
Implicit Kernel Meta-Learning Using Kernel Integral Forms (Supplementary
Material)

John Isak Texas Falk1, 2 Carlo Ciliberto1 Massimiliano Pontil1, 2

1Dept. of Computer Science, University College London, U.K.
2CSML, Italian Institute of Technology, Genoa, Italy

The supplementary material is organized as follows. In Sec. 1 we introduce a glossary of terms used in the main body. In
Sec. 2 we derive the closed form of the stochastic kernel of the affine pushforward kernel. In Sec. 3 we derive the detailed
bounds presented in Theorem 1. In Sec. 4 we elaborate on the creation of the Air Quality (4.1) and the Gas Sensor (4.2)
datasets. In Sec. 5 we include the information on the numerical experiment presented in the main body. Finally, in Sec. 6 we
comment on the computational complexity of IKML and compare it against that of R2D2 since they both rely on KRR as
the inner algorithm.

Accepted for the 38th Conference on Uncertainty in Artificial Intelligence (UAI 2022).

mailto:<ucabitf@ucl.ac.uk>?Subject=IKML (UAI)

1 GLOSSARY

Notation Description

X input space
Y output space
Z data space / latent space

P(Z) set of distributions with support on Z
ℓ inner loss

Rµ(f) risk of estimator f with respect to distribution µ
R̂(f,D) empirical risk of f on dataset D
Dtr train set
Dval validation set

A(θ,D) inner algorithm with hyperparameter θ evaluated on dataset D
L(θ,D) meta-loss of θ on D = Dtr ∪Dval

K kernel
H,HK Hilbert space with corresponding kernel K

⟨·, ·⟩K , ⟨·, ·⟩HK
RKHS inner product of RKHS HK

Kτ Bochner kernel with measure τ
ω frequency in random feature kernel
ψθ pushforward function parameterized by θ
N latent distribution
τθ pushforward ψθ#N
Kτθ bochner kernel using using pushforward τθ
Kτ̂θS random feature kernel using sample S ∼ τMθ

AKRR(K,D) estimator of KRR on dataset D using kernel K
L(θ, S,D) meta-loss when using inner algorithm AKRR(Kτ̂θS , ·) on the dataset D = Dtr ∪Dval

L̃(θ, S,D) train error on D when using KRR with random feature kernel Kτ̂θS

ρ meta-distribution
E(θ) transfer risk of hyperparameter θ

EM (θ)/E(θ, S) transfer risk of θ when using an M -sample random feature kernel Kτ̂θS and KRR averaged over S
Ê(θ, S) estimation error for future task
ÊT (θ, S) average train error (multitask empirical risk) on (Dt)

T
t=1 when using KRR with random feature kernel Kτ̂θS

θ̂ multitask empirical risk minimizer when using bochner kernel
n,M, T dataset size, number of random features, number of datasets

λ regularization strength in KRR
Rn,M,T Rademacher complexity Eϵ supθ∈Θ ϵi,j,t⟨ψθ(sj), x

t
i⟩

G∗
n complexity term Eµ∼ρED∼µn∥(Kτθ∗ (xi, xj))

n
i,j=1∥∞ measuring alignment of kernel Kτθ∗ with ρ

2 KERNEL FOR AFFINE PUSHFORWARD AND GAUSSIAN LATENT

In this section we give the closed form of the kernel when the distribution τ is the affine pushforward of a standard Gaussian.

We use the following trick to find the closed form kernel. We can rewrite the kernel in Bochner’s theorem as

K(x, x′) =

∫
cos(⟨ω, x− x′⟩)dτ(ω) =

∫
ℜ(cos(⟨ω, x− x′⟩) + i sin(⟨ω, x− x′⟩))dτ(ω) (1)

=

∫
ℜ exp(i⟨ω, x− x′⟩)dτ(ω) (2)

= ℜ
∫

exp(i⟨ω, x− x′⟩)dτ(ω) (3)

so finding the kernel is the same as finding the real part of the characteristic function (CF) of τ . For a Gaussian the CF is
well-known and we give it below.

Lemma 1. Let ω ∼ τ = N (µ,Σ) where Σ is pd, then for any ∆ ∈ Rd∫
Rd

exp(iω⊤∆)dτ(ω) = exp(iµ⊤∆− 1

2
∆⊤Σ∆). (4)

Proof. The pdf of ω is f(ω) = (2π)−d/2|det(Σ)|−1/2 exp(− 1
2 (ω − µ)Σ−1(ω − µ)). We make the change of variable

ϕ = Σ−1/2(ω−µ) so ω = Σ1/2ϕ+µ where Σ1/2 and Σ−1/2 exist due to Σ being pd. This means that dω = |det(Σ)|1/2dϕ
so that we have∫

Rd

exp(iω⊤∆)dτ(ω) =

∫
Rd

exp(iω⊤∆)f(ω)dω

= (2π)−d/2

∫
Rd

exp(i(Σ1/2ϕ+ µ)⊤∆) exp(−1

2
ϕ⊤ϕ)dϕ

= (2π)−d/2 exp(iµ⊤∆)

∫
Rd

exp(iϕ⊤Σ1/2∆) exp(−1

2
ϕ⊤ϕ)dϕ

= (2π)−d/2(2π)d/2 exp(iµ⊤∆− 1

2
∆⊤Σ∆) = exp(iµ⊤∆− 1

2
∆⊤Σ∆).

Now we parameterize τ using S ∼ N and θ = (Q, b) with Q ∈ Rd×d and b ∈ Rd so that τ = ψ(Q,b)#N . An
affine transformation of a Gaussian random variable is again Gaussian, and in this particular case it’s easy to show that
τ ∼ N (b,QQ⊤). Combining (3) and Lemma 1 we have

K(x, x′) = ℜ
∫

exp(i⟨ω, x− x′⟩)dτ(ω) (5)

= ℜ exp(ib⊤(x− x′)− 1

2
(x− x′)⊤QQ⊤(x− x′)) (6)

= cos(b⊤(x− x′)) exp(−1

2
(x− x′)⊤QQ⊤(x− x′)) (7)

= cos(b⊤(x− x′)) exp(−1

2
∥Q⊤(x− x′)∥2). (8)

3 ERROR DECOMPOSITION

3.1 SETUP

We follow the notation of [Maurer, 2009] with some modifications and note that this differs at places from the notation
used in the main body of the paper. We recall the meta-learning setting. There is some meta-distribution ρ which generates
tasks µ, from µ we are given a train set z = (x,y) ∼ µn, where (x, y) ∈ X × Y ⊆ Rd × [0, 1]. Given the kernel ridge
regression (KRR) algorithm with a fixed regularization parameter λ > 0 and an RKHS and corresponding kernel indexed
by θ ∈ Θ, where Θ ⊆ RD is compact. We write this family as HΘ and the family of kernels as KΘ. For a kernel Kθ let
ϕθ(x) = Kθ(x, ·) be the canonical feature map and Hθ the corresponding RKHS. The KRR solution is

ωθ(z) = argmin
w∈Hθ

(
1

n

n∑
i=1

(⟨w, ϕθ(xi)⟩θ − yi)
2 + λ∥w∥2θ

)
, (9)

where we use ⟨·, ·⟩θ and ∥·∥θ to denote the inner product and norm in RKHS Hθ. We will drop θ when it’s clear what RKHS
we are referring to. Given a weight vector w ∈ Hθ, a prediction on a new datapoint x is given by ⟨w, ϕθ(x)⟩.

The transfer risk of the algorithm ωθ and a loss ℓ : Y × Y → R+ is defined to be

E(θ) = Eµ∼ρEz∼µnE(x,y)∼µℓ(⟨ωθ(z), ϕθ(x)⟩, y). (10)

We have access to T datasets from tasks by sampling (µt)
T
t=1 ∼ ρT which gives rise to datasets zt = (xt,yt) ∼ µn

t . For
the meta-dataset Z = (zt)Tt=1 sampled by first sampling (µt)

T
t=1 ∼ ρT and then zt ∼ µn, we denote this sampling process

by Z ∼ ρ̂T . Using the KRR algorithm ωθ we let

ℓ̂θ(z
t) =

1

n

n∑
i=1

ℓ(⟨ωθ(z
t), ϕθ(x

t
i)⟩, yti), (11)

which is the training error of task t using ωθ. For a sample of latent variables S = (sk)
M
k=1 ∼ NM so that the random

features ψθ(sk) ∼ τθ (that is τθ = ψθ#N), in which case we define Kθ = Kτθ and Kθ,S = Kτ̂θS , we let

ℓ̂θ(z
t, S) =

1

n

n∑
i=1

ℓ(⟨ωθ,S(z
t), ϕθ,S(x

t
i)⟩, yti), (12)

where ωθ,S is the same as (9) where we replace the kernel Kθ by the random feature kernel Kθ,S and the corresponding
RKHS, see Sec. 3.2. When the algorithm ω is clear from context we simply write ℓ̂(z) and ℓ̂(z, S). We opt to select θ using
ERM, letting

θ̂ = argmin
θ∈Θ

{
ÊT (θ) =

1

T

T∑
t=1

ℓ̂θ(z
t)

}
. (13)

As the problem of (13) is non-convex we cannot solve it in general. We let θ̃ be the output of an optimization procedure
θ̃ = Alg(ÊT) and encode this optimization discrepancy through the term ÊT (θ̃)− ÊT (θ̂).

3.2 KERNEL FAMILY

Let H be an RKHS defined by Bochner’s theorem through the kernel defined by any probability measure τ ∈M1(X),

K(x, x′) =

∫
ξ(x; v)ξ(x′; v)dτ(v). (14)

We will assume that ξ(x; v) = exp(iv⊤x), but the analysis should generalize to the more general setting. For a real-valued
kernel K : X × X → R, it can be shown that any such kernel satisfying (14) can be rewritten as

K(x, x′) =

∫
(−π/2,π/2]d

cos(⟨v, x− x′⟩)dτ ′(v), (15)

for some measure τ ′ with support on (−π/2, π]d. For IKML we parameterise a class of measures by ψθ#N where ψθ is an
MLP with weights θ and we denote the kernel and RKHS by Kθ and Hθ.

Given a dataset of inputs x = (xi)
n
i=1, denote the kernel matrix Gθ(x) so that Gθ(x)ij = Kθ(xi, xj) and let Gθ,λ(x) =

Gθ(x) + nλI . Similarly for a set of latents S ∼ NM we denote the respective matrices Gθ(x, S) and Gθ,λ(x, S) were we
replace every instance of

Kθ(x, x
′) =

∫
cos(⟨ψθ(s), x− x′⟩)dN (s) (16)

by the empirical mean

Kθ,S(x, x
′) =

1

M

M∑
j=1

cos(⟨ψθ(sj), x− x′⟩) = ϕθ,S(x)
⊤ϕθ,S(x

′), (17)

where ϕθ,S(x) = 1√
M
(sin(ψθ(s1)

⊤x), cos(ψθ(s1)
⊤x), . . . , sin(ψθ(sM)⊤x), cos(ψθ(sM)⊤x))⊤ ∈ R2M . We will omit θ

and x from Gθ(x) when clear from context. Similarly we let ℓ̂θ(x,y, S) be the train loss when trained on x,y with random
features induced by S and we omit θ when clear from context.

3.3 AUXILIARY RESULTS

Let ∥·∥∞ be the operator norm and ∥·∥F the Frobenius norm. For an algorithm ω and a dataset z, let ℓ̂(z) be the training
error of ω on z using loss ℓ.

Definition 1. Given any z = (x,y) or two input sets x1,x2 of size n, where x ∈ X and y ∈ [0, 1], relative to a fixed loss
function ℓ, an algorithm ω taking outputs in an RKHS H is said to be

• β-bounded if ∥ω(z)∥ ≤ β and ℓ̂(z) ≤ β.

• have kernel stability L if

ℓ̂(x1,y)− ℓ̂(x2,y) ≤
L

n
∥G(x1)−G(x2)∥F (18)

• have random feature stability L if

ℓ̂(x,y, S)− ℓ̂(x,y) ≤ L

n
∥G(x, S)−G(x)∥F . (19)

Lemma 2 ([Maurer, 2009], Lemma 3). Let G1 and G2 be positive semidefinite operators on any Hilbert space and λ > 0,
then

1. Gi + λI is invertible,

2. ∥(Gi + λI)−1∥∞ ≤ 1
λ and

3. we have

∥(G1 + λI)−1 − (G2 + λ)−1∥∞ ≤ 1

λ2
∥G1 −G2∥∞. (20)

4. Let ϕ1, ϕ2 satisfy (Gi + λI)ϕi = y. Then

|∥ϕ1∥2 − ∥ϕ2∥2| ≤ 2λ−3∥G1 −G2∥∞∥y∥2 (21)

For any dataset z = (x,y) of size n, kernel K with RKHS H and feature map ϕ, and corresponding KRR algorithm ω, we
define the following quantities, following [Maurer, 2009],

ω(z) = argmin
w∈H

(
1

n

n∑
i=1

(⟨w, ϕ(xi)⟩ − yi)
2 + λ∥w∥2

)
, (22)

ℓ̂ω(z) =
1

n

n∑
i=1

(⟨ω(z), ϕ(xi)⟩ − yi)
2, (23)

ξω(z) = min
w∈H

(
1

n

n∑
i=1

(⟨w, ϕ(xi)⟩ − yi)
2 + λ∥w∥2

)
= ℓ̂ω(z) + λ∥ω(z)∥2 (24)

Proposition 3. For any kernel K of the form (15), for any dataset z = (x,y) or two input sets x1,x2, where x ∈ X , y ∈
[0, 1], of size n and a sample of random features S ∼ NM we have that

1. ℓ̂ω(z) ≤ 1, ∥ω(z)∥ ≤ λ−1/2, ξω(z) ≤ 1,

2. |ℓ̂ω(x1,y)− ℓ̂ω(x2,y)| ≤ 2λ−1

n ∥G(x1)−G(x2)∥F ,

3. |ℓ̂ω(x,y)− ℓ̂ω,S(x,y)| ≤ 2λ−1

n ∥G(x)−G(x, S)∥F ,

4. |ξω(x1,y)− ξω(x2,y)| ≤ λ−1

n ∥G(x1)−G(x2)∥F ,

5. |ξω(x,y)− ξω,S(x,y)| ≤ λ−1

n ∥G(x)−G(x, S)∥F

where G(x, S) is the kernel matrix of x using random features induced by S.

Proof. We simply note that

ℓ̂ω(z) + λ∥ω(z)∥2 = ξω(z) = min
w∈H

(
1

n

n∑
i=1

(⟨w, ϕ(xi)⟩ − yi)
2 + λ∥w∥2

)
≤ 1

n

n∑
i=1

(⟨0, ϕ(xi)⟩ − yi)
2 + λ∥0∥2 ≤ 1.

Since both ℓ̂ω(z) and λ∥ω(z)∥2 are positive and the sum is less than 1, we have that ℓ̂ω(z) ≤ 1 and λ∥ω(z)∥2 ≤ 1 which
implies that ∥ω(z)∥ ≤ λ−1/2.

For the second point, using the dual formulation Gλ(x)α = y and ⟨ω(z), ϕ(xi)⟩ = (G(x)α)i,

ℓ̂ω(z) =
1

n
∥G(x)α− y∥2 =

1

n
∥Gλ(x)α− y − λnα∥2 =

1

n
∥λnα∥2 = λ2n∥α∥2. (25)

Using this and the fact that ∥ω(z)∥2 = α⊤G(x)α in ξω ,

ξω(z) = ℓ̂ω(z) + λ∥ω(z)∥2 (26)

= λ2n∥α∥2 + λα⊤G(x)α (27)

= λ(λnα⊤α+ α⊤G(x)α) = λ(α⊤Gλ(x)α) = λ(y⊤Gλ(x)
−1y). (28)

Thus

|ℓ̂ω(x1,y)− ℓ̂ω(x2,y)| = λ2n|∥Gλ(x1)
−1y∥2 − ∥Gλ(x2)

−1y∥2| (29)

≤ (λ2n)2(λn)−3∥G(x1)−G(x2)∥∞∥y∥2 (30)

≤ 2λ−1n−2∥G(x1)−G(x2)∥∞∥y∥2 ≤ 2λ−1

n
∥G(x1)−G(x2)∥F , (31)

where we have used point 4 in Lemma 2 and the fact that ∥y∥2 =
∑n

i=1 y
2
i ≤ n as yi ∈ [0, 1] for any i ∈ [n]. Then

|ξω(x1,y)− ξω(x2,y)| ≤ λ|y⊤Gλ(x1)
−1y − y⊤Gλ(x2)

−1y| (32)

≤ λ|y⊤(Gλ(x1)
−1 −Gλ(x2)

−1)y| (33)

≤ λ(λn)−2∥G(x1)−G(x2)∥∞∥y∥2 (34)

≤ λn(λn)−2∥G(x1)−G(x2)∥F (35)

≤ λ−1

n
∥G(x1)−G(x2)∥F . (36)

For the third point and fifth point, the proof is the same as above, replacing Gλ(x1) and Gλ(x2) with Gλ(x) and Gλ(x, S)
respectively. Thus all of the results follows.

Definition 2 (Complexities). Let (σi)ki=1 denote a sequence of independent Rademacher variables (Uniform distribution on
{−1, 1}) independent of each other. For a set A ⊆ Rk, the Rademacher and Gaussian complexities are defined to be

R(A) = Eσ sup
x∈A

2

k

k∑
i=1

σixi. (37)

If F is a class of real functions on a space X and x ∈ X k, we write

F(x) = {(f(x1), . . . , f(xk)) : f ∈ F} ⊆ Rk. (38)

The empirical Rademacher complexities of F on x is R(F(x)). If µ ∈ M1(X) is a probability measure on X then the
corresponding expected complexity is Ex∼µkR(F(x)).

Theorem 4 ([Maurer, 2009], Thm. 4). Let F be a real-valued function class on a space X and µ ∈ M1(X). For
x = (x1, . . . , xk) ∈ X k define

Φ(x) = sup
f∈F

(
Ex∼µf(x)−

1

k

k∑
i=1

f(xi)

)
. (39)

Then

1. Ex∼µkΦ(x) ≤ Ex∼µkR(F(x)),

2. if F is [0, 1]-valued, then for any δ > 0 we have with probability greater than 1− δ in x ∼ µk that

Φ(x) ≤ Ex∼µkR(F(x)) +

√
log(1/δ)

2k
. (40)

Corollary 5 ([Maurer, 2009], Corollary 1). Let A ⊆ Rk and ϕ1, . . . , ϕk be real functions, each with Lipschitz constant L.
Denote ϕ ◦A = {(ϕ1(x1), . . . , ϕk(xk)) : (x1, . . . , xk) ∈ A}. Then R(ϕ ◦A) ≤ LR(A).

3.4 DECOMPOSITION

We want to control the excess meta-risk ES∼NM [E(θ̂, S)−E(θ∗)], where θ∗ = argminθ∈Θ E(θ). We introduce the following
terms

Ê(θ) = EZ∼ρT ÊT (θ) (41)

and the corresponding term Ê(θ, S) where we replace the kernel Kθ by Kθ,S . We decompose the excess meta-risk as follows

ES∼NM [E(θ̂, S)− E(θ∗)] = ES∼NM [E(θ̂, S)− Ê(θ̂, S)︸ ︷︷ ︸
(A)

+ Ê(θ̂, S)− ÊT (θ̂, S)︸ ︷︷ ︸
(B)

+(ÊT (θ̂, S)− ÊT (θ∗, S)︸ ︷︷ ︸
(C)

(42)

+ ÊT (θ∗, S)− Ê(θ∗, S)︸ ︷︷ ︸
(D)

+ Ê(θ∗, S)− E(θ∗, S)︸ ︷︷ ︸
(E)

+ E(θ∗, S)− E(θ∗)︸ ︷︷ ︸
(F)

] (43)

We bound each of the terms.

3.5 BOUNDING THE ESTIMATION ERROR FOR THE FUTURE TASK

This follows [Maurer, 2009, Sec. 4.1], but we present the results in the order that they are needed. This argument bounds
both (A) and (E).

Theorem 6 (Upper bound of estimation error for future task). For any θ ∈ Θ, any loss ℓ such that for all y ∈ [0, 1]
ℓ(·, y) : [−L,L] → R+ has Lipschitz constant Lip(L), with ω being KRR with regularization parameter λ > 0 and RKHS
induced by Kθ

ES∼NM [E(θ, S)− Ê(θ, S)] ≤ Lip(λ−1/2)ES∼NMEz∼ρ̂R(G(z)), (44)

where G = {z = (x, y) 7→ λ−1/2⟨v, ϕθ,S(x)⟩θ,S : ∥v∥θ,S ≤ 1}. Furthermore, we also have the upper bound

ES∼NM [E(θ, S)− Ê(θ, S)] ≤ 2λ−1/2Lip(λ−1/2)√
n

. (45)

Proof. We may rewrite term ES∼NM [E(θ, S)− Ê(θ, S)] as

ES∼NKEµ∼ρE(x,y)∼µn

(
E(x,y)∼µℓ(⟨ωθ,S(x,y), ϕθ,S(x)⟩, y)− ℓ̂θ(x,y, S)

)
. (46)

This is bounded in [Maurer, 2009, Thm. 6], and we follow similarly. For a fixed θ ∈ Θ and any sample S, let W = {w :
∥w∥θ,S ≤ λ−1/2}. By proposition 3, we have that for any dataset z of size n generated according to our assumptions, for

any θ ∈ Θ, ∥ωθ,S(z)∥θ,S ≤ λ−1/2. Thus, for any µ ∈M1(X × [0, 1]),

E(x,y)∼µn

(
E(x,y)∼µℓ(⟨ωθ,S(x,y), ϕθ,S(x)⟩, y)− ℓ̂θ(x,y, S)

)
(47)

≤ E(x,y)∼µn sup
w∈W

(
E(x,y)∼µℓ(⟨w, ϕθ,S(x)⟩, y)−

1

n

n∑
i=1

ℓ(⟨w, ϕθ,S(xi)⟩, yi)

)
(48)

= E(x,y)∼µn sup
∥w∥θ,S≤λ−1/2

(
E(x,y)∼µℓ(⟨w, ϕθ,S(x)⟩, y)−

1

n

n∑
i=1

ℓ(⟨w, ϕθ,S(xi)⟩, yi)

)
(49)

= E(x,y)∼µn sup
v : ∥v∥θ,S≤1

(
E(x,y)∼µℓ(λ

−1/2⟨v, ϕθ,S(x)⟩, y)−
1

n

n∑
i=1

ℓ(λ−1/2⟨v, ϕθ,S(xi)⟩, yi)

)
(50)

= E(x,y)∼µn sup
f∈F

(
E(x,y)∼µf(z)−

1

n

n∑
i=1

f(zi)

)
(51)

where we have the family of functions F = {z = (x, y) 7→ ℓ(λ−1/2⟨v, ϕθ,S(x)⟩, y) : ∥v∥θ,S ≤ 1}. By Thm. 4 we can
upper bound this by the Rademacher complexity, getting the upper bound

E(x,y)∼µn sup
f∈F

(
E(x,y)∼µf(z)−

1

n

n∑
i=1

f(zi)

)
≤ Ez∼µnR(F(z)) (52)

Furthermore, by assumption y ∈ [0, 1] and ℓ(·, y) has a Lipschitz constant upper bounded by Lip(L) when we consider
dom(ℓ(·, y)) = [−L,L]. By Cauchy-Schwartz and ∥v∥θ,S ≤ 1, we have that λ−1/2⟨v, ϕθ,S(x)⟩θ,S ∈ [−λ−1/2, λ1/2] and
so L = λ−1/2. Letting ϕi : t 7→ ℓ(t, yi) with domain [−λ−1/2, λ−1/2] then the Lipschitz constant is Lip(λ−1/2). We let
G = {z = (x, y) 7→ λ−1/2⟨v, ϕθ,S(x)⟩θ,S : ∥v∥θ,S ≤ 1}.

Since F = ϕ ◦ G we have by Cor. 5 that

E(x,y)∼µn

(
E(x,y)∼µℓ(⟨ωθ,S(x,y), ϕθ,S(x)⟩, y)− ℓ̂ωθ,S

(x,y)
)
≤ Ez∼µnR(ϕ ◦ G(z)) (53)

≤ Lip(λ−1/2)Ez∼µnR(G(z)). (54)

We can further bound Ez∼µnR(G(z)) using a standard RKHS rademacher complexity argument.

By standard arguments of Rademacher complexity of kernels such that K(x, x) = 1 we have the bound

Ez∼µnR(G(z)) ≤ 2λ−1/2

√
n

(55)

Substituting the upper bounds Lip(λ−1/2)Ez∼µnR(G(z)) or 2λ−1/2Lip(λ−1/2)√
n

of (47) and combining everything we have

ES∼Nk [E(θ̂, S)− Ê(θ̂, S)] ≤ Lip(λ−1/2)ES∼NMEz∼ρ̂R(G(z)) (56)

ES∼Nk [E(θ̂, S)− Ê(θ̂, S)] ≤ 2λ−1/2Lip(λ−1/2)√
n

(57)

We note the following about the bound above. The bound Ez∼ρ̂R(G(z)) ≤ 2λ−1/2
√
n

is standard and applies to all kernels

such that K(x, x) = 1. However, in the benign case that ES∼NMR(G(z)) ≪ 2λ−1/2Lip(λ−1/2)√
n

, using IKML would lead to
a term much smaller than fixing a kernel and learning the tasks independently.

3.6 PREDICTING THE EMPIRICAL ERROR FOR THE FUTURE TASK

In this section we focus on the terms (B), (D), each of the form ES∼NM ÊT (θ, S)− Ê(θ, S) where θ ∈ Θ. To control this
term we use [Maurer, 2016, Sec. 4.2]. We want to control the term ÊT (θ, S)− Ê(θ, S) using a uniform bound of the form

ÊT (θ, S)− Ê(θ, S) ≤ sup
θ∈Θ

{
ÊT (θ, S)− Ê(θ, S) = 1

T

T∑
t=1

ℓ̂θ(z
t, S)− Ez∼ρ̂ℓ̂θ(z

t, S)

}
, (58)

where zt = (xt,yt) ∼ µn
t and we let Z = (zt)Tt=1 ∼ ρ̂T . This enables us to control both (B) involving the ERM parameter

θ̂ and (D) involving θ∗. We switch the order of the terms to get the standard form supf∈F Ef(x) − 1
n

∑n
i=1 f(xi). We

define the loss class F = {f : Zn → R≥0, f(z) = ℓ̂θ(z, S), ∀θ ∈ Θ} and note that it implicitly depends on the random
feature sample S.

Theorem 7. For any θ ∈ Θ, squared error ℓ(y, ŷ) = (y − ŷ)2 such that for all y ∈ [0, 1], ℓ(·, y) : [−L,L] → R+

has Lipschitz constant Lip(L), with ω being KRR with regularization parameter λ > 0 and RKHS induced by Kθ, with
probability greater than 1− δ over the choice of meta-train set Z ∈ (Zn)T we have

ES∼NM [ÊT (θ, S)− Ê(θ, S)] ≤ ES∼NMEZ∼ρ̂TR(F(Z)) +

√
log(1/δ)

2T
. (59)

Proof. Relating our setting to [Maurer, 2016], for some S we let the loss function class be

F = {f : Zn → R≥0, f(z) = ℓ̂θ(z, S), ∀θ ∈ Θ}, (60)

and for Z ∈ (Zn)T , we denote Φ(Z) = supf∈F EZ∼ρ̂T f(Z)− 1
T

∑T
t=1 f(Zt). By 2. of Thm. 4, since ℓ̂θ(z, S) ∈ [0, 1],

for any δ > 0 we have with probability greater than 1− δ over Z ∼ ρ̂T that

Φ(Z) ≤ EZ∼ρ̂TR(F(Z)) +

√
log(1/δ)

2T
, (61)

so we focus on controlling the Rademacher complexity EZ∼ρ̂TR(F(Z)). Following [Maurer, 2016, Sec. 3.3], note that
our notation differs, the translation is as follows ([Maurer, 2016, Sec. 3. 3] → this work) H → {ψθ,S(·), ∀θ ∈ Θ},
ψt(·) → ℓ̂(·),S(z

t), Et∼ρ[ψt(h)] → Ê(θ), 2
nR(H, x̄) → R(F(Z)), ϕt(h) → Φθ,S , we will specify Φθ,S below. To apply

[Maurer, 2016, Thm. 2] we need find a "Lipschitz" constant L such that

ℓ̂θ,S(z
t)− ℓ̂θ′,S(z

t) ≤ L√
n
∥Φθ,S − Φθ′,S∥F , (62)

where (Φθ,S):,j = ϕθ,S(xj) and Φθ,S ∈ R2M×n, e.g. Φθ,S is the feature matrix of the kernel Gθ(x, S) so that Gθ(x, S) =
Φ⊤

θ,SΦθ,S . We proceed as follows; assume that for loss ℓ(·, ·) we have kernel stability

ℓ̂θ,S(z)− ℓ̂θ′,S(z) ≤
Lℓ

n
∥Gθ(x, S)−Gθ′(x, S)∥F , (63)

this holds true for the least squares loss with Lℓ = 2λ−1 following similarly from the proof of proposition 3. Since
Φ⊤

θ,SΦθ,S = Gθ(x, S) for θ and similarly for θ′ we can write

∥Gθ(x, S)−Gθ′(x, S)∥F = ∥Φ⊤
θ,SΦθ,S − Φ⊤

θ′,SΦθ′,S∥F (64)

and letting Mmax = max(∥Φθ,S∥F , ∥Φθ′,S∥F), using the matrix identity A⊤A−B⊤B = A⊤(A−B) + (A−B)⊤B, we
can upper bound it

∥Φ⊤
θ,SΦθ,S − Φ⊤

θ′,SΦθ′,S∥F ≤ ∥Φθ,S∥F ∥Φθ,S − Φθ′,S∥F + ∥Φθ′,S∥F ∥Φθ′,S − Φθ,S∥F ≤ 2Mmax∥Φθ′,S − Φθ,S∥F .
(65)

Now

∥Φθ,S∥2F =
1

M

M∑
k=1

n∑
j=1

(sin(ψθ(sk)
⊤xj)

2 + cos(ψθ(sk)
⊤xj)

2) =
1

M

M∑
k=1

n∑
j=1

1 = n, (66)

which means that Mmax =
√
n and thus we have the sought Lipschitz property

ℓ̂θ,S(z
t)− ℓ̂θ′,S(z

t) ≤ Lℓ√
n
∥Φθ′,S − Φθ,S∥F . (67)

From this we have that

R(F(Z)) ≤ 2Lℓ

T
√
nM

Eϵ sup
θ∈Θ

T,M,n∑
t,k,i

ϵtki(sin(ψθ(sk)
⊤xti) + cos(ψθ(sk)

⊤xti))

 . (68)

3.7 RANDOM FEATURE ERROR

In this section we show how to control the term (F) in the bound, the term

ES∼NM [E(θ∗, S)− E(θ∗)]. (69)

Remember that for a dataset x ∈ Xn, random features S and θ ∈ Θ, we let g(x) = (Kθ(xi, x))
n
i=1 and similarly

g(x, S) = (Kθ,S(xi, x))
n
i=1.

We first need some additional results

Theorem 8 ([Tropp, 2019], Theorem 2.1). Let A be a self-adjoint matrix of size n. Given a iid samples (Rk)
M
k=1 of

self-adjoint matrices such that ER1 = A and ∥R1∥∞ ≤ B. Let m2(R1) = ∥ER2
1∥∞ and R̄M = 1

M

∑M
k=1RM , then

E∥R̄M −A∥ ≤
√

2m2(R1) log(2n)

M
+

2B log(2n)

3M
. (70)

Lemma 9. For any x ∈ Xn, any θ ∈ Θ, ES∼NM ∥g(x)− g(x, S)∥2 ≤ 2n1/2M−1/2

Proof. We have that

ES∼NM ∥g(x)− g(x, S)∥2 ≤
√

ES∼NM ∥g(x)− g(x, S)∥22 =

√√√√ n∑
i=1

ES∼NM (g(x)i −
1

M

M∑
k=1

g(x, sk)i)2. (71)

Define Ti,k = Kθ(x, xi)−Kθ,sk(x, xi), then E(Ti,k) = 0, for any i ∈ [n], (Ti,k)Mk=1 is an iid sample of random variables
and finally |Ti,k| ≤ |Kθ(x, xi)|+ |Kθ,sk(x, xi)| ≤ 2. We can then express

n∑
i=1

ES∼NM (g(x)i −
1

M

M∑
k=1

g(x, sk)i)
2 =

n∑
i=1

ES∼NM

(
1

M

M∑
k=1

Ti,k

)2

=M−2
n∑

i=1

ES∼NM

(
M∑
k=1

Ti,k

)2

. (72)

For arbitrary i ∈ [n], we see that

ES∼NM

(
M∑
k=1

Ti,k

)2

≤
M∑
k=1

Esk∼NT
2
i,k + 2

∑
k<l

Esk,sl∼NTi,kTi,l (73)

=

M∑
k=1

Esk∼NT
2
i,k + 2

∑
k<l

Esk∼NTi,kEsl∼NTi,l =

M∑
k=1

Esk∼NT
2
i,k, (74)

where we used the fact that Ti,k is zero-mean and for fixed i ∈ [n], Ti,k, Ti,l are independent. Since |Ti,k| ≤ 2 we see that
|Ti,k|2 ≤ 4, hence

ES∼NM

(
M∑
k=1

Ti,k

)2

≤ 4M. (75)

Thus we see that

ES∼NM ∥g(x)− g(x, S)∥2 ≤
√
ES∼NM ∥g(x)− g(x, S)∥22 ≤ 2n1/2M−1/2. (76)

Following [Tropp, 2019, Section 2.2] we have the following result

Lemma 10. For any x ∈ Xn, any θ ∈ Θ, ES∼NM ∥G(x)−G(x, S)∥∞ ≤
√

4∥G(x)∥∞n log(2n)
M + 2n log(2n)

4M

Proof. Note that due to the identity cos(x−y) = sin(x) sin(y)+cos(x) cos(y) we haveKθ(x, y) = Es∼N cos(⟨x, ψθ(s)⟩−
⟨y, ψθ(s)⟩) = Es∼Nϕθ,s(x)

⊤ϕθ,s(y). For the sample x = (xi)
n
i=1 let Zk,i,: = ϕθ,sk(xi) be the matrix of features

corresponding to sample sk, and let Zl
k be the l’th column of Zk. Thus we have that EZkZ

⊤
k = G(x) and G(x, S) =

1
M

∑M
k=1 ZkZ

⊤
k .

To put this in the notation of Thm. 8 we let R̄M = G(x, S) and A = G(x). To invoke Thm. 8 need to upper bound the
quantities ∥ZkZk∥∞ and m2(ZkZ

⊤
k). For the first term

∥ZkZ
⊤
k ∥∞ ≤ ∥Zk∥∞∥Zk∥∞ ≤ ∥Zk∥2F =

n∑
i=1

cos(⟨xi, ψθ(sk)⟩)2 + sin(⟨xi, ψθ(sk)⟩)2 = n. (77)

For the second term, consider E(ZkZ
⊤
k)2. We can rewrite this in the form EZkCZ

⊤
k where C = Z⊤

k Zk hence symmetric
and psd. We can write this as a sum

ZkCZ
⊤
k = C11Z

1
k(Z

1
k)

⊤ + C22Z
2
k(Z

2
k)

⊤ + C12(Z
1
k(Z

2
k)

⊤ + Z2
k(Z

1
k)

⊤). (78)

We can bound 0 ≤ C11 = ∥Z1
k∥22 ≤ n, 0 ≤ C22 = ∥Z2

k∥22 ≤ n and |C12| = |⟨Z1
k , Z

2
k⟩| ≤ n. Using the identity

ab⊤ + ba⊤ = 1
2 ((a + b)(a + b)⊤ − (a − b)(a − b)⊤) we can then express ZkZ

⊤
k as a sum of four psd matrices (with

possibly negative coefficients)

ZkZ
⊤
k = C11Z

1
k(Z

1
k)

⊤ + C22Z
2
k(Z

2
k)

⊤ +
C12

2
(Z1

k + Z2
k)(Z

1
k + Z2

k)
⊤ − C12

2
(Z1

k − Z2
k)(Z

1
k − Z2

k)
⊤, (79)

then we see that we can majorize ZkZk by the matrix nZ1
kZ

1
k+nZ

2
kZ

2
k+

n
2 (Z

1
k+Z

2
k)(Z

1
k+Z

2
k)

⊤+ n
2 (Z

1
k−Z2

k)(Z
1
k−Z2

k)
⊤

in the Loewner order and expanding this majorant we see that (ZkZ
⊤
k)2 ⪯ 2nZkZ

⊤
k where we let ⪯ be the Loewner order

on psd matrices. It follows that m2(ZkZ
⊤
k) = ∥E(ZkZ

⊤
k)2∥∞ ≤ 2n∥EZkZ

⊤
k ∥∞ = 2n∥G(x)∥∞.

We are now ready to state the theorem of the random feature error

Theorem 11 (Random feature error). For any θ ∈ Θ, any loss ℓ such that for all y ∈ [0, 1], ℓ(·, y) : [−L,L] → R+ has
Lipschitz constant Lip(L), with ω being KRR with regularization parameter λ > 0 and RKHS induced by Kθ we have that

ES∼NM [E(θ, S)− E(θ)] ≤ 2Lip(λ−1/2)λ−1M−1/2 (80)

+ 2Lip(λ−1/2)λ−2M−1/2n−1
√
log(2n)Eµ∼ρEx∼µn∥G(x)∥∞ (81)

+
1

2
Lip(λ−1/2)λ−2M−1n−1 log(2n) (82)

Proof. For any θ we can bound

ES∼NME(θ, S)− E(θ) = Eµ∼ρE(x,y)∼µnE(x,y)∼µES∼NM (ℓ(⟨ωθ,S(x,y), ϕθ,S(x)⟩, y)− ℓ(⟨ωθ(x,y), ϕθ(x)⟩, y))
≤ Lip(λ−1/2)Eµ∼ρE(x,y)∼µnEx∼µXES∼NM |⟨ωθ,S(x,y), ϕθ,S(x)⟩ − ⟨ωθ(x,y), ϕθ(x)⟩|.

Then

ES∼NM |⟨ωθ,S(x,y), ϕθ,S(x)⟩ − ⟨ωθ(x,y), ϕθ(x)⟩| = ES∼NM |y⊤(Gλ(x)
−1g(x)−Gλ(x, S)

−1g(x, S))| (83)

≤ ES∼NM ∥y∥∥Gλ(x)
−1g(x)−Gλ(x, S)

−1g(x, S)∥ (84)

≤
√
nES∼NM ∥Gλ(x)

−1g(x)−Gλ(x, S)
−1g(x, S)∥. (85)

Using the matrix identity AB − CD = A(B −D) + (A− C)D, the triangle inequality, together with Lemma 2 we get

∥Gλ(x)
−1g(x)−Gλ(x, S)

−1g(x, S)∥ ≤ ∥Gλ(x)
−1∥∞∥g(x)−g(x, S)∥2 + ∥Gλ(x)

−1−Gλ(x, S)
−1∥∞∥g(x, S)∥2

≤ (nλ)−1∥g(x)− g(x, S)∥2 + (nλ)−2∥G(x)−G(x, S)∥∞
√
n (86)

and so we consider the terms ES∼NM ∥g(x)−g(x, S)∥2 and ES∼NM ∥G(x)−G(x, S)∥∞. Using Lemma 9 and Lemma 10
we can upper bound (86) (together with factor

√
n) as

√
n∥Gλ(x)

−1g(x)−Gλ(x, S)
−1g(x, S)∥ ≤ 2λ−1M−1/2 + 2λ−2M−1/2n−1/2

√
log(2n)∥G(x)∥∞ (87)

+
1

2
λ−2M−1n−1/2 log(2n) (88)

The final bound follows by pulling Eµ∼ρEz∼µn into the square root using Jensen and multiplying by Lip(λ−1/2).

Combining the above we have that

Theorem 12 (IKML Excess risk bound). Assume that X × Y ⊆ Rd × [0, 1] and ℓ(y, ŷ) = (y − ŷ)2. Let Gfuture =

{z = (x, y) 7→ λ−1/2⟨v, ϕθ,S(x)⟩θ,S : ∥v∥θ,S ≤ 1} and F = {f : Zn → R≥0, f(z) = ℓ̂θ(z, S), ∀θ ∈ Θ}, and let
Z = (xt,yt)Tt=1 ∼ ρ̂T then with probability greater than 1− δ over the sampling of Z

ES∼NM [E(θ̂, S)− E(θ∗)] ≤ 2Lip(λ−1/2)ES∼NMEz∼ρ̂R(Gfuture(z)) (89)

+ ES∼NMEZ∼ρ̂TR(F(Z)) +

√
log(1/δ)

2T
(90)

+ ES∼NM (ÊT (θ̂, S)− ÊT (θ∗, S)) (91)

+ 2Lip(λ−1/2)λ−1M−1/2 (92)

+ 2Lip(λ−1/2)λ−2M−1/2n−1/2
√

log(2n)Eµ∼ρEx∼µn∥G(x)∥∞ (93)

+
1

2
Lip(λ−1/2)λ−2M−1n−1/2 log(2n) (94)

We note the following

• (89) can be replaced by the strictly greater bound 2Lip(λ−1/2)λ−1/2n−1/2

• We hypothesise that the term ES∼NMEZ∼ρ̂TR(F(Z)) in (90) is O(1/
√
T) due to standard form of rademacher

complexities of bounded balls in RKHS

• (91) is the optimization error and we assume that this is negligible.

• Since we are using the squared loss Lip(L) = 2(L+ 1) and thus all terms Lip(λ−1/2) = 2(λ−1/2 + 1) = O(λ−1/2).

4 DATASETS

4.1 BEIJING AIR QUALITY

The Beijing Air Quality dataset [Zhang et al., 2017] is a time-series dataset measuring air-quality and meterological factors
at 12 air-quality monitoring sites. The meterological data for each site is matched with the closest of available weather
stations. The data was collected hourly and from the period March 1st, 2013 to February 28th, 2017.

Each datum consists of a timestamp, the site name and various features. We use the feature of interest, “PM2.5” for the
fine particulate matter (PM) concentration and remove the features “PM10”, “wd”, “WSPM” since the first one correlates
heavily with “PM2.5” and “wd”, “WSPM” since “wd” is the direction of the wind and thus categorical and “WSPM” since
this is the wind speed of the direction. This leaves us with 9 features and one output feature.

The dataset was created as follows:

1. Remove any rows with missing entries.

2. For each station, split the time-series into 3 sub-series of 64/16/20% starting at the beginning forming the meta-train,
validation and test sets.

Tasks are sampled as follows:

1. Sample a station uniformly at random.

2. Given a train and validation size n = ntr + nval sample a contiguous sequence of size n at random from the available
starting points. We add a temporal feature t which is just an index from 1 to n to encode temporal dependency local to
the task.

3. From this contiguous sequence randomly assign ntr datapoints to the train set and nval datapoints to the validation set.

4.2 GAS SENSOR

The Gas Sensor Modulation dataset [Burgués et al., 2018] is a collection of multivariate timeseries collected in a controlled
environment using MOX sensors for CO detection. The sensors output voltage recordings sampled at a frequency of 3.5 Hz.

Each timeseries can be chunked up into contiguous subseries corresponding to experiments by looking at the heating cycle,
the end of a cycle which marks a new experiment. We let each subsequence correspond to one task distribution from which
we sample n = ntr + nval datapoints and permute the indices to make the task into a supervised regression task. The output
was chosen to be the 2nd feature 3 timesteps into the future as this seen to vary over the tasks and not directly inferable by
one of the other features. In total there are 13 csv files with experiment. Each such file has a set number of experiments after
preprocessing, we split each files experiment into 64/16/20% meta-train, validation and test splits.

The dataset was created as follows:

1. All subsequences were extracted by locating the start and end of a heating cycle.

2. All extra features which were not gas sensors were dropped.

3. Output feature isolated and lagged.

Tasks are sampled as follows:

1. For a new task we first sample one of the csv files uniformly at random.

2. From the experiments in this csv file we sample a subsequence uniformly at random which is the task-distribution.

3. Add “t” to the features.

4. From this subsequence we sample n = ntr + nval points at random which forms out train and validation set.

5 EXPERIMENTAL RESULTS

5.1 HARDWARE

All of the experiments were run on a single computer with specifications

CPU AMD Ryzen 7 3700X 8-Core Processor

GPU NVIDIA GeForce RTX 2060 SUPER

RAM 2x16GB DDR4 Vengeance

5.2 ALGORITHMS

In this section we elaborate on the algorithm used.

MAML [Finn et al., 2017] parameterize a set of functions fθ : X → Y , typically a family of neural networks. For a new
task D it optimizes the objective argminθ Ê(fθ, Dtr) using gradient descent starting from the hyperparameter θ0 so that
the fine-tuned weight vector is a function of θ0, θ(θ0). In the outer loop it optimizes the objective argminθ0 Ê(fθ(θ0), D

val)
using gradient descent.

R2D2 [Bertinetto et al., 2018] parameterize a feature map ϕθ : X → Rd which give rise to a kernel Mθ(x, x
′) =

⟨ϕθ(x), ϕθ(x′)⟩. The inner algorithm is KRR with Kθ. For a task D it first does KRR in the inner loop giving the KRR
estimator fθ = AKRR(Kθ, D

tr) and in the outer loop it optimizes argminθ Ê(fθ, Dval) using gradient descent.

LS Biased Regularization [Denevi et al., 2019] performs biased ridge regression where the functions are given by fθ(x) =
⟨θ, x⟩. For the inner algorithm it solves the biased ridge regression problem argminw

1
n∥Xθ − y∥2 + λ∥θ − θ0∥2 which

has a closed form, see [Denevi et al., 2019]. For a task D the algorithm first finds θ(θ0) using Dtr using biased RR and in
the outer loop it optimizes argminθ0 Ê(fθ(θ0), D

val) using gradient descent.

IKML-MLP is the same as IKML but uses the general random features representation of the kernel K(x, x′) =∫
Ω
φ(x, ω)⊤φ(x, ω)dτ(ω). In this case, we let φ(·, ω) : Rd → Ro be an MLP with ReLU activation functions, some

fixed hidden dimension h and an output dimension o. Let D be the size of ω. In this case the feature map is complicated,
so we opt for a simpler pushforward to make it easier to train. In particular, we let the pushforward take on a “varia-
tional form” by letting the pushforward ψθ(s) = ψµ,σ(s) = µ + σ ⊙ s where s, µ, σ ∈ RD and for two matrices A,B,
(A⊙B)ij = AijBij is the Hadamard product. We train using the same procedure as in Alg. 1. Of note is that this can be
seen as an ensemble method over R2D2 where instead of ensembling over the learned functions we ensemble over kernel
functions.

5.3 TOY REGRESSION

Setup We create a synthetic high-dimensional meta-learning regression setting where each task is sampled from an RKHS H
with a “complicated” kernel Ko. In particular, we choose Ko to be the kernel given by Bochner’s theorem and a pushforward
of a 3-layers Multi-Layer Perceptron (MLP) with 32 hidden units per layer, ReLU activation functions and a 16-dimensional
latent Gaussian distribution. The network was initialized with weights given by the PyTorch [Paszke et al., 2019] default
initialization scaled by 100. Since this kernel lacks an analytic form, we sample 10000 frequencies and use the random
features kernel in its place.

The tasks are generated in H by independently sampling R points (xr)Rr=1 with xr ∼ U[0,0.2]d and R coefficients (αr)
R
r=1

with αj ∼ U[0,1]. Together they model the target regressor as f(x) =
∑R

r=1 αrK(x, xr). We set R = 3. The task datasets
is created by independently sampling n = ntr + nval = 50 + 50 datapoints (xi, yi)ni=1 with xi ∼ U[0,0.2]d and yi = f(xi).

Initial and Learned Kernel For the same setup of the environment as in the synthetic experiments we look at how the
initial and learned kernels differ from the true kernel. We do this for the algorithms IKML and Gaussian MKL meta-KRR.
These algorithms where chosen since they define translation invariant kernels and are easy to visualize. We let all of the
algorithms (R2D2, MAML, IKML) be parameterized by a 3-layer MLP but with varying the dimensionality of x. We also
tried using 1 and 2-layer MLPs for the parameterization but the results were almost identical.

For an experiment with dimension d we visualize the kernels of Gaussian MKL meta-KRR and IKML by sampling 5
directions (vi)5i=1 from the unit ball in Rd. For a direction vi we plot the value of the kernel on the line with direction vi
where on the x-axis we have t from −0.4 to 0.4 and on the y-axis the value of K(0, t · vi). We plot the result of the first run
for each experiment, other runs look similar.

We plot the learning curves and kernel for each dimension 1, 5, 10, 20. For each row in Fig. 2 corresponding to a dimension
d the i’th column plots kernels in the direction of vi with the first row of the subplot corresponding to the kernels at

initialization and the second row the kernels after training. The sample (vi)
5
i=1 is resampled for each dimension. For IKML

we sample 10000 frequencies once and fix them before plotting.

5.4 LEARNING CURVES

We show the behaviour of the optimization trajectory of the algorithms R2D2, IKML and ANP. See Fig. 1a and Fig. 1b.

(a) (b)

Figure 1: Learning curves of meta-validation RMSE for the algorithms IKML, R2D2 and ANP for (a) Beijing Air Quality
(25-shot), (b) Gas Sensor dataset (20-shot) over 5 runs (mean ± 1 std). R2D2 and ANP were chosen due to their recency
and performance as few-shot learning algorithms compared to all other algorithms evaluated.

5.5 CROSS-VALIDATION FOR REAL-WORLD DATASETS

We cross-validated R2D2, IKML and ANP on the 25-shot Air Quality and 20-shot Gas Sensor dataset where we do a grid
search over the number of hidden layers in an MLP with ReLU activation function and the meta-learning rate. For IKML and
R2D2 the number of hidden layers are in {1, 2, 3, 4, 6, 8, 10, 15, 20} while for ANP we use the same architecture for encoder
and decoder and use {1, 2, 3, 4} layers, the hidden dimension is fixed to 64, the meta-learning rate are in {10−4, 10−5}. The
training setup is the same as in the main body and the metric is the RMSE on a holdout-set sampled from the meta-validation
split of the best model from the snapshots during the 30000 iterations. The results can be seen in Tab. 1.

5.6 MORE SHOTS

Further test-RMSE for various numbers of shots for Air Quality Tab. 2 and Gas Sensor Tab. 3. We benchmark LS Biased
Regularization, IKML, R2D2, ANP for both Air Quality and Gas Sensor and additionally IKML-MLP for Gas Sensor. We
reuse the cross-validated models for IKML, R2D2 and ANP and the hyperparameters used for the other models. We get 5
test-RMSE scores for Air Quality and 2 for Gas Sensor and report the mean and standard deviation for Air Quality and
mean for Gas Sensor. The low number of shots in Gas Sensor is due to many of the underlying time series from which each
task is generated having as few as 40 points.

Learning curves for d = 1
Initial and learned kernels for d = 1

Learning curves for d = 5

Initial and learned kernels for d = 5

Learning curves for d = 10

Initial and learned kernels for d = 10

Learning curves for d = 20

Initial and learned kernels for d = 20

Figure 2: Parameterization using a 3-layer MLP: Learning curves and initial vs learned kernels for different input dimension
on synthetic dataset (all algorithms using a 3-layer MLP). Column 1: learning curves (meta-test RMSE) over 3 runs.
Column 2: Sub-row 1 kernel before training, Sub-row 2 kernel at test time. Each column plots the kernel in a random
direction drawn from the unit ball.

Table 1: Validation results for meta-hyperparameter configurations for IKML, R2D2 [Bertinetto et al., 2018] and ANP [Kim
et al., 2019] on 25-shot Air Quality dataset and 20-shot Gas Sensor. Best set of parameters in bold. We run the algorithms
for 30000 iterations and evaluate it on the validation set at 250 intervals. We get the validation RMSE on a holdout set (3000
tasks) using the model with the lowest evaluation validation error.

25-shot Air Quality 20-shot Gas Sensor

Meta-lr Layers IKML R2D2 ANP IKML R2D2 ANP

10−4 1 101.65 8861.31 1390.14 2.16 2.64 2.38
2 98.37 13761.01 38.61 2.14 1.85 1.72
3 98.07 205.06 38.37 2.14 1.65 1.53
4 21.45 508.55 36.32 2.11 1.49 1.57
6 24.24 21.57 – 2.13 1.46 –
8 23.88 21.96 – 2.06 1.53 –
10 27.30 21.32 – 2.06 1.49 –
15 27.57 22.85 – 2.12 1.48 –
20 40.57 25.01 – 7.20 1.50 –

10−5 1 125.75 3237.35 76.50 19.53 6.45 7.83
2 110.01 1233.41 41.75 2.70 3.20 8.43
3 76.58 431.61 47.24 2.50 2.34 7.42
4 19.05 57.37 43.71 2.41 1.86 6.35
6 20.52 22.68 – 2.43 1.59 –
8 23.86 21.98 – 2.35 1.55 –
10 134.89 22.44 – 2.45 1.53 –
15 28.40 24.80 – 2.46 1.56 –
20 135.18 26.62 – 2.45 1.55 –

Table 2: Test-RMSE (mean ± 1 std) for IKML, R2D2, ANP and LSBR over 5 independent runs on Air Quality for various
shots. Same tasks for all algorithms over each run. Best result for each shot in bold.

Air Quality (shots)

Model 10 25 50 100

IKML 24.32± 5.21 19.14± 0.93 19.36± 1.02 18.88± 0.51
R2D2 21.21± 0.28 20.23± 0.55 23.42± 3.44 20.75± 0.79
ANP 31.05± 0.90 33.77± 0.70 37.30± 0.94 41.08± 1.07
LSBR 21.49± 0.40 21.68± 0.29 23.69± 0.47 27.32± 0.16

Table 3: Test-RMSE (mean, standard deviation left out due to low number of runs) for IKML, R2D2, ANP, LSBR and
IKML-MLP over 2 independent runs on Gas Sensor for various shots. Same tasks for all algorithms over each run. Best
result for each shot in bold.

Gas Sensor (shots)

Model 5 10 15 20

IKML 10.04 4.57 3.42 2.80
R2D2 6.00 2.44 2.12 1.95
ANP 2.57 2.44 2.10 2.12
LSBR 13.97 12.21 11.12 12.44
IKML-MLP 4.03 2.64 2.23 1.94

5.7 SENSITIVITY OF R2D2 AND IKML-MLP

We highlight the qualitative difference between R2D2 and IKML-MLP. We compare the learning curves and holdout
meta-valid and test RMSE. Note that the test-split is used to asses out-of-sample few-shot performance since we train and
choose best model using train and validation set respectively. In this case we let the feature map φ(x, ω) be an MLP with
ReLU activation functions, with number of layers and number of hidden units varied. We perform this analysis on the Air
Quality and Gas Sensor datasets with the settings as given in the main body unless specified and compare the results.

Air Quality We run IKML-MLP and R2D2 for 10000 iterations using Adam with meta-learning rate 3 · 10−4 and vary
the number of layers and and the number of hidden units in isolation. Both of the algorithms share the same base feature
map φ(·, ω) but IKML-MLP calculates the kernel K(x, x′) =

∫
Ω
φ(x, ω)⊤φ(x, ω)dτ(ω) by sampling while R2D2 has a

fixed feature map yielding the kernel K(x, x′) = φ(x,w)⊤φ(x′, w) for a fixed weight w. We use a feature dimension of 8.
The only difference to the setup in the main body is that we use 10000 iterations insted of 30000.

When we fix the number of layers to be 2, we can see from Fig. 3 that IKML-MLP dominates R2D2 in terms of performance
both on the validation and test set. In contrast, when we fix the number of hidden units to be 64 and vary the number
of layers, we can see from Fig. 4 that R2D2 performs equally well as IKML-MLP. As the network becomes deeper we
noticed, for this dataset, that IKML-MLP requires more random features to train well (in contrast to the Gas Sensor case).
We hypothesis that for noisy tasks, like in the Air Quality dataset, the number of random features required to get accurate
gradients to be able to train deeper networks increase quickly with depth. However, on this dataset we see that the number of
layers is not required to be very deep to reach good performance, so in this case it does not pose a problem.

Gas Sensor We run IKML-MLP and R2D2 for 10000 iterations using Adam with meta-learning rate 3 · 10−4 and vary the
number of layers and and the number of hidden units in isolation. Both of the algorithms share the same base feature map
φ(·, ω) but IKML-MLP calculates the kernel K(x, x′) =

∫
Ω
φ(x, ω)⊤φ(x, ω)dτ(ω) by sampling while R2D2 has a fixed

feature map yielding the kernel K(x, x′) = φ(x,w)⊤φ(x′, w) for a fixed weight w. We use a feature dimension of 4. The
only difference to the setup in the main body is that we use 10000 iterations insted of 30000.

Compared to the Air Quality figures Fig. 3 and 4 training is much more stable due to the dataset being much less noisy than
that of the Air Quality dataset. R2D2 and IKML-MLP both train well and have good performance, although IKML-MLP
overfits less to the meta-split as can be seen on the holdout performance plots in Fig. 5 and 6. In this case 100 random
features were enough for the training to be successful for IKML-MLP which supports the hypothesis given in the previous
section on Air Quality.

Learning curves

Holdout Performance

Figure 3: Learning curves (above) and performance plots (below) of R2D2 vs IKML-MLP on the Air Quality dataset when
varying the number of hidden units. IKML-MLP is more robust to hyperparameter settings than R2D2. We fix the number of
hidden layers to 2 and feature dimension to be 8. For IKML-MLP we fix the number of random features to be 100. Note that
performance plot is log-scaled due to large range of reported numbers.

Learning curves: we optimize the models using the train split

Holdout Performance

Figure 4: Learning curves (above) and performance plots (below) of R2D2 vs IKML-MLP on the Air Quality dataset when
varying the number of layers. IKML-MLP stabilize training up to a point but for deeper networks we found that IKML-MLP
requires more random features. We fix the number of hidden units to 64 and feature dimension to be 8. For IKML-MLP we
fix the number of random features to be 400.

Learning curves

Holdout Performance

Figure 5: Learning curves (above) and performance plots (below) of R2D2 vs IKML-MLP on the Gas Sensor dataset when
varying the number of hidden units. IKML-MLP is more robust to hyperparameter settings than R2D2. We fix the number of
hidden layers to 2 and feature dimension to be 8. For IKML-MLP we fix the number of random features to be 100.

Learning curves: we optimize the models using the train split

Holdout Performance

Figure 6: Learning curves (above) and performance plots (below) of R2D2 vs IKML-MLP on the Gas Sensor dataset when
varying the number of layers. IKML-MLP stabilize training up to a point but for deeper networks we found that IKML-MLP
requires more random features. We fix the number of hidden units to 64 and feature dimension to be 8. For IKML-MLP we
fix the number of random features to be 100.

Table 4: Time (seconds) to solve one batch of tasks for IKML, IKML-MLP, R2D2 and MAML. We measure the time required
for solving one batch of tasks: training, calculating the meta-loss, and updating the hyperparameters. We use the Air Quality
(d = 10) dataset with 25 train and 25 validation points per task, meta-batch size of 4. All algorithms use a 4-layer MLP with
64 hidden units. For IKML we let M = 2 · 104, while for IKML-MLP we let M = 100. We run each algorithm for 5000
steps and normalize the total time by dividing with 5000. We repeat this 3 times and report the mean and standard deviation.

Algorithm Seconds for one batch (mean ± 1 std)

IKML 0.017± 0.00004
IKML-MLP 0.075± 0.002
R2D2 0.031± 0.001
MAML 0.022± 0.001

6 COMPUTATIONAL COMPLEXITY AND WALLTIME TABLE

In this section we show the computational complexity using big-O notation of IKML / IKML-MLP and compare it against
that of R2D2 since they both rely on KRR as the inner algorithm. In addition we measure the performance in practice
through wall-time table of IKML, IKML-MLP, MAML and R2D2. We first recall the complexity of training and validation
of KRR in the dual form when we have a train set Dtr = (xi, yi)

ntr
i=1 and a validation set Dval = (xj , yj)

nval
j=1. We focus on

the dual formulation since generally data set sizes are small in meta-learning while the feature space dimension is large,
which means that the dual form is more efficient than the primal form.

Assume that we have a kernel K : X × X → R that can be evaluated in O(κ). For training we need to calculate the dual
coefficients α = (G+ ntrλI)

−1y where y is the output vector. This means we first need to calculate the regularized kernel
matrix of the train set, G+ ntrλI ∈ Rntr×ntr , which can be calculated in O(κn2tr + ntr) since ntrλI is a diagonal matrix,
then invert this matrix which can be calculated in O(n3tr) and finally perform the matrix-vector multiplication which is
O(n2tr). Summing all of the steps gives a final complexity of O(κn2tr +n3tr). Prediction on the validation set Dval means first
calculating the matrix (Mls)

nval,ntr

l,s=1 = (K(xl, xs))
nval,ntr

l,s=1 between the validation and train set which is done inO(κntrnval).
After calculating M , calculating ŷ =Mα can be done in O(ntrnval) which means that the total number of operations is
O((κ+ 1)ntrnval).

The complexity for both training and validation when using KRR depends implicitly on κ which will depend on the
meta-learning algorithm. For IKML with Bochner kernel using M random features we first need to sample M features. This
can be done in O(Cm) where C is the time it takes to evaluate the pushforward neural network. Note that this is a one-time
cost before training and validation. In practice we use batches so that for B tasks we sample M features once, which reduces
this cost further by a factor of the number of tasks in a batch. Letting W ∈ RM×d be the matrix of random features stacked
horizontally then the feature map ϕ : X → RM is ϕ(x) = cos(Wx+ b) where b is a vector of iid entries sampled uniformly
from [0, 2π], sampled at the same time as W . Evaluating ϕ once is done in O((d+ 1)m). For one task, we first calculate
the M features in O((d+ 1)m) and training This means that training and prediction for IKML costs O(dmn2

tr + n3tr) and
O(dmntrnval) respectively, both which are linear in M .

For R2D2 the feature map ϕ : X → Rh where h is the dimension of the feature space is a neural network. Assuming that ϕ
takes the form of an L-layer MLP with weights and biases (Wi, bi)

T
i=1 such that W1 ∈ Rh1×d, b1 ∈ Rh1 , and for 1 < l < T ,

Wl ∈ Rhl×hl−1 , bl and finally WL ∈ Rh×hl , bl ∈ Rh with nonlinearity σ which can be evaluated in constant time A, then
evaluating ϕ(x) is done in O(

∏L
l=1 hlhl−1 +

∑L−1
l=1 (1 +A)hl + hL) = O(

∏L
l=1 hlhl−1). Running IKML-MLP, if hl = h

for any l we get O(dh2L−1). Except for the extra factor of h2L−1 the same conclusion as for Bochner holds in this case.

References

Luca Bertinetto, João F. Henriques, Philip H. S. Torr, and Andrea Vedaldi. Meta-learning with differentiable closed-form
solvers. CoRR, 2018.

Javier Burgués, Juan Manuel Jiménez-Soto, and Santiago Marco. Estimation of the limit of detection in semiconductor gas
sensors through linearized calibration models. Analytica Chimica Acta, 1013:13–25, 2018.

Giulia Denevi, Carlo Ciliberto, Riccardo Grazzi, and Massimiliano Pontil. Learning-to-learn stochastic gradient descent
with biased regularization. In International Conference on Machine Learning, pages 1566–1575, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of deep networks. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 1126–1135. JMLR. org, 2017.

Hyunjik Kim, Andriy Mnih, Jonathan Schwarz, Marta Garnelo, Ali Eslami, Dan Rosenbaum, Oriol Vinyals, and Yee Whye
Teh. Attentive neural processes. arXiv preprint arXiv:1901.05761, 2019.

Andreas Maurer. Transfer bounds for linear feature learning. Machine Learning, 75(3):327–350, 2009.

Andreas Maurer. A vector-contraction inequality for rademacher complexities. In International Conference on Algorithmic
Learning Theory, pages 3–17. Springer, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin,
Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. arXiv
preprint arXiv:1912.01703, 2019.

Joel A Tropp. Matrix concentration & computational linear algebra, July 2019.

Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and Song Xi Chen. Cautionary tales on air-quality improvement
in beijing. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473(2205):20170457,
2017.

	Glossary
	Kernel for Affine Pushforward and Gaussian Latent
	Error Decomposition
	Setup
	Kernel Family
	Auxiliary Results
	Decomposition
	Bounding the estimation error for the future task
	Predicting the empirical error for the future task
	Random feature error

	Datasets
	Beijing Air Quality
	Gas Sensor

	Experimental Results
	Hardware
	Algorithms
	Toy Regression
	Learning curves
	Cross-validation for Real-World Datasets
	More shots
	Sensitivity of R2D2 and IKML-MLP

	Computational Complexity and Walltime Table

