ûi,t−1∥where C∗
I1 is a constant

Using the bound on η and following Du et al. [2019] ∥y − û∥2 = O(
√
n),

∥I′1(t)− I1(t)∥ ≤ 1

16
ηλ0 ∥y − û(k)∥2

Lemma b.9.

∥ui,v,lt,t − ûi,t∥2 ≤ ηℓQ′(0, t)B where B is a constant

Proof of Lemma b.9.

∥ui,v,lt,t − ûi,t∥2 =
∥∥∥a⊤v,lt,tx(H)

v,lt,t
− a⊤t x

(H)
t

∥∥∥
2

≤ η(2a2,03cx,0ℓQ
′(0, t)(1 +

cx√
m
))

Lemma b.10. If Condition b.1 holds for t′ = 0, . . . , t− 1 and η ≤ cλ0H
2n−2ℓ−2S−1 for some small constant c, we have

∥I2(t)∥2 ≤ C∗
I2
η2 ∥yi − ûi,t−1∥2 where C∗

I2
is a constant and thus ∥I2(t)∥2 ≤ 1

8ηλ0 ∥y − û(k)∥2.

Proof of Leamma b.10.

Ii2(t) =

∫ 1

s=0

⟨θ(t+ 1)− θ(t), û′
i (θ(t))− û′

i (θ(t)− s(θ(t)− θ(t+ 1)))⟩ds

Define for 1 ≤ h ≤ H

û
′(h)
i (θ(t)) =

∂û(θ(t))

W(h)
t

And

û
′(H+1)
i (θ(t)) =

∂û(θ(t))

at

∣∣Ii2(t)∣∣ ≤ max
0≤s≤1

H∑
h=1

∥∥∥W(h)
t −W(h)

t−1

∥∥∥
F

∥∥∥û′(h)
i (θ(t))− û

′(h)
i (θ(t)− s(θ(t+ 1)− θ(t)))

∥∥∥
F

+ ∥at − at−1∥2
∥∥∥û′(H+1)

i (θ(t))− û
′(H+1)
i (θ(t)− s(θ(t+ 1)− θ(t)))

∥∥∥
2
.

From Lemma b.8 and Lemma b.6, ∥∥∥W(h)
t −W(h)

t−1

∥∥∥
F
≤ ηℓQ̂′(t− 1)

∥at − at−1∥2 ≤ ηℓQ̂′(t− 1)

Let x(l)
i,t−1,s be the activation of global network with Wt−1,s = Wt−1 − s(Wt−1 −Wt). We similarly define J

(l)
i,t−1,s and

at−1,s ∥∥∥û′(h)
i (θ(t))− û

′(h)
i (θ(t)− s(Wt−1 −Wt))

∥∥∥
F

≤ cres
H
√
m

∣∣|x(h−1)
i,t−1,s ·

[
a⊤t−1,s

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,t−1,sW

(l)
t−1,s

)
J
(h)
i,t−1,s

]

− x
(h−1)
i,t−1 ·

[
a⊤t−1

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,t−1W

(l)
t−1

)
J
(h)
i,t−1

] ∣∣|
F

Through similar calculation in Lemma b.8,∥∥∥W(l)
t−1,s −W(l)

t−1

∥∥∥
F
=s
∥∥∥(W(l)

t−1 −W(l)
t)
∥∥∥
F

≤
∥∥∥(W(l)

t−1 −W(l)
t)
∥∥∥
F

≤ηℓQ̂′(t− 1)∥∥∥x(l)
i,t−1,s − x

(l)
i,t−1

∥∥∥
2
≤ cres

H
√
m

∥∥∥σ (W(l)
t−1,sx

(l−1)
t−1,s

)
− σ

(
W(l)

t−1x
(l−1)
t−1

)∥∥∥
2
+
∥∥∥x(l−1)

t−1,s − x
(l−1)
t−1

∥∥∥
2

≤ cres
H
√
m

∥∥∥σ (W(l)
t−1,sx

(l−1)
t−1,s

)
− σ

(
W(l)

t−1,sx
(l−1)
t−1

)∥∥∥
2

+
cres
H
√
m

∥∥∥σ (W(l)
t−1,sx

(l−1)
t−1

)
− σ

(
W(l)

t−1x
(l−1)
t−1

)∥∥∥
2
+
∥∥∥x(l−1)

t−1,s − x
(l−1)
t−1

∥∥∥
2

≤ cresL

H
√
m

∥∥∥W(l)
t−1,s

∥∥∥
F

∥∥∥x(l−1)
t−1,s − x

(l−1)
t−1

∥∥∥
2

+
cresL

H
√
m

∥∥∥W(l)
t−1,s −W(l)

t−1

∥∥∥
F

∥∥∥x(l−1)
t−1

∥∥∥
2
+
∥∥∥x(l−1)

t−1,s − x
(l−1)
t−1

∥∥∥
2

≤ (1 +
cresL

H
√
m
(cw,0

√
m+R′√m+ ηℓQ̂′(t− 1)))

∥∥∥x(l−1)
t−1,s − x

(l−1)
t−1

∥∥∥
2

+
cresL

H
√
m
ηℓQ̂′(t− 1)(cxR

′ + cx,0)

Also ∥∥∥x(0)
i,t−1,s − x

(0)
i,t−1

∥∥∥
2
=

cres
H
√
m

∥∥∥σ (W(1)
t−1,sxi

)
− σ

(
W(0)

t−1xi

)∥∥∥
2

≤ cres
H
√
m
L
∥∥∥W(1)

t−1,s −W(0)
t−1

∥∥∥
2

≤ cres
H
√
m
LηℓQ̂′(t− 1)

Thus∥∥∥x(l)
i,t−1,s − x

(l)
i,t−1

∥∥∥
2
≤ (

cres
H
√
m
LηℓQ̂′(t− 1) +

cresL
H

√
m
ηℓQ̂′(t− 1)(cxR

′ + cx,0)

cresL
H

√
m
(cw,0

√
m+R′√m)

)e
cresL
H

√
m

(cw,0
√
m+R′√m+ηℓQ̂′(t−1))

≤ ηℓQ̂′(t− 1)(
cres
H
√
m
L+

(cxR
′ + cx,0)

(cw,0
√
m+R′√m)

)e
cresL√

m
(cw,0

√
m+R′√m+ηℓQ̂′(t−1))

≜ ηℓQ̂′(t− 1)C∗
x

Similarly, through standard calculation we can get

∥at−1,s − at−1∥2 ≤ ηℓQ̂′(t− 1)

Lastly,∥∥∥J(l)
i,t−1,s − J

(l)
i,t−1

∥∥∥
2
=
∥∥∥σ′(W(l)

t−1,sx
(l−1)
t−1,s)− σ′(W(l)

t−1x
(l−1)
t−1)

∥∥∥
2

≤ β
∥∥∥W(l)

t−1,sx
(l−1)
t−1,s −W(l)

t−1x
(l−1)
t−1

∥∥∥
2

≤ β(
∥∥∥W(l)

t−1,s

∥∥∥
F

∥∥∥x(l−1)
t−1,s − x

(l−1)
t−1

∥∥∥
2
+
∥∥∥W(l)

t−1,s −W(l)
t−1

∥∥∥
F

∥∥∥x(l−1)
t−1

∥∥∥
2
)

≤ β(
cresL

H
√
m
(cw,0

√
m+R′√m+ ηℓQ̂′(t− 1))ηℓQ̂′(t− 1)C∗

x + ηℓQ̂′(t− 1)(cxR
′ + cx,0))

= ηℓQ̂′(t− 1)β(
cresL

H
√
m
(cw,0

√
m+R′√m+ ηℓQ̂′(t− 1))C∗

x + (cxR
′ + cx,0))

≜ ηℓQ̂′(t− 1)βC∗
J

Thus, according to Lemma G.1 in Du et al. [2019], we have∥∥∥û′(h)
i (θ(t))− û

′(h)
i (θ(t)− s(Wt−1 −Wt))

∥∥∥
F

≤ cres
H
√
m

∣∣|x(h−1)
i,t−1,s ·

[
a⊤t−1,s

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,t−1,sW

(l)
t−1,s

)
J
(h)
i,t−1,s

]

− x
(h−1)
i,t−1 ·

[
a⊤t−1

H∏
l=h+1

(
I+

cres
H
√
m
J
(l)
i,t−1W

(l)
t−1

)
J
(h)
i,t−1

] ∣∣|
≤ ηℓQ̂′(t− 1)

cres
H
√
m
2cx,02a2,0Le

2Lcw,0(
C∗

x

2cx,0
+

1

2a2,0
+

cres√
m
βC∗

J)

On the other hand ∥∥∥û′(H+1)
i (θ(t))− û

′(H+1)
i (θ(t)− s(θ(t+ 1)− θ(t)))

∥∥∥
2
≤
∥∥∥x(H)

t−1,s − x
(H)
t−1

∥∥∥
2

≤ ηℓQ̂′(t− 1)C∗
x

In the end,

∥I2(t)∥2 ≤ ηℓQ̂′(t− 1)ηℓQ̂′(t− 1)(
cres√
m
2cx,02a2,0Le

2Lcw,0(
C∗

x

2cx,0
+

1

2a2,0
+

cres√
m
βC∗

J) + C∗
x)

≤ η2ℓ2Q̂′(t− 1)2(
cres√
m
2cx,02a2,0Le

2Lcw,0(
C∗

x

2cx,0
+

1

2a2,0
+

cres√
m
βC∗

J) + C∗
x)

≤ η2C∗
I2 ∥y − û(t)∥2

≤ 1

16
ηλ0 ∥y − û(t)∥2

Lemma b.11. If Condition b.1 holds for t′ = 0, . . . , t− 1 and η ≤ cλ0H
2n−2ℓ−2S−1 for some small constant c, we have

∥û(t+ 1)− û(t)∥22 ≤ 1
16ηλ0 ∥y − û(k)∥22.

Proof of Lemma b.11.

∥û(t+ 1)− û(t)∥22 =

n∑
i=1

(
a⊤t+1x

(H)
i,t+1 − a⊤t x

(H)
i,t

)2

=

n∑
i=1

(
[at+1 − at]

⊤
x
(H)
i,t+1 + a⊤t

[
x
(H)
i,t+1 − x

(H)
i,t

])2
≤2 ∥at+1 − at∥22

n∑
i=1

∥∥∥x(H)
i,t+1

∥∥∥2
2
+ 2 ∥at∥22

n∑
i=1

∥∥∥x(H)
i,t+1 − x

(H)
i,t

∥∥∥2
2

≤18nη2ℓ2c2x,0Q
′(t)2 + 4n (ηℓa2,0cxQ

′(t))
2

≤1

8
ηλ0 ∥y − û(t)∥22 .

References

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In Proceedings of the 2017
Conference on Empirical Methods in Natural Language Processing, pages 440–445, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-efficient SGD via
gradient quantization and encoding. Advances in Neural Information Processing Systems, 30, 2017.

Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of deep neural
networks. In International conference on machine learning, pages 1675–1685. PMLR, 2019.

Peng Jiang and Gagan Agrawal. A linear speedup analysis of distributed deep learning with sparse and quantized
communication. Advances in Neural Information Processing Systems, 31, 2018.

Tao Lin, Sebastian U. Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t Use Large Mini-Batches, Use Local SGD. art.
arXiv:1808.07217, August 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial intelligence and statistics, pages 1273–1282. PMLR,
2017.

Yue Yu, Jiaxiang Wu, and Longbo Huang. Double quantization for communication-efficient distributed optimization.
Advances in Neural Information Processing Systems, 32, 2019.

Jian Zhang, Christopher De Sa, Ioannis Mitliagkas, and Christopher Ré. Parallel SGD: When does averaging help? art.
arXiv:1606.07365, June 2016.

	Ablations
	Designing ResIST
	Shallow Ensembles
	Robustness to Local Iterations
	Deeper architectures
	ResIST and Quantization/Sparse Gradients
	Further Analysis on Communication Cost Reduction of ResIST
	Comparison between ResIST and Federated Dropout

	Proof for ResIST
	Proof Sketch

