Temporal Abstractions-Augmented Temporally Contrastive Learning:
An Alternative to the Laplacian in RL (Supplementary material)

Akram Erraqabi'? Marlos C. Machado*>-%

Alessandro Lazaric?

Ludovic Denoyer?®

Mingde Zhao'® Sainbayar Sukhbaatar®

Yoshua Bengio'->’

'Mila 2Université de Montréal 3McGill University *Amii

SUniversity of Alberta °CIFAR AI Chair ’CIFAR Fellow

A REPRESENTATION OBJECTIVE
AUGMENTATION: ABLATION STUDY

A.1 BOREDOM AUGMENTATION HELPS
EXPLORATION

In order to illustrate the importance of the boredom term B
— in the final objective (6) we conducted the same represen-
tation learning experiments for the three gridworld domains
in the non-uniform prior setting, but this time with the non-
augmented representation learning objective (3’ = 0).

Figure 9 shows how the agent failed at exploring the whole
domain. In T-MAZE, it focuses only on one corridor without
getting curious about the other one. Regarding U-MAZE and
4-ROOMS, the agent stops exploring after discovering the
end of the first corridor and the second room, respectively.
This is due to the lack of incentive to visit the yet unseen
states, as they are less rewarding for 7y,; (i.e., closer in the
representation space, hence smaller RM) than the furthest
explored state. The effect of the proposed augmentation
compresses the representation of the explored area, say the
first corridor in U-MAZE, which makes the rest of the en-
vironment more appealing to explore for 7 (i.e. further in
the representation space, hence larger RM).

(a) U-MAZE (b) T-MAZE (c) 4-ROOMS

Figure 9: Learned representations in the gridworld domains
with the non-augmented objective. Without the boredom
term, the agent fails to cover the state space (cf. Figure 3),
and may settle for incomplete representations. The colors
reflect the distances in terms of the dynamics. They can be
seen as quantities proportional to the length of the shortest
path from the sy (marked in red) to the represented state.

8Meta Al

A.2 BOREDOM AUGMENTATION ENFORCES
DYNAMICS-AWARENESS

To verify the benefit of the boredom term beyond help-
ing exploration, we train the representation with the non-
augmented objective (5’ = 0) but this time in the uniform
prior setting, so that to marginalize the exploration problem.
Figure 10 illustrates the learned representations in the three
gridworld domains. These representations have failed to cap-
ture the dynamics. For example, in the case of 4-ROOMS, the
distances from the first room to the fourth and third rooms
are comparable in the representation space, which indicates
that the representation does not take into account the relative
order in which the rooms should be visited, when moving
from the first room to the last. Similarly, in U-MAZE, the
end of the maze is closer to the initial area than the second
corner is. However, in order to reach the former on must
pass by the latter. This proves that the boredom term is not
only important for the desired exploratory behavior (cf. Fig-
ure 9), but also enhances the dynamics-awareness of our
representation.

B A GREEDY HIGH-LEVEL REWARD
CAN HURT EXPLORATION

Our high-level reward term (4) can be seen as an instance of
assigning credit to skills based on their potential of afford-
ing more exploration. The greedy version of this reward, e.g.
of the form Ry (s}, 0k) = [[¢(s)) — ¢(si, 1) |2, would
encourage each skill (and its direction) to take large steps.
Taking large steps, even if it may seem intuitive, is not a
good choice for exploration since the agent can get trapped
in large oscillations: each skill can travel maximally, back
and forth, e.g. along the diagonal of some initially explored
area around sg. These oscillations would still be very re-
warding to the high-level policy in this greedy reward case
without encouraging further exploration of the environment.
Our high-level reward (4) does not fall in this limitation. Our
reward choice does not force each of the intermediate skills

Accepted for the 38" Conference on Uncertainty in Artificial Intelligence (UAI 2022).

(c) 4-rooms

Figure 10: Learned representations when uniformly sam-
pling over the state space. Without the boredom term, the
representation does not reflect temporally-extended dynam-
ics. The colors reflect the distances in terms of the dynamics.
They can be seen as quantities proportional to the length of
the shortest path from the sy (marked in red) to the repre-
sented state.

(within the sequence of L skills) to be individually “greedy”.
This allows picking skills that might seem sub-optimal, in
the sense that they don’t travel far on their own, but still
afford/offer more promising exploration opportunities later
on. For example, consider the case where the agent is in a
room with a closed door and on the other side of this door
there is a large space to explore. With our reward term, the
skill of opening the door would be rewarded similarly to that
of a skill able to travel far the other side of the door once
this one is open. The high-level policy eventually learns that
opening the door is valuable for exploring further areas in
the environment.

C IMPLEMENTATION DETAILS

C.1 GRIDWORLD

The states are one-hot encoded such that no positional infor-
mation is provided to the agent. The domains dimensions
are: U-MAZE 30 x 30, T-MAZE 40 x 30, 4-ROOMS 21 x 21.

For all the experiments, we defined the representation net-
work as an MLP of two hidden layers of size 128 with
tanh activations and a linear output layer of the size of
representation’s dimensionality d. The high-level and the
low-level policies are both MLPs of two hidden layers of
size 128 with tanh activations and a logsoftmax output layer
of the size of their respective action spaces: the environ-
ment’s 4 actions for the low-level policy and 8 actions
for the high-level policy corresponding to the 8 directions
Q = {(cos(2kn/n),sin(2kn/n)) | k € {0, ..., 7}} that de-

fine diverse skills.

The policies were trained with vanilla A2C with MC returns
from the collected trajectories (Monte-Carlo estimates), i.e.
no bootstrapped values where used. The skills being of a
fixed size they could be trained without any reward discount
(v = 1). The high-level and low-level policies were entropy-
regularized with coefficients 0.3 and 0.1 respectively.

All of these networks were trained with RMSprop [Hinton
et al., 2012] and a step size of 0.001. Environments specific
hyperparameters are provided below.

C.1.1 Representation Learning

U-MAZE. Our representation is learned in the non-
uniform prior setting with p,.=0.3, p,-,=0.4 and K=90
(around the number of steps between sy and the furthest
state in the maze). We learn a 2-dimensional representation
(d = 2) using the representation learning objective (6) with
B = 0.2 and 3’ = 2. We fix the skills length to ¢ = 30 steps
(so L = K/c¢ = 3), and jointly train the representation ¢
and the policies (7, mow) by collecting, for each update, a
batch of N = 32 trajectories of length c to fill Ds and D,
as described in Algorithm 1. We train them for 700 epochs
where each epoch corresponds to 10 updates (convergence
to the complete representation required around 500 epochs).

T-MAZE. Our representation is learned in the non-
uniform prior setting with p,=0.2, p,.,,=0.4 and K=40
(around the number of steps between sy and the furthest
state in the maze). We learn a 2-dimensional representation
(d = 2) using the representation learning objective (6) with
B = 0.2 and 5’ = 2. We fix the skills’ length to ¢ = 20
steps (so L = K/c = 2). and jointly train the representation
¢ and the policies (7, Tow) by collecting, for each update,
abatch of N = 32 trajectories of length c to fill D and D,
as described in Algorithm 1. We train them for 700 epochs
where each epoch corresponds to 10 updates (convergence
to the complete representation required around 350 epochs).

4-ROOMS. Our representation is learned in the non-
uniform prior setting with p,.=0.25, p,,,=0.5 and K=60
(around the number of steps between sg and the furthest
state in the maze). We learn a 2-dimensional representation
(d = 2) using the representation learning objective (6) with
B = 0.2 and 8/ = 2. We fix the skills’ length to ¢ = 20
steps (so L = K/c = 3). and jointly train the representation
¢ and the policies (i, Tow) by collecting, for each update,
abatch of N = 32 trajectories of length c to fill D and D,
as described in Algorithm 1. We train them for 700 epochs
where each epoch corresponds to 10 updates (convergence
to the complete representation required around 350 epochs).

The Laplacian representation L AP-REP was trained in
the same environments’ settings described above, for both

the uniform and non-uniform prior settings (of course no pol-
icy is trained here so p,,, = 1, and (s, p,-) are not relevant
for the uniform prior setting). Besides the representation’s
dimension d, we used the training configuration and hyper-
parameters proposed by Wu et al. [2019]. For the uniform
prior setting, our online data collection does not cause any
discrepancy compared to the offline scheme used in Wu
et al. [2019]. Indeed, for a minibatch size large enough, the
stochastic minibatch based training of LAP-REP when using
a uniform prior is agnostic to the data collection scheme
(offline vs online) since in both cases the minibatches are
sampled from the exact same state distribution.

C.1.2 Prediction and Control

In the prediction and control experiments, we evaluate each
pretrained representation by training an actor-critic agent
to solve a goal-achieving task with a sparse reward (r = 1
upon reaching the goal, and = 0 otherwise). Here are the
set goal positions: (1,30) in U-MAZE, (25, 30) in T-MAZE
and (1,21) in 4-ROOMS. The episode size was set to 100
steps for all the gridworld domains.

For the prediction, the critic head is a linear function in
the given representation, while the actor is an MLP with
two hidden layers of size 64 and tanh activations, a log-
softmax output layer of size 4 (discrete gridworld actions),
and the actor’s input is the state one-hot code. For the con-
trol experiments, the actor-critic agent is defined on top
of the representation as an MLP of two hidden layers of
size 64 with tanh activations that feed two output heads: a
linear critic head, and a logsoftmax action head for the 4
actions. The agent is trained with A2C with MC returns
and a discount of v = 0.98, a batchsize of 80 episodes, an
entropy regularization with a 0.01 coefficient, and Adam
optimizer [Kingma and Ba, 2014] with a learning rate of
0.001.

C.2 MUJOCO: ANTMAZE

The Ant agent has a 29 dimensional state space and a 8 di-
mensional action space (4 legs with 2 joints each to control).
For the sake of simplifying the RL training algorithm, we
mapped each action-dimension interval to a discrete set of 5
values equally spaced over this interval.

We used 2 mazes similar in shape to those from Wu et al.
[2019] (see Figure 11): ANTMAZE-1 defines a 3D U-shaped
corridor and ANTMAZE-2 is a 3D swirl-shaped corridor.

K | | - L " | s |
K _E.] = |
u l.l.:.l.l.l.l A o

(a) ANTMAZE-1

(b) ANTMAZE-2

Figure 11: ANTMAZE domains. Goal positions of the evalu-
ation tasks are shown in green.

We used the same architectures for the representation and
the policies as for the gridworld, with the only difference
that for the low-level policy, the action head was adapted to
the discretization of the action space by having 8 logsoftmax
output heads of size 5, one for each action dimension, and
the corresponding 5 discrete values. This choice makes the
training algorithm simpler as it allows using A2C here as
well.

Our representation is learned in the non-uniform prior set-
ting with p, = 0.2, p,,, = 0.3 and K = 500. We learn a
2-dimensional representation (d = 2) using the representa-
tion learning objective 6 with 8 = 0.2 and 8’ = 5. We fixed
their length to ¢ = 100 steps (so L = K/c = 5). and jointly
train the representation ¢ and the policies (7h;, ow) by col-
lecting, for each update, a batch of N = 32 trajectories of
length c to fill Dy and Dy, ,, as described in Algorithm 1. We
train them for 1000 epochs where each epoch corresponds
to 10 updates (convergence to the complete representation
required around 650 epochs).

The policies were trained with the same A2C used in
gridworld domains and the same RMSprop hyperparam-
eters. The high-level and low-level policies were entropy-
regularized with the coefficients 0.15 and 0.1, respectively.

For the reward shaping and skills evaluation experiments,
the goal positions are shown in Figure 11, and success is
defined as being within e from the goal. Here, ¢ = 2 which
corresponds to half the size of the building blocks of the
mazes.

C.2.1 Reward Shaping

For these experiments, LAP-REP was trained in both the
uniform and the non-uniform prior setting.

For the uniform prior setting, we used d = 2 and followed
the experimental framework of Wu et al. [2019]. Since our
ANTMAZE environments are larger, we collected 500, 000
training samples (10 times more than in Wu et al. [2019])
from a uniformly random policy, then we trained the repre-
sentation on this large dataset. For all other hyperparameters,
we used those provided in Wu et al. [2019]. With d = 20,

our replication of LAP-REP did not succeed in reward shap-
ing.

Regarding the non-uniform prior setting, we used the same
setting configuration as for TATC, with the representation
objective from Wu et al. [2019]. We have tested online (simi-
lar to TATC) and offline [Wu et al., 2019] data collection for
the representation training, and d € {2, 20}. Both schemes
ended up performed the same way for the reward shaping
task.

Now, for the reward shaping, we train a Soft Actor-Critic
(SAC) [Haarnoja et al., 2018] agent to reach a goal area
(neighbourhood around the goal state) with episodes of size
1000 steps. We use the following hyperparameters:

* Discount v = 0.99
* Entropy coefficient (temperature) o = 0.1
* Soft critic updates with smoothing constant 7 = 0.005

* Replay buffer of size 5 - 10° (equal to the number of
training steps).

* Adam optimizer with step size of 0.0001

As SAC is sensitive to the reward scale [Haarnoja
et al., 2018], we grid-searched this hyperparameter in
{1075,1074,--- ,1,2,10,20}, and the best performing
one for our representation was 1 in ANTMAZE-1 and 0.01
in ANTMAZE-2. Regarding LAP-REP, we found that 10
and 0.01 worked the best for these two mazes, respectively.
All these coefficients correspond to the dense reward shap-
ing setting. Their values were doubled for the half-half mix
reward setting, to account for the 0.5 coefficient.

C.2.2 Skills Evaluation

To train DCO, we first collect a dataset to estimate the
second eigenvector and then use the same dataset to train a
policy — the option — using DDPG [Lillicrap et al., 2015].
Each DCO option is tied to its own eigenvector estimate
and its own training set of size 500000 (10 times the size
used in Jinnai et al. [2020]). As suggested by the authors of
DCO [Jinnai et al., 2020], the remaining hyperparameters
to estimate the eigenvectors and train their corresponding
options were taken from Wu et al. [2019]. DIAYN skills
were trained as recommended by Eysenbach et al. [2019].
For fair comparison, we train 8 skills for both DCO and
DIAYN.

For the skills evaluation stage, we freeze the learned low-
level policies and train a high-level policy to use the 8 skills
as the only available actions to reach the goal g on the other
end of the ANTMAZE-1 environment using a sparse reward
ry = 1[||st+1 — g|l2 < €] within a finite horizon of 1000
steps. Note that this tasks is quite challenging given the type
of reward and the length of episode especially in a continu-
ous state space. As our skills offer some flexibility in their

execution (can be started everywhere and run for arbitrary
number of steps), this episode length was decomposed to 5
skills of 200 steps each. The high-level policy was trained
with A2C with MC returns (no discount) a batch size of 8
episodes, and RMSprop optimizer with a learning rate of
0.001.

D THE SWITCHING UTILITY OF THE
BOREDOM TERM

Note that Dy, in Equation (5), may contain trajectories from
skills that are not yet duly trained; for example early in
the training or in a freshly discovered area. Since at that
stage, these skills’ trajectories are close to random walks,
their contribution in the boredom term is similar to the first
attractive term, in Equation (2). This means that a new skill
trajectory initially contributes to the temporal similarity term
(attractive term) in training the representation, thus making
the most out of the sampled skills’ trajectories while these
are still early in their training. The more a skill is trained, the
more structured its trajectories become and the more they
contribute to the intended "boredom" effect (Section 3.4),
that is encouraging exploration and dynamics awareness
(Appendix A).

E CONNECTION TO BEHAVIORAL
MUTUAL INFORMATION

There are numerous methods in the intrinsic control litera-
ture that aim at maximizing the mutual information between
the agent’s behavior and a conditioning variable that en-
codes the available skills.

This type of intrinsic control is achieved by training a skill
conditioned policy, 7, to maximize the mutual information
between the skill code, 2z, and some representation of the
trajectory, 7, obtained from the conditioned policy 7 (+|z).
This objective can be written as:

I(z; f(7)) = H(z) = H(z[f (7)), ©)

where entropy is denoted by H, and f is a function of the
trajectory. It is also common to assume that z is sampled
from a fixed prior [Eysenbach et al., 2019], which simpli-
fies this policy training objective as a minimization of the
conditional entropy term in Equation (7). In practice, the
adopted training loss, can be derived as a lower bound of
this quantity, using an approximate posterior, q:

Ly(m) = —E. »[log q(2|f(1))]. ®

Traditionally, the integrand of this expectation defines the
intrinsic reward of the skill conditioned policy, while the
approximate posterior q is trained to discriminate the correct
z based on the observed behavior 7.

Inspired by the fast inference offered by Successor Features,
Hansen et al. [2020] proposed to use a log-linear discrim-
inator in the successor representation (SR), ¢sg. In other
words, the skill rewards can be written as:

r(s) = dsr(s) W,)

with w playing the role of the skill-identifying variable
(denoted by z in the general case above). Note that in this
case, the function f maps, as it is commonly the case, to the
final state of the trajectory. Now, consider the case where the
trajectory is instead represented by the (normalized) latent
direction of the final transition (s, s”). This reward would

be

(Psr(s') — dsr(s)) "w
Ipsr(s’) = dsr(s)ll2
Let’s recall that the SR' shares the same eigenvectors as
the Laplacian [Stachenfeld et al., 2014, Machado et al.,
2018]. This implies that it can also be approximated with
a temporally-contrastive objective [Wu et al., 2019], and
potentially replaced by our alternative TATC representation
¢. Finally, we can rewrite Equation (10) as

(6(s") — ¢(5)) 'w
[6(s") — &(s)ll2

This reward corresponds to our skills intrinsic reward from
Equation (3), with w = 4.

r(s,s) = (10)

r(s,s') =

an

References

Benjamin Eysenbach, Julian Ibarz, Abhishek Gupta, and
Sergey Levine. Diversity is all you need: Learning skills
without a reward function. /ICLR, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In
ICML, 2018.

Steven Hansen, Will Dabney, Andre Barreto, David Warde-
Farley, Tom Van de Wiele, and Volodymyr Mnih. Fast
task inference with variational intrinsic successor features.
In ICLR, 2020.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky.
Neural networks for machine learning lecture 6d - a sepa-
rate, adaptive learning rate for each connection. 2012.

Yuu Jinnai, Jee Won Park, Marlos C. Machado, and George
Konidaris. Exploration in reinforcement learning with
deep covering options. In /CLR, 2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv:1412.6980, 2014.

'The SR is encoded by the matrix (I —~T)™*, with T the
MDP’s transition matrix.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforce-
ment learning. arXiv:1509.02971, 2015.

Marlos C. Machado, Clemens Rosenbaum, Xiaoxiao Guo,
Miao Liu, Gerald Tesauro, and Murray Campbell.
Eigenoption discovery through the deep successor repre-
sentation. /CLR, 2018.

Kimberly L Stachenfeld, Matthew Botvinick, and Samuel J
Gershman. Design principles of the hippocampal cogni-
tive map. In NeurlIPS, 2014.

Yifan Wu, George Tucker, and Ofir Nachum. The Laplacian
in RL: Learning representations with efficient approxima-
tions. In /CLR, 2019.

	Representation Objective Augmentation: Ablation Study
	Boredom augmentation helps exploration
	Boredom augmentation enforces dynamics-awareness

	A greedy high-level reward can hurt exploration
	Implementation details
	GridWorld
	Representation Learning
	Prediction and Control

	MuJoCo: AntMaze
	Reward Shaping
	Skills Evaluation

	The switching utility of the boredom term
	Connection to Behavioral Mutual Information

